
CS 395T

JFK Protocol in Applied Pi Calculus

Proving Security

“Real” protocol
• Process-calculus specification of the actual protocol

“Ideal” protocol
• Achieves the same goal as the real protocol, but is

secure by design
• Uses unrealistic mechanisms, e.g., private channels
• Represents the desired behavior of real protocol

To prove the real protocol secure, show that no
attacker can tell the difference between the real
protocol and the ideal protocol
• Proof will depend on the model of attacker observations

Example: Challenge-Response

Challenge-response protocol
A → B {i}k

B → A {i+1}k

This protocol is secure if it is indistinguishable
from this “ideal” protocol
A → B {random1}k

B → A {random2}k

Example: Authentication

Authentication protocol
A → B {i}k

B → A {i+1}k

A → B “Ok”

This protocol is secure if it is indistinguishable from
this “ideal” protocol
A → B {random1}k

B → A {random2}k

B → A random1, random2 on a magic secure channel
A → B “Ok” if numbers on real & magic channels match

Security as Observational Equivalence

Need to prove that two processes are obser-
vationally equivalent from attacker’s viewpoint
Complexity-theoretic model
• Prove that two systems cannot be distinguished by any

probabilistic polynomial-time adversary
[Beaver ’91, Goldwasser-Levin ’90, Micali-Rogaway ’91]

Abstract process-calculus model
• Cryptography is modeled by abstract functions
• Prove testing equivalence between two processes
• Proofs are easier, but it is nontrivial to show

computational completeness [Abadi-Rogaway ’00]

Main Ideas

1. The adversary is the environment in which the
protocol executes
• Intuition: the network is insecure, active attacker

may be the man-in-the-middle on every wire and
will interact with the protocol in unpredictable ways

2. The protocol is secure if no test performed by
the environment can distinguish it from the
ideal functionality
• Ideal functionality is a “magic” protocol that is

secure by design and performs the same
functionality as the actual protocol

By contrast, in finite-state
checking the adversary is
a set of explicit rules

Applied Pi Calculus: Terms

M, N ::= x Variable

| n Name

| f(M1,...,Mk) Function application

Standard functions
• pair(), encrypt(), hash(), …

Simple type system for terms
• Integer, Key, Channel〈Integer〉, Channel〈Key〉

Applied Pi Calculus: Processes

P,Q ::= nil empty process

| ū〈N〉.P send term N on channel u

| u(x).P receive from channel P and assign to x

| !P replicate process P

| P|Q run processes P and Q in parallel

| (νn)P restrict name n to process P

| if M = N conditional

then P else Q

Reductions

→ silent (i.e., unobservable) computation
ā〈M〉.P | a(x).Q → P | Q[M/x] P sends M to Q on internal channel a

if M = M then P else Q → P
if M = N then P else Q → Q ∀ ground M, N s.t. M ≠ N in eq theory

→ writing to an observable channel c
ā〈M〉.P | a(x).Q → let {y=M} in (P | a(x).Q)

(νn)ā〈U〉

νy.ā〈y〉

→ reading from an observable channel c
let {y=M} in (P | a(x).Q) → P | Q[M/y,y/x]

a(U)

a(y)

“free-floating” let records values known to attacker

JFKr Protocol

R

Ni, xi
xi=gdic

I

Ni, Nr, xr, gr, tr

xr=gdr tr=hashKr(xr,Nr,Ni,IPi)DH group

Ni, Nr, xi, xr, tr, ei, hi

ei=encKe(IDi,ID’r,sai,sigKi(Nr,Ni,xr,xi,gr))

xi
dr=xr

di=x Ka,e,v=hashx(Ni,Nr,{a,e,v})

hi=hashKa(“i”,ei)

er, hr

er=encKe(IDr,sar,sigKr(xr,Nr,xi,Ni)) hr=hashKa(“r”,er)

Initiator Process
[Abadi, Blanchet, Fournet ESOP ’04 --- see website]

! initA(ID’r,sai) . [Control] Environment starts the initiator
νNi . Create fresh nonce Ni

c〈1(Ni,xi)〉 . Send message 1 with Ni and xi

c(2(=Ni,Nr,xr,gr,tr)) . Wait for message 2
(received Ni must be equal to previously sent Ni)

$〈Ni〉 . [Control] Annonce start of key computation
let Ka,e,v=hashxrdi(Ni,Nr,{a,e,v}) in Compute shared Diffie-Hellman keys
let si=sigKi(Nr,Ni,xr,xi,gr) in Sign previously exchanged information
let ei=encKe(IDi,ID’r, sai,si) in Encrypt with the newly established shared key
let hi=hashKa(“i”,ei) in Compute message authentication code (MAC)
c〈3(Ni,Nr,xi,xr,tr,ei,hi)〉 . Send message 3
c(4(er,hr)) . Wait for message 4
if hr=hashKa(“r”,er) then Check message authentication code
let (IDr,sar,sr)=decryptKe(er) in Decrypt with shared key
if VerifySigIDr,sr(xr,Nr,xi,Ni) then Verify signature using R’s public key
connectA 〈IDr,ID’r,sai,sar,Kv〉 [Control] Announce completion of protocol

__

__

__

Responder Process for Message 1

! c(1(Ni,xi)) . Wait for message 1
νNr . Create fresh nonce Nr

let tr=hashKr(xr,Nr, Ni) in Compute anti-DoS cookie
c〈2(Ni,Nr,xr,gr,tr)〉 Send message 2
__

Responder Process for Message 3

! c(3(Ni,Nr,xi,xr,tr,ei,hi)) . Wait for message 3
if tr=hashKr(xr,Nr, Ni) then Re-compute and compare anti-DoS cookie
if tr hasn’t been accepted before then Check for freshness to prevent replay
$〈Ni,Nr〉 . [Control] Announce start of key computation and

allocation of session state
let Ka,e,v=hashxidr(Ni,Nr,{a,e,v}) in Compute shared Diffie-Hellman keys
if hi=hashKa(“i”,ei) in Check message authentication code
let (IDi, ID’r,sai,si)=decryptKe(ei) in Decrypt with shared key
if IDi∈ Si

B then Check if initiator is on the authorized list
if VerifySigIDi,si(Ni,Nr,xi,xr,gr) then Verify signature using I’s public key
acceptA 〈IDi,ID’r,sai,sar,Kv〉 . [Control] Announce acceptance of message 3
let sr=sigKr(xr,Nr,xi,Ni)) in Sign previously exchanged information
let er=encKe(IDr,sar,sr) in Encrypt with shared key
let hr=hashKa(“r”,er) in Compute message authentication code (MAC)
c〈4(er,hr)〉 Send message 4
__

__

Note: active attacker may read/write communication channel c

Features of the Model

Two separate processes for responder
• To counter denial of service attacks, responder is

stateless until he receives message 3
• Responder process for message 1 must be independent

from responder process for message 3

Responder must keep a database of all cookies
accepted after message 3 to avoid replay attacks
“Control” messages on special channels announce
protocol checkpoints
• “Completed verification”, “started key computation”…
• Not part of specification, only to help model properties

Linearization

Parallel composition of responder to message 1
and responder to message 3 is observationally
indistinguishable from a single stateful process

R1
A | R3

A ≈ ! c(1(Ni,xi)). νNr,tr.
c〈2(Ni,Nr,xr,gr,tr)〉.
?c(3(=Ni,=Nr,xi,=xr,=tr,ei,hi)).
let Ka,e,v=hashxidr(Ni,Nr,{a,e,v}) in …
(then as in R3

A)

_
Anti-DoS cookie must appear new
and random to external observer

This is the actual
process executed
by responder

This is what the responder’s behavior
must look like to any external observer

Protection From Denial of Service

Initiator:
For any trace S → S’, for each output $〈Ni〉, there are
successive actions initA(…), c〈1(Ni…)〉, c(2(Ni…))

– Initiator starts his Diffie-Hellman computation only with a
nonce that he previously sent to someone in message 1 and
received back in message 2

Responder:
For any trace S → S’, for each output $〈Ni,Nr〉, there are
successive actions c(1(Ni…)), c〈2(Ni,Nr…)〉, c(3(Ni,Nr…))

– Responder starts his Diffie-Hellman computation and
allocates session state only after receiving the same nonce
that he sent to ostensible initiator in message 2

η

_

_

_

_

η

Secrecy for Established Key

Assume S → S’. For any principals A,B, DH exponentials
xi,xr, and terms ID’r,sai there exists S3 such that

S’ S3

and
either IDA∈ SB

i and

S3 ≈ let ϕ4 in S’

or IDA∉ SB
i and S3 ≈ let ϕ3 in S’

η

initA(ID’r,sai) [1,2,3] Observable execution of S’ must include start
of initiator and send/receive of first 3 messages

νKv.acceptB(IDa,ID’r,sai,sar,Kv) [4] connectA(IDb,ID’r,sai,sar,Kv)

Positive outcome: execution is not observably different from “magic”
protocol in which parties agree on a new key Kv without communicating Exports Ni,Nr,tr …

to environment

Negative outcome: if initiator is not authorized, execution is not observably
different from a protocol in which responder simply stops after message 3

Authentication for Control Actions

Assume S → S’. The actions in η are such that
1. For each acceptB(IDa,ID’r,sai,sar,Kv),

IDA∈ SB
i and there is distinct initA(ID’r,sai)

2. For each connectA(IDb,ID’r,sai,sar,Kv),

there is distinct initA(ID’r,sai) and acceptB(IDa,ID’r,sai,sar,Kv)

η

If responder announces completion of protocol, initiator is on the
authorized list and previously initiated this instance of the protocol

If initiator announces completion of protocol, then he initiated this
instance and responder has announced successful completion, too

Authentication is a correspondence property
(some event happens only if another event happened previously)

Assume S S’.

1. contains a series of transitions that match

in the same order except possibly for arguments

xi in 1st input on c and tr in 2nd input and 3rd output on c

2. Let η be η’ without these transitions.
Then (let ϕ4 in S) ≈ S’

η

Authentication for Complete Sessions

Protocol executed, and initiator
announced successful completion

• Responder must have announced successful completion, too
• Values received by initiator must be equal to values sent by responder
• Values received by responder must be equal to values sent by initiator

(except for unauthenticated fields xi and tr)

connectA(IDb,ID’r,sai,sar,Kv)

η

initA(ID’r,sai) [1,2,3] acceptB(IDa,ID’r,sai,sar,Kv)

[4]

See appendix B.1 of
[ABF04] on how this
may reveal identities of
communicating partiesη’

Technical point: variable assignment ϕ4 contains all values revealed by protocol messages

Correspondence
property!

Detailed Proofs

See tech report on Bruno Blanchet’s website
http://www.di.ens.fr/~blanchet/crypto/jfk.html

Some observational equivalences are proved by
hand, some using automated verifier ProVerif
• Verification scripts available on the website

ProVerif is a general-purpose tool for security
protocol analysis
• The ProVerif paper is on the paper assignment list

(hint! hint!)

Equivalence in Process Calculus

Standard process-calculus notions of
equivalence such as bisimulation are not
adequate for cryptographic protocols
• Different ciphertexts leak no information to the

attacker who does not know the decryption keys

(νk)c〈senc(M,k)〉 and (νk)c〈senc(N,k)〉 send
different messages, but they should be treated
as equivalent when proving security
• In each case, a term is encrypted under a fresh key
• No test by the attacker can tell these apart

- -

Testing Equivalence

Intuitively, two processes are equivalent if no
environment can distinguish them
A test is a process R and channel name w
• Informally, R is the environment and w is the channel

on which the outcome of the test is announced

A process P passes a test (R,w) if P | R may
produce an output on channel w
• There is an interleaving of P and R that results in R

being able to perform the desired test

Two processes are equivalent if they pass the
same tests

Advantages and Disadvantages

Proving testing equivalence is hard
• To prove security, need to quantify over all possible

attacker processes and all tests they may perform
• In applied pi calculus, can use “labeled bisimilarity”

– Instead of arbitrary evaluation contexts, reason only about
inputs and outputs (labeled transitions) on certain channels

Testing equivalence is a congruence
• Congruence = equivalence in any context
• Can compose protocols like building blocks

Equivalence is the “right” notion of security
• Similar to definitions in complexity-theoretic crypto

Structural Equivalence

P | nil ≡ P
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
!P ≡ P | !P

(νm)(νn)P ≡ (νn)(νm)P
(νn)nil ≡ nil

(νn)(P | Q) ≡ P | (νn)Q if n is not a free name in P

P[M/x] ≡ P[N/x] if M=N in the equational theory

Static Equivalence

Frames are static knowledge exported by a
process to the execution environment
• Assignment of values to variables

– {x=M, y=enck(M,x), …}

• Attacker (i.e., environment) learns these values

Two frames ϕ and ψ are statically equivalent if
they map the same variables to equal values

– Dom(ϕ)=Dom(ψ) and ∀ terms M, N (M=N)ϕ iff (M=N)ψ

Two processes are statically equivalent if they
export the same knowledge to the environment

– A ≈s B if their frames are statically equivalent

Labeled Bisimilarity

Labeled bisimilarity is the largest symmetric
relation R on closed processes s.t. A R B implies
1. A ≈s B
2. If A → A’, then B →* B’ and A’ R B’ for some B’
3. If A → A’ and freevars(α) ⊆ dom(A) and

boundnames(α) ∩ freenames(B) = ∅, then
B →* → →* B’ and A’ R B’ for some B’

Why labeled bisimilarity?
• Congruence: ∀ context C[], A ≈l B implies C[A] ≈l C[B]
• Easier to check than direct observational equivalence:

only care about steps that export values to environment

α

α

	JFK Protocol in Applied Pi Calculus
	Proving Security
	Example: Challenge-Response
	Example: Authentication
	Security as Observational Equivalence
	Main Ideas
	Applied Pi Calculus: Terms
	Applied Pi Calculus: Processes
	Reductions
	JFKr Protocol
	Initiator Process
	Responder Process for Message 1
	Responder Process for Message 3
	Features of the Model
	Linearization
	Protection From Denial of Service
	Secrecy for Established Key
	Authentication for Control Actions
	Authentication for Complete Sessions
	Detailed Proofs
	Equivalence in Process Calculus
	Testing Equivalence
	Advantages and Disadvantages
	Structural Equivalence
	Static Equivalence
	Labeled Bisimilarity

