CS 39571

Compositional Protocol Logic



Outline

@ Floyd-Hoare logic of programs
 Compositional reasoning about properties of programs

€ DDMP protocol logic

e Developed by Datta, Derek, Mitchell, and Pavlovic for
logical reasoning about security properties



Floyd-Hoare Logic

&€ Main idea: before-after assertions
e F<P>G
— If F is true before executing P, then G is true after
@ Total correctness or partial correctness

e Total correctness: F [P] G
— If F is true, then P will halt and G will be true

e Partial correctness: F {P} G
— If Fis true and if_P halts, then G will be true




While Programs

P ::= x:=e |
P;P |
If B then P else P |
while B do P

where X Is any variable
e IS any integer expression
B is a Boolean expression (true or false)



Assignment and Rule of Consequence

& Assignment axiom: F(t) { x: =t} F(x)
e If F holds for t, and t is assigned to x, then F holds
for x aftewards
e This assumes that there is no aliasing!

e Examples:
71=7 {x:=7} X=7
(y+1)>0 {x:=y+1} x>0
Xx+1=2 {x:=x+1} x=2

@ Rule of consequence:
If F{P}G and F > F and G —> G,
then FF {P} G’



Simple Examples

@ Assertion: y>0 {x:=y+1} x>0

Proof:
(y+1)=>0 {x:=y+1} x>0 (assignment axiom)
y=>0 {x:=y+1} x>0 (rule of consequence)
i
y>0 — y+1>0

@ Assertion: x=1 {x:=x+1} x=2
Proof:

Xx+1=2 {x:=x+1} x= (assignment axiom)
x=1 {x:=x+1} x= (rule of consequence)



Conditional

F&B {P}G
F&B{Q}G
F {ifBthenPelse Q} G

e Example:

true {iIf y>0 thenx:=y else x:=-y} x>0



Seqguence

F {P}G
G {Q}H
F{ P;Q}H

e Example:

X=0 {x:=x+1; x:=x+1} x=2



Loop Invariant

F & B { P } F F is the loop invariant; it
should hold before and
after the loop body

F {whileBdoP}F &-B

e Example:

true { while x#0 do x:=x-1} x=0



Example: Compute d=x-y

@ Assertion: y<x {d:=0; while \(y+d)<>3 do 9 = d+}} y+d=x
\ Y Y

P B Q

@ Proof:

e Choose loop invariant F =

After loop execution,
y+d<x & B {Q} y+d<x y+d<x &—(y+d<x),
thus y+d=x

y+d<x {while B do Q} y+d<x &—B

— Important: proving a property of the entire loop has been reduced to
proving a property of one iteration of the loop

e To prove y+d<x & B {Q} y+d<x, use assignment axiom and
sequence rule



Goal: Logic for Security Protocols

€ “Floyd-Hoare” reasoning about security properties

 Would like to derive global properties of protocols from
local assertions about each protocol participant

e Use a rigorous logical framework to formalize the
reasoning that each participant carries out

€ Compositionality is important

e Security properties must hold even if the protocol is
executed in parallel with other protocols

 Compositionality is the main advantage of process
calculi and protocol logics



Intuition

€ Reason about
e | chose a fresh, unpredictable number
e | sent it out encrypted
e | received it decrypted
e Therefore: someone decrypted it

€ Incorporate Into reasoning
e According to the protocol specification, server only sends m if it
received m’

« If server not corrupt and | receive m signed by server, then
server received m’



Alice’s “View” of the Protocol

Honest principals,
attacker

Sent and received messages



Example: Challenge-Response

m, A
n, sigg{m, n, A}
sig,{m, n, B}

protocol-independent reasoning

€ Alice’s reasoning:
< |If Bob is honest, then only Bob can generate his signature
= If honest Bob generates a signature of the form sigg{m, n, A}, then

1. Bob must have received m, A from Alice ——

: _ protocol-specific reasoning
2. Bob sent sigg{m, n, A} as part of his 2" message

€ Alice concludes:
e Received(B,msgl) & Sent(B,msg2)



Protocol Composition Logic

[Datta et al.]

@ A formal language for describing protocols

e Terms and actions instead of informal arrows-and-
messages notation

# Operational semantics
e Describe how the protocol executes

@ Protocol logic

e State security properties (in particular, secrecy and
authentication)

@ Proof system

e Axioms and inference rules for formally proving
security properties



constant
variable
name

key

tuple
signature
encryption



Actions

new m generate fresh value

send U, V, t send term t from U to V

receive U, V, X receive term and assign into variable x
match t/p(x) match term t against pattern p(x)

@ A thread is a sequence of actions

« Defines the “program” for a protocol participant, i.e., what
messages he sends and receives and the checks he performs

e For notational convenience, omit “match” actions
— Write “receive sigg{A, n}” instead of “receive x; match x/sigg{A, n}”



Challenge-Response Threads

m, A _

n, sigg{m, n, A}

sig,{m, n, B}

INnitCR(A, X) = [ RespCR(B) = [

new m; receive Y, B, {y, Y},
send A, X, {m, A}; new n;
receive X, A, {x, sig,{m, x, A}}; send B, Y, {n, sigg{y, n, Y}};
send A, X, sig,{m, x, X}; receive Y, B, sig,{y, n, B};



Execution Model

@ A protocol is a finite set of

 Initial configuration specifies a set of principals and
keys; assignment of >1 role to each principal

®A IS a concurrent execution of the roles
 Models a protocol session
e Send and receive actions are matched up

new x  send{x}g Position In run

JA > i > > H
receive{x}g rec:§ive{z}B

|
new z send{z}B'

C > > >




Action Formulas

@ Predicates over action sequences

a..=Send(X,m) | Message m was sent in thread X
Receive(X,m) | Message m was received in thread X
New(X,t) | Term t was generated as new in X
Decrypt(X,t) | Term t was decrypted in thread X

Verify(X,t) Term t was verified in X



Formulas

Q= a | Action formula

Has(X,m) | Thread X created m or received
a message containing m and has
keys to extract m from the message

Fresh(X,t) | Term t hasn’t been “seen” outside X

Honest(N) | Principal N follows protocol rules in
all of its threads

Contains(t,t) | Term t contains subterm t’

—¢ | 917 0, | IX 0 |

Oop | <>(p Temporal logic operators on

owstue|  bast actions

Modal operator [actions]y ¢ After actions, X reasons @




Trace Semantics

@ Protocol Q
e Defines a set of roles (e.qg., initiator and responder)

®RuUnR

e Sequence of actions by principals following protocol
roles and the attacker (models a protocol session)

& Satisfaction
* Q,R |= [ actions |, ¢

— Some role of principal P in R performs exactly actions and @
IS true in the state obtained after actions complete

* Q|= [ actions |, ¢
— Q, R |= [ actions ], ¢ for all runs R of Q



Specifying Authentication

@ Initiator authentication in Challenge-Response

After initiator executes his program If B is honest...

CR |= [ InitCR(A, B) ], Honest(B) o
ActionsinOrder(
Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigg{m, n, A}}}),
Receive(A, {B,A,{n, sigg{m, n, A}}})

...then msg sends and receives

must have happened in order
prescribed by protocol spec




Specifying Secrecy

& Shared secret in key establishment

After initiator executes his program If B is honest...

KE |= [ InitKE(A, B) ] , Honest(B) o
(Has(X, m) o X=A v X=B)

... then if some party X knows secret m,
then X can only be either A, or B




Proof System

@ Goal: formally prove properties of security
protocols

€ Axioms are simple formulas
e Provable by hand

& Inference rules are proof steps

&® Theorem is a formula obtained from axioms by
application of inference rules



Sample Axioms

€ New data
[ new x ], Has(P,x)
e [ new x ], Has(Y,x) o Y=P
€ Acquiring new knowledge
e [ receive m ], Has(P,m)
& Performing actions
e [send m ], <&Send(P,m)
e [ match x/sig, {m} ], <Verify(P,m)



Reasoning About Cryptography

@ Pairing

e Has(X, {m,n}) o Has(X, m) A Has(X, n)
€ Symmetric encryption

e Has(X, enc(m)) A Has(X, K1) o Has(X, m)
@ Public-key encryption

e Honest(X) A <&Decrypt(Y, ency{m}) o X=Y

& Signatures
e Honest(X) A OVerify(Y, sig {m}) o
4 m’ ($Send(X, m’) A Contains(m’, sigy{m})



Sample Inference Rules

[ actions ], Has(X, t)
[ actions; action ], Has(X, t)

[ actions | ¢ [ actions |, ¢

[ actions ], ¢ A ¢



Honesty Rule

Vroles R of Q. V initial segments A c R.

Q|- [ALk¢
Q |- Honest(X) o> ¢

e Finitary rule (finite number of premises to choose from)
— Typical protocol has 2-3 roles, typical role has 1-3 actions

e Example:
— If Honest(X) o (Sent(X,m) o Received(X,m’)) and

Y receives a message from X, then Y can conclude
Honest(X) o Received(X,m’)



Correctness of Challenge-Response

InitCR(A, X) = [ RespCR(B) = [
new m; receive Y, B, {y, Y};
send A, X, {m, A}; new n;
receive X, A, {X, sigy{m, X, A}}; send B, Y, {n, sigg{y, n, Y}};
send A, X, siga{m, X, X}; receive Y, B, sigy{y, n, B}};
] ]

CR |- [ InitCR(A, B) ], Honest(B) o ActionsinOrder(
Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigs {m, n, A}}}),
Receive(A, {B,A{n, sigg {m, n, A}}})



1: A Reasons about Own Actions

InitCR(A, X) = [ RespCR(B) = [
new m; receive Y, B, {y, Y};
send A, X, {m, A}; new n;
receive X, A, {X, sigy{m, X, A}}; send B, Y, {n, sigg{y, n, Y}};
send A, X, siga{m, X, X}; receive Y, B, sigy{y, n, B};
] ]

CR |- [ InitCR(A, B) ],
OVerify (A, siges{m, n, A})

If A completed a protocol session,

it must have verified B’s signature
at some point




2. Properties of Sighatures

InitCR(A, X) = [ RespCR(B) = [
new m; receive Y, B, {y, Y};
send A, X, {m, A}; new n;
receive X, A, {X, sigy{m, X, A}}; send B, Y, {n, sigg{y, n, Y}};
send A, X, siga{m, X, X}; receive Y, B, sigy{y, n, B};
] ]

CR |- [ InitCR(A, B) ], Honest(B) o
3t (<>Send(B, t') A
Contains(t’, sigg{m, n, A})

If A completed protocol and B is

honest, then B must have sent its
signature as part of some message




Honesty Invariant

InitCR(A, X) = [ RespCR(B) = [
new m,; receive Y, B, {y, Y};
send A, X, {m, A}; new n;
receive X, A, {X, sigy{m, X, A}}; send B, Y, {n, sigg{y, n, Y}};
send A, X, siga{m, X, X}; receive Y, B, sigy{y, n, B};
] ]

CR |- Honest(X) A
&Send(X, t') A Contains(t’, sig,{y, X, Y}) A
—|<>NeW(X, y) — Honest responder only
'Ve(X, {Y’ X, {y’ Y}}) sends his signature if

he received a properly
formed first message of

This condition disambiguates
sig,(...) sent by responder from

the protocol

Siga(...) sent by initiator



Reminder: Honesty Rule

Vroles R of Q. V initial segments A c R.

Q|- [ALk¢
Q |- Honest(X) o> ¢




3: Use Honesty Rule

InitCR(A, X) = [ RespCR(B) = [
new m; receive Y, B, {y, Y};
send A, X, {m, A}; new n;
receive X, A, {X, sigy{m, X, A}}; send B, Y, {n, sigg{y, n, Y}};
send A, X, siga{m, X, X}; receive Y, B, sigy{y, n, B};
] ]

CR |- [ InitCR(A, B) ], Honest(B) o
OReceive(B, {A,B.{m,A}})

If A completed protocol and

B is honest, then B must have
received A’s first message




4: Nonces Imply Temporal Order

InitCR(A, X) = [ RespCR(B) = [
new m; receive Y, B, {y, Y};
send A, X, {m, A}; new n;
receive X, A, {X, sigy{m, X, A}}; send B, Y, {n, sigg{y, n, Y}};
send A, X, siga{m, X, X}; receive Y, B, sigy{y, n, B};
] ]

CR |- [ InitCR(A, B) ] , Honest(B) o
ActionsInOrder(...)



Complete Proof

(A Bn)[]lan Has(A, A, 1) A Has(A, B,n)

ANNS3 [(2172)] 4, Fresh( A, m, 1)

AAT [{A, B,m)]an < Send(A,{A, B, m},n)

AAl (B, A n, {mn, Alz)]a.x,
S Receive (A, {B, A,n, {|m,n, Al}s},n)

AAl [({lms ?’1,_4.|}§,.-'f{|m, i) ‘4-[}5']]7”1;7? < Verify (A, ﬂms aiLs ‘4-[}§= ??)

AAT [{A, B, {lre, n, Bl x)]a,n, ©Send(A,{A, B, {{m,n, B}z}, n)

AF1, AF2 (A B n)[(rm){A, B,m)(x)(x/B, A, n, |m,n, Al}x)
({lrre, n, Alyg/{lrre, n, Al}g) (A, B, {lme, n, By 3] 4,5
ActionsIlnOrder(Send(A, {A, B,m},n), Receive(A,{B, A, n,{|lm,n, A}s}, 1),
Send(A,{A, B, {lm,n, B}=},17))
S New (A, m,n) D =S New (B, m,n')
Honest(B) A S Verify (A, {|lm,n, Al}g,n) D
I’ Fm' (S CSend (B, m',n") A ({lm, n, Alg € m'))
Honest{B) o (In".3m'.({(< CSend (B, m', n') ~
{lme,n, Alg € m' A =S New (B, m, 1)) D
(m'={B,A,{n, {m,n, A}s}} " < Receive( B, {A,B,m},n') A
ActionslnOrder(Receive( B, { A, B,m},n'), New(B,n,7'),
Send(B, {B, 4, {n, {|m,n, A}z}}, n')))))
2,311, AFS3 Honest(B) O After(Send(4, fA, B,m},n),
Receive(B,{A, B,m},n'))
11, AF2 Honest{B) o After(Receive(B,{A, B, m},n'),
Send(B,{B, A, {n,{jm,n, A}z}+t.n"))
11,4 AF3 Honest(B) D After(Send(B, {B, A, {n, {m,n, A}=+}, 7)),
Receive(A,{B, A, {n, {{m,n, A}z}}. n))
10 — 13, AF2 Honest(B) o 3n'.(ActionsInOrder(Send( A, {A, B, m}, n),

Receive(B,{A, B,m},n’),Send(B,{B, A, {n, {m,n, A}z}+}, 7",
Receive( A, {B, A {n, {|m,n, A}t 1))

Table 8. Deductions of 4 executing Init role of CR




Properties of Proof System

€ Soundness
e If ¢ Is a theorem, then ¢ Is a valid formula
— Q|- ¢ impliesQ |= ¢
e Informally: if we can prove something in the logic,
then it is actually true
@ Proved formula holds in any step of any run
e There is no bound on the number of sessions!

e Unlike finite-state checking, the proved property is
true for the entire protocol, not for specific session(s)



Weak Challenge-Response

m

n, sigg{m, n}

siga{m, n}
InitWCR(A, X) = [ RespWCR(B) = [
new m; receive Y, B, {y};
send A, X, {m}; new n;
receive X, A, {x, sig,{m, x}}; send B, Y, {n, sigg{y, n}};
send A, X, sig,{m, x}; receive Y, B, sig,{y, n};



1: A Reasons about Own Actions

INitWCR(A, X) = [ RespWCR(B) = [

new m; receive Y, B, {y};
send A, X, {m}; new n;
receive X, A, {X, sigy{m, x}}; send B, Y, {n, sigg{y, n}};
send A, X, sig,{m, Xx}; receive Y, B, sigy{y, n};
] ]

WCR |- [ INitWCR(A, B) 1.
OVerify(A, sigg{m, n})



2. Properties of Sighatures

InitWCR(A, X) = [ RespWCR(B) = [
new m; receive Y, B, {y};
send A, X, {m}; new n;
receive X, A, {X, sigy{m, x}}; send B, Y, {n, sigg{y, n}};
send A, X, siga{m, X}}; receive Y, B, sigy{y, n}};
] ]

WCR |- [ IntWCR(A, B) ], Honest(B) o
3t (<>Send(B, t) A
Contains(t’, sigg{m, n})



Honesty Invariant

InitWCR(A, X) = [ RespWCR(B) = [
new m,; receive Y, B, {v};
send A, X, {m}; new n;
receive X, A, {X, sigy{m, x}}; send B, Y, {n, sigg{y, n}};
send A, X, sig,{m, Xx}; receive Y, B, sigy{y, n};
] ]

WCR |- Honest(X) A
<&Send(X, t') A Contains(t’, sig,{y, x}) A

—ONew(X, y) o _ _
OReceive(X, {V, X, {y}}) i

identity of intended
recipient Y




3: Use Honesty Rule

InitWCR(A, X) = [ RespWCR(B) = [
new m,; receive Y, B, {v};
send A, X, {m}; new n;
receive X, A, {X, sigy{m, x}}; send B, Y, {n, sigg{y, n}};
send A, X, sig,{m, Xx}; receive Y, B, sigy{y, n};
] ]

WCR |- [ IntWCR(A, B) ], Honest(B) o
OReceive(B, {Y,B,sig {y,n}})

B receives 3" message

from someone, not
necessarily A




Failed Proof and Counterexample

€ WCR does not provide the strong authentication
property for the initiator

€ Counterexample: intruder can forge sender’s
and receiver’s identity Iin first two messages
A > X(B) A B m
« X(C)-> B C, B, m [X pretends to be C]
B -> X(C) n,sigg(m, n)
« X(B) -> A n, sigg(m, n)



Further Work on Protocol Logic

& See papers by Datta, Derek, Mitchell, and
Pavlovic on the course website

« With a Diffie-Hellman primitive, prove authentication
and secrecy for key exchange (STS, 1SO-97898-3)

« With symmetric encryption and hashing, prove
authentication for 1SO-9798-2, SKID3
¥ \Work on protocol derivation

e Build protocols by combining standard parts
— Similar to the derivation of JFK described in class

» Reuse proofs of correctness for building blocks
— Compositionality pays off!
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