
CS 395T

Symbolic Constraint Solving

Overview

Strand space model
Protocol analysis with unbounded attacker
• Parametric strands
• Symbolic attack traces
• Protocol analysis via constraint solving

SRI constraint solver

Protocol Analysis Techniques

Crypto protocol analysis

Formal models Computational models

Model checkingInductive method

Dolev-Yao
(perfect cryptography)

Random oracle
Probabilistic ptime calculus
Probabilistic I/O automata
…

Finite-state
checking

Protocol logics …

Symbolic analysis

Finite processes,
infinite attacker

Finite processes,
finite attacker

Probabilistic
model checking

Fully automated methods
always terminate and
give an answer

Obtaining a Finite Model

This restriction is necessary
(or the problem is undecidable)

Two sources of infinite behavior
• Multiple protocol sessions, multiple participants
• Message space or data space may be infinite

Finite approximation
• Assume finite sessions

– Example: 2 clients, 2 servers

• Assume finite message space
– Represent random numbers by r1, r2, r3, …
– Do not allow encrypt(encrypt(encrypt(…)))

This restriction is not necessary
for fully automated analysis!

Decidable Protocol Analysis

Eliminate sources of undecidability
• Bound the number of protocol sessions

– Artificial bound, no guarantee of completeness

• Bound structural size of messages by lazy
instantiation of variables

• Loops are simulated by multiple sessions

Secrecy and authentication are NP-complete if
the number of protocol instances is bounded

[Rusinowitch, Turuani ’01]

Search for solutions can be fully automated
• Several tools; we’ll talk about SRI constraint solver

Strand Space Model [Thayer, Herzog, Guttman ’98]

A strand is a representation of a protocol “role”
• Sequence of “nodes”
• Describes what a participant playing one side of the

protocol must do according to protocol specification

A node is an observable action
• “+” node: sending a message
• “-” node: receiving a message

Messages are ground terms
• Standard formalization of cryptographic operations:

pairing, encryption, one-way functions, …

Participant Roles in NSPK

Protocol
A→B {n,A}kb
B→A {n,r}ka
A→B {r}kb

“A” role “B” role
A→ {n,A}kb
A← {n,r}ka
A→ {r}kb

B← {n,A}kb
B→ {n,r}ka
B← {r}kb

Controls network and can
schedule any consistent
interleaving of these roles

NSPK in Strand Space Model

“A” strand “B” strand “Penetrator” strands
{x}k+{n,A}kb -{n,A}kb

k-1

x

x

k-{n,r}ka +{n,r}ka

{x}k+{r}kb -{r}kb

Each primitive capability of the
attacker is a “penetrator” strand
Same set of attacker strands for
every protocol

Bundles

A bundle combines strands into a partial ordering
• Nodes are ordered by internal strand order
• “Send message” nodes of one strand are matched up

with “receive message” nodes of another strand

Infinitely many possible bundles for any given set
of strands
• No bound on the number of times any given attacker

strand may be used

Each bundle corresponds to a particular execution
trace of the protocol
• Conceptually similar to a Murϕ trace

NSPK Attack Bundle

+{n,A}ke

-{n,r}ka

+{r}ke

+{n,r}ka

ke
-1

{n,A}

kb

{n,A}kb

-{r}kb

Parametric Strands

Use a variable for every term whose value is
not known to recipient in advance

Parametric “A” strand Parametric “B” strand

+ {n,A}pk(B)

- {n,r}pk(A)

+ {r}pk(B)

+ {n,A}pk(X)

+ {Z}pk(X)

- {n,Z}pk(A)

- {Y,A}pk(B)

+ {Y,r}pk(A)

- {r}pk(B)

-“Talk to B” -“Talk to X” +“Talk to B”

- {n,A}pk(B)

+“Talk to B”

+ {n,r}pk(A)

- {r}pk(B)

Properties of Parametric Strands

Variables are untyped
• Attacker may substitute a nonce for a key, an encrypted

term for a nonce, etc.
• More flexible; can discover more attacks

Compound terms may be used as symmetric keys
• Useful for modeling key establishment protocols

– Keys constructed by exchanging and hashing random numbers

• Public keys constructed with pk(A)

Free term algebra
• Simple, but cannot model some protocols
• No explicit decryption, no cryptographic properties

Attack Scenario

Partial bundle corresponding to attack trace
• By contrast, in Murϕ need to specify attack state
• Assume that the attacker will intercept all messages

+ {n,A}pk(X)

+ {Z}pk(X)

- {n,Z}pk(A)

- {Y,A}pk(B)

- {r}pk(B)

+ {Y,r}pk(A)

-“Talk to X” +“Talk to B”
Is there a way to
insert attacker strands
here so that attacker
learns secret r in the
resulting bundle?

secret

Attack Scenario Generation

Choose a finite number of strands
Try all combinations respecting partial order
imposed by individual strands
• If node L appears after node K in the same strand,

then L must appear after K in the combination bundle
• Two strands of size m & n ⇒ choose(m+n,n) variants

Optimization to reduce number of variants
• The order of “send message” nodes doesn’t matter:

attacker will intercept all sent messages anyway
• If this is the only difference between two combinations,

throw one of them away

B→E “Talk to B”
A←E “Talk to X”
A→E {n,A}pk(X)
B←E {A,Y}pk(B)
B→E {Y,r}pk(A)
A←E {n,Z}pk(A)
A→E {Z}pk(X)
←E r

A← “Talk to X”
A→ {n,A}pk(X)
A← {n,Z}pk(A)
A→ {Z}pk(X)

B→ “Talk to B”
B← {A,Y}pk(B)
B→ {Y,r}pk(A)
B← {r}pk(B)

Attack Scenario: Example

A’s role B’s role

Try all possible ways
to plug attacker in the
middle, for example:

This is a symbolic attack trace
• Variables are uninstantiated

It may or may not correspond
to a concrete trace

Symbolic Attack Scenarios

Attack is modeled as a symbolic execution trace
• Trace is a sequence of message send and receive events
• Attack trace ends in a violation

– E.g., attacker outputs the secret

• Messages contain variables
– Variables represent data controlled by attacker

Adequate for trace-based security properties
• Secrecy, authentication, some forms of fairness…

A symbolic trace may or may not have a feasible
concrete instantiation
• Goal: discover whether a feasible instantiation exists

From Attack Traces to Constraints

Any symbolic execution trace is equivalent to a
sequence of symbolic constraints

A constraint is satisfiable if and only if m can
be derived from t1, …, tn in attacker term algebra
• Attacker term algebra is an abstract representation of

what the attacker can do

Can the attacker learn message
m from terms t1, …, tn?

m from t1, …, tn

Constraint Generation: Example

Attack Trace Symbolic Constraints

from T0 (attacker’s initial knowledge)

{A,Y}pk(B) from T0, {n,A}pk(X)

{n,Z}pk(A) from T0, {n,A}pk(X), {Y,r}pk(A)

r from T0, {n,A}pk(X),
{Y,r}pk(A), {Z}pk(X)

“Talk to X”
B→E “Talk to B”
A←E “Talk to X”
A→E {n,A}pk(X)
B←E {A,Y}pk(B)
B→E {Y,r}pk(A)
A←E {n,Z}pk(A)
A→E {Z}pk(X)
←E r

Symbolic Constraint Generation

For each message sent by the attacker in the
attack trace, create symbolic constraint

• mi is the message attacker needs to send
• t1,…,tn are the messages observed by attacker up to

this point (may contain variables)

Attack is feasible if and only if all constraints are
satisfiable simultaneously
• There exists an instantiation σ such that ∀i miσ can

be derived from t1σ, …, tnσ in attacker’s term algebra

mi from t1, …, tn

Dolev-Yao Term Algebra

Attacker’s term algebra is a set of derivation rules

T>u T>v
T>[u,v]

T>u T>v
T>cryptu[v]

v∈T
T>u

T>[u,v]
T>u

T>[u,v]
T>v

T>cryptu[v] T>u
T>v

if u=vσ for some σ

Symbolic constraint m from t1, …, tn is satisfiable

if and only if there is a substitution σ such that

t1σ, …, tnσ > mσ is derivable using these rules

Solving Symbolic Constraints

[Millen and Shmatikov CCS ’01]

Constraint reduction rules
• Replace each mi from Ti with one or more simpler constraints
• Preserve essential properties of the constraint sequence

Nondeterministic reduction procedure
• Structure-driven, but several rules may apply in any state
• Exponential in the worst case (the problem is NP-complete)

The procedure is terminating and complete
• If Tσ > mσ is derivable in attacker’s term algebra,

1. There exists reduction rule r=r(σ) which is applicable to m from T
and produces some m’ from T’ such that

2. T’σ > m’σ is derivable in attacker’s term algebra

Reduction Procedure

Initial
constraint sequence

Nondeterministically apply special transformation
rules to first m from T where m is not a variable

• • • • • •

var1 from T1
• • •

varN from TN

No rule is
applicable

or If reduction tree has at least
one such sequence as a leaf,
there is a solution, and
attack scenario is feasible

From Protocols to Constraints

Formal specification of protocol roles

Choose an interleaving corresponding to an attack

This is the only
thing the user
has to specify!

contains variables & may not
have a feasible instantiation

Choose finite number of role instances

Sequence of symbolic constraints
satisfiable ⇔ there exists
a feasible instantiation

Constraint solving procedure

SRI Constraint Solver

Easy protocol specification
• Specify only protocol rules and correctness condition
• No explicit intruder rules!

Fully automated protocol analysis
• Generates all possible attack scenarios
• Converts scenario into a constraint solving problem
• Automatically solves the constraint sequence

Fast implementation
• Three-page program in standard Prolog (SWI, XSB, etc.)

http://www.csl.sri.com/users/millen/capsl/constraints.html

A Tiny Bit of Prolog (I)

Atoms
• a, foo_bar, 23, 'any.string'

Variables
• A, Foo, _G456

Terms
• f(N), [a,B], N+1

A Tiny Bit of Prolog (II)

Clauses define terms as relations or
predicates
• factorial(1,1). Fact, true as given

• factorial(N,M) :- …is true if…

N>1, condition for this case

N1 is N-1, "is" to do arithmetic

factorial(N1,M1), recursive call to find (N-1)!

M is N*M1. M = N! = N(N-1)!

Using Prolog

Put definitions in a text file …/factdef or …\factdef.pl

Start Prolog swipl, pl or plwin.exe
?- Prolog prompt

Load definitions file
?- reconsult(factdef). consult(factdef) in SWI-Prolog
?- [factdef]. Both UNIX and Windows
?- ['examples/factdef']. subdirectory, need quotes

Execute query
?- factorial(3,M). Start search for true instance
M=6 Prolog responds
Yes
?- halt. Quit Protocol session.

Defining a Protocol: Terms

Constants
• a, b, e, na, k, … e is the name of the attacker

Variables
• A, M, … by convention, names capitalized

Compound terms
• [A,B,C] n-ary concatenation, for all n > 1
• A+K symmetric encryption
• A*pk(B) public-key encryption
• sha(X) hash function
• f(X,Y) new function unknown to attacker

Specifying Protocol Roles

strand(roleA,A,B,Na,Nb,[
send([A,Na]*pk(B)),
recv([Na,Nb]*pk(A)),
send(Nb*pk(B))

]).

strand(roleB,A,B,Na,Nb,[
recv([A,Na]*pk(B)),
send([Na,Nb]*pk(A)),
recv(Nb*pk(B))

]).

Name of the role

A → B: {A,Na}pk(B)
B → A: {Na,Nb}pk(A)
A → B: {Nb}pk(B)

Parameters of the role

Sending and receiving messages
(just like in Murϕ)

No need to specify rules for the intruder
No need to check that messages have correct format

Specifying Secrecy Condition

Special secrecy test strand

When the attacker has learned the secret,
he’ll pass it to this strand to “announce”
that the attack has succeeded

strand(secrecytest,X,[recv(X),send(stop)]).

Forces analysis to stop as soon
as this strand is executed

Choosing Number of Sessions

Choose number of instances for each role
• For example, one sender and two recipients

In each instance, use different constants to
instantiate nonces and keys created by that role

nspk0([Sa,Sb1,Sb2]) :-
strand(roleA,a,B1,na,Nb,Sa),
strand(roleB,a,b, Na1,nb1,Sb1),
strand(roleB,A3,b,Na2,nb2,Sb2).

Each nonce modeled by a separate constant1 instance of role A,
2 instances of role B

Each instance has its own name

Verifying Secrecy

Add secrecy test strand to the bundle

This bundle is solvable if and only if the attacker
can learn secret nb1 and pass it to test strand
Run the constraint solver to find out

:- nspk0(B),search(B,[]).

This is it! Will print the attack if there is one.

nspk0([Sa,Sb1,Sb2,St]) :-
strand(roleA,a,B1,na,Nb,Sa),
strand(roleB,a,b,Na1,nb1,Sb1),
strand(roleB,A3,b,Na2,nb2,Sb2),
strand(secrecytest,nb1,St).

Specifying Authentication Condition

What is authentication?
• If B completes the protocol successfully, then there is or

was an instance of A that agrees with B on certain
values (each other’s identity, some key, some nonce)

Use a special authentication message
send(roleA(a,b,nb))

“A believes he is talking to B and B’s nonce is nb”

Attack succeeds if B completes protocol, but A’s
doesn’t send authentication message
• B thinks he is talking to A, but not vice versa

NSPK Strands for Authentication

strand(roleA,A,B,Na,Nb,[
send([A,Na]*pk(B)),
recv([Na,Nb]*pk(A)),
send(roleA(A,B,Nb)),
send(Nb*pk(B))

]).

strand(roleB,A,B,Na,Nb,[
recv([A,Na]*pk(B)),
send([Na,Nb]*pk(A)),
recv(Nb*pk(B)),
send(roleB(A,B,Na))

]).

A announces who he thinks
he is talking to

B announces who he thinks
he is talking to

Verifying Authentication

Test for presence of authentication message

This bundle is solvable if and only if the attacker
can cause roleB(a,b,na) to appear in a trace that
does not contain roleA(a,b,nb)
• Convince B that he is talking A when A does not think

he is talking to B.

nspk0([Sa,Sb,St],roleA(a,b,nb)) :-
strand(roleA,a,B,na,Nb,Sa),
strand(roleB,a,b,Na,nb,Sb),
strand(secrecytest,roleB(a,b,na),St).

Only look at bundles where
this message doesn’t occur

Symbolic Analysis in a Nutshell

Symbolic
constraints for

each trace

Participant
roles

Informal
protocol

description

This is the only thing
user needs to specify

If constraints are satisfied,
then there is an attack

Automated
constraint solving

procedure

All possible
attack traces

!
automated

automated

	Symbolic Constraint Solving
	Overview
	Protocol Analysis Techniques
	Obtaining a Finite Model
	Decidable Protocol Analysis
	Strand Space Model
	Participant Roles in NSPK
	NSPK in Strand Space Model
	Bundles
	NSPK Attack Bundle
	Parametric Strands
	Properties of Parametric Strands
	Attack Scenario
	Attack Scenario Generation
	Attack Scenario: Example
	Symbolic Attack Scenarios
	From Attack Traces to Constraints
	Constraint Generation: Example
	Symbolic Constraint Generation
	Dolev-Yao Term Algebra
	Solving Symbolic Constraints
	Reduction Procedure
	From Protocols to Constraints
	SRI Constraint Solver
	A Tiny Bit of Prolog (I)
	A Tiny Bit of Prolog (II)
	Using Prolog
	Defining a Protocol: Terms
	Specifying Protocol Roles
	Specifying Secrecy Condition
	Choosing Number of Sessions
	Verifying Secrecy
	Specifying Authentication Condition
	NSPK Strands for Authentication
	Verifying Authentication
	Symbolic Analysis in a Nutshell

