Probabilistic Contract Signing

Probabilistic Fair Exchange

- Two parties exchange items of value
 - Signed commitments (contract signing)
 - Signed receipt for an email message (certified email)
 - Digital cash for digital goods (e-commerce)
- Important if parties don't trust each other
 - Need assurance that if one does not get what it wants, the other doesn't get what it wants either
- Fairness is hard to achieve
 - Gradual release of verifiable commitments
 - Convertible, verifiable signature commitments
 - Probabilistic notions of fairness

Properties of Fair Exchange Protocols

Fairness

 At each step, the parties have approximately equal probabilities of obtaining what they want

Optimism

 If both parties are honest, then exchange succeeds without involving a judge or trusted third party

Timeliness

 If something goes wrong, the honest party does not have to wait for a long time to find out whether exchange succeeded or not

Rabin's Beacon

- ◆ A "beacon" is a trusted party that publicly broadcasts a randomly chosen number between 1 and N every day
 - Michael Rabin. "Transaction protection by beacons".
 Journal of Computer and System Sciences, Dec 1983.

Contract

CONTRACT(A, B, future date D, contract terms)

Exchange of commitments must be concluded by this date

Rabin's Contract Signing Protocol

sig_A"I am committed if 1 is broadcast on day D"

sig_B"I am committed if 1 is broadcast on day D"

CONTRACT(A, B, future date D, contract terms) sig_A"I am committed if *i* is broadcast on day D"

sig_B"I am committed if i is broadcast on day D"

sig, "I am committed if N is broadcast on day D"

sig_B"I am committed if N is broadcast on day D"

2N messages are exchanged if both parties are honest

Probabilistic Fairness

- ◆Suppose B stops after receiving A's ith message
 - B has sig_A"committed if 1 is broadcast", sig_A"committed if 2 is broadcast",

• • •

sig_A"committed if *i* is broadcast"

- A has sig_B"committed if 1 is broadcast", ...
 sig_B"committed if i-1 is broadcast"
- ... and beacon broadcasts number b on day D
 - If b < i, then both A and B are committed
 - If b > i, then neither A, nor B is committed
 - If b = i, then only A is committed

This happens only with probability 1/N

Properties of Rabin's Protocol

- The difference between A's probability to obtain B's commitment and B's probability to obtain A's commitment is at most 1/N
 - But communication overhead is 2N messages

Not optimistic

- Need input from third party in every transaction
 - Same input for all transactions on a given day sent out as a one-way broadcast. Maybe this is not so bad!

Not timely

 If one of the parties stops communicating, the other does not learn the outcome until day D

BGMR Probabilistic Contract Signing

[Ben-Or, Goldreich, Micali, Rivest '85-90]

- Doesn't need beacon input in every transaction
- •Uses $sig_A"I$ am committed with probability $p_A"$ instead of $sig_A"I$ am committed if i is broadcast on day D"
- Each party decides how much to increase the probability at each step
 - A receives sig_B"I am committed with probability p_B" from B
 - Sets $p_A = min(1, p_B \cdot \alpha)$ α is a parameter chosen by A
 - Sends sig_A"I am committed with probability p_A" to B

... the algorithm for B is symmetric

BGMR Message Flow

sig_B"I am committed with probability 1.00

Conflict Resolution

Judge

- Waits until date D to decide
- Announces verdict to both parties
- ◆ Tosses coin once for each contract
- ◆ Remembers previous coin tosses
 - Constant memory: use pseudo-random functions with a secret input to produce repeatable coin tosses for each contract
- Does <u>not</u> remember previous verdicts
 - Same coin toss combined with different evidence (signed message with a different probability value) may result in a different verdict

Privilege and Fairness

Privilege

A party is privileged if it has the evidence to cause the judge to declare contract binding

Intuition: the contract binds either both parties, or neither; what matters is the <u>ability to make the contract binding</u>

Fairness

At any step where Prob(B is privileged) > v, Prob(A is not privileged | B is privileged) $< \varepsilon$

Intuition: at each step, the parties should have comparable probabilities of causing the judge to declare contract binding (privilege must be symmetric)

Properties of BGMR Protocol

Privilege is almost symmetric at each step:
 if Prob(B is privileged) > p_{A0}, then
 Prob(A is not privileged | B is privileged) < 1-1/α

Two honest parties don't need to invoke a judge

- Judge waits until day D to toss the coin
- What if the judge tosses the coin and announces the verdict as soon as he is invoked?

Formal Model

- Protocol should ensure fairness given any possible behavior by a dishonest participant
 - Contact judge although communication hasn't stopped
 - Contact judge more than once
 - Delay messages from judge to honest participant
- ◆ Need nondeterminism
 - To model dishonest participant's choice of actions
- Need probability
 - To model judge's coin tosses
- ◆The model is a Markov decision process

Constructing the Model

- Discretize probability space of coin tosses
 - The coin takes any of N values with equal probability
- ◆Fix each party's "probability step" Defines state space
 - Rate of increases in the probability value contained in the party's messages determines how many messages are exchanged
- A state is unfair if privilege is asymmetric
 - Difference in evidence, <u>not</u> difference in commitments
- Compute probability of reaching an unfair state for different values of the parties' probability steps

Attack Strategy

- Dishonest B's probability of driving the protocol to an unfair state is maximized by this strategy:
 - 1. Contact judge as soon as first message from A arrives
 - 2. Judge tries to send verdict to A (the verdict is probably negative, since A's message contains a low probability value)
 - 3.B delays judge's verdicts sent to A
 - 4. B contacts judge again with each new message from A until a positive verdict is obtained
- This strategy only works in the timely protocol
 - In the original protocol, coin is not tossed and verdict is not announced until day D
- Conflict between optimism and timeliness

Analysis Results

Probability of reaching a state where B is privileged and A is not

For a higher probability of winning, dishonest B must exchange more messages with honest A

Attacker's Tradeoff

Expected number of messages before unfair state is reached

Probability of reaching a state where B is privileged and A is not

- Linear tradeoff for dishonest B between probability of winning and ability to delay judge's messages to A
- Without complete control of the communication network, B may settle for a lower probability of winning

Summary

- Probabilistic contract signing is a good testbed for probabilistic model checking techniques
 - Standard formal analysis techniques not applicable
 - Combination of nondeterminism and probability
 - Good for quantifying tradeoffs
- Probabilistic contract signing is subtle
 - Unfairness as asymmetric privilege
 - Optimism cannot be combined with timeliness, at least not in the obvious way