
CS 395T

Formal Models of Cryptography:
Symmetric Encryption

Overview

Dolev-Yao model
When is the Dolev-Yao model inadequate?
• A cautionary tale: recursive authentication protocol

[Ryan, Schneider ’97]

Formal definitions of security for cryptographic
schemes
• Symmetric and asymmetric (public-key) encryption
• CPA and CCA indistinguishability

Formal definitions of security for key exchange

“Dolev-Yao” Model

Inspired by a 1983 paper
• D. Dolev and A. Yao. “On the security of public key protocols”.

IEEE Transactions on Information Theory, 29(2):198-208.

Adversary is a nondeterministic process
• Can read any message, decompose it into parts and re-assemble
• Cannot gain partial knowledge, perform statistical tests, …

“Black-box” cryptography
• Adversary can decrypt if and only if he knows the correct key
• Assumes that cryptographic functions have no special properties

Most mechanized formal methods for security analysis
use some version of this model

Typical Dolev-Yao Term Algebra

Attacker’s term algebra is a set of derivation rules

T>u T>v
T>[u,v]

T>u T>v
T>cryptu[v]

v∈T
T>u

T>[u,v]
T>u

T>[u,v]
T>v

T>cryptu[v] T>u
T>v

if u=vσ for some σ

In the real world, there is no guarantee
that attacker is restricted to these
operations! He may perform probabilistic
operations, learn partial information, etc.

Recursive Authentication

[Bull ‘97]

A serverB C…

Each agent initially shares a pairwise key with the server
• Kas, Kbs, Kcs

Goal: establish pairwise session keys Kab and Kbc with
minimal communication

Request Phase

A
Xa = SignKas(A,B,Na,-)

B CStep 1. server

A server

Xb = SignKbs(B,C,Nb,Xa)

B CStep 2.

A server

Xc = SignKcs(C,S,Nc,Xb)

B CStep 3.

Key Distribution (1)

A B serverC
A, B, Encrypthash(Kas,Na)(Kab), EncryptKab(A,B,Na),
B, A, Encrypthash(Kbs,Nb)(Kab), EncryptKab(B,A,Nb),
B, C, Encrypthash(Kbs,Nb)(Kbc), EncryptKbc(B,C,Nb),
C, B, Encrypthash(Kcs,Nc)(Kbc), EncryptKbc(C,B,Nc)

C decrypts and learns Kbc
because only C knows
both Kcs and Nc

C uses newly learned Kbc
to decrypt and verify

Key Distribution (2)

A B serverC
A, B, Encrypthash(Kas,Na)(Kab), EncryptKab(A,B,Na),
B, A, Encrypthash(Kbs,Nb)(Kab), EncryptKab(B,A,Nb),
B, C, Encrypthash(Kbs,Nb)(Kbc), EncryptKbc(B,C,Nb)

B decrypts and learns Kab
and Kbc because only B
knows both Kbs and Nb

B uses newly learned Kab and
Kbc to decrypt and verify

Key Distribution (3)

A B serverC
A, B, Encrypthash(Kas,Na)(Kab), EncryptKab(A,B,Na)

A uses newly learned Kab
to decrypt and verify

A decrypts and learns Kab
because only A knows
both Kas and Na

Abstract encryption: design of the protocol can be verified
without modeling details of the underlying crypto system…

… proved correct by Paulson in his CSFW ’97 paper using
higher-order logic (in particular, malicious C cannot learn Kab)

Two Views of Encryption

abstraction

Encryptk(M) Message M encrypted with key k
in some symmetric cipher

k ⊕ M Specific implementation from Bull’s
recursive authentication paper
(perfectly reasonable: block

implementation

ciphers are implemented like this)

Key Distribution “Refined”

A B serverC
A, B, hash(Kas,Na) ⊕ Kab, …
B, A, hash(Kbs,Nb) ⊕ Kab, …
B, C, hash(Kbs,Nb) ⊕ Kbc, …
C, B, hash(Kcs,Nc) ⊕ Kbc

C knows Kcs and Nc, computes
hash(Kcs,Nc) and learns Kbc

C computes
Kbc ⊕
(hash(Kbs,Nb) ⊕ Kab) ⊕
(hash(Kbs,Nb) ⊕ Kbc) =
Kbc ⊕ Kab ⊕ Kbc =
Kab

Oops!
When abstraction is refined in a “provably secure”
protocol, C learns secret key Kab

Abstraction Gap

Formal models pretend that the output of a
cryptographic primitive is an abstract data type
• Can only access values through the type interface

– E.g., apply “decrypt” to a ciphertext and a key

• Cannot access values in any other way
– This does not follow directly from cryptographic definitions

of security

• Ignore possibility of partial information leakage
– In the Dolev-Yao model, there is no way to say “adversary

learns 7th bit with probability 0.55”

Goal: sound “abstraction” of cryptography that
can be used by higher protocol levels

Typical Pattern for a Definition

Define cryptographic functionalities as oracles
Define a game between adversary and the oracles
• The goal of the adversary is to “break” security
• For example, adversary against an encryption scheme

succeeds if he learns even a single bit of plaintext

Computational security: probabilistic poly-time
adversary succeeds only with negligible probability
• < 1/poly(n) for any polynomial of security parameter n

Information-theoretic security: computationally
unbounded adversary cannot succeed

Cryptographic “Oracles”

Formal representation of cryptographic
operations available to the adversary
• E.g., adversary may use the protocol to obtain

ciphertexts corresponding to plaintexts of his choice;
we model this by giving adversary access to an
encryption oracle

• Similar for decryption oracles, signing oracles, etc.

The rules of the game constrain how adversary
may interact with the oracles
• Different types of attacks (CPA, CCA, etc.) depending

on what the adversary is permitted to do

Symmetric Encryption

A symmetric encryption scheme SE consists in
three algorithms K, E, D
Key generation algorithm K returns a string from
some set Keys(SE)
• Key generation algorithm is randomized

Encryption algorithm E takes k∈Keys(SE) and
m∈{0,1}* and returns ciphertext c∈{0,1}*∪{⊥}
• Encryption algorithm may be randomized or stateful

Decryption algorithm D takes k∈Keys(SE) and
c∈{0,1}* and returns some m∈{0,1}*∪{⊥}
• Decryption algorithm is deterministic

What Does “Security” Mean?

Hard to recover the key?
• What if the adversary can learn plaintext without

learning the key?

Hard to recover plaintext from ciphertext?
• What if the adversary learns some bits or some function

of bits?

Fixed mapping from plaintexts to ciphertexts?
• What if the adversary see two identical ciphertexts and

infers that the corresponding plaintexts are identical?
• Implication: encryption must be randomized or stateful

Left-Right Encryption Oracles

Idea: adversary should not be able to learn even
a single bit
Define left-right encryption oracle
Ek(LR(m0,m1,b)) where b∈{0,1} as

if |m0|≠|m1| then return ⊥
else return Ek(Mb)

Adversary is given access to Ek(LR(-,-,b))
• Bit b is fixed, but adversary doesn’t know its value
• Adversary can use any plaintexts m0, m1 as inputs; one

of them will be returned as ciphertext. To learn bit b,
adversary must determine which one was returned.

Given two plaintexts,
returns encryption of
one of them

Chosen-Plaintext Indistinguishability

Consider two experiments
• A is the adversary with oracle access

ExpSE
0(A) ExpSE

1(A)
k ← K (keygen) k ← K (keygen)
d ← A(Ek(LR(-,-,0))) d ← A(Ek(LR(-,-,1)))
return d return d

The IND-CPA advantage of A is
Adv(A) = |Pr(ExpSE

0(A)=1) - Pr(ExpSE
1(A)=1)|

Encryption scheme is chosen-plaintext secure if
advantage is negligible for any prob polytime A

“Measures” A’s ability to make his output depend on oracle’s bit

CPA Game

1. Security parameter is given to all algorithms, including the adversary
2. The key is generated and given to all oracles

Adversary does not learn the key

3. Adversary makes as many queries as he wants to encryption oracles,
obtaining encryption of any message of his choice

Number of queries must be polynomial in security parameter

4. When adversary is ready, he outputs m0 and m1 of his choice. The
“test oracle” picks a random bit b and returns encryption of mb to the
adversary.

5. Adversary may continue asking for encryptions of any plaintexts,
including m0 and m1

6. Adversary outputs b’, which is his judgement about what bit b is
7. The scheme is secure if the probability that b’=b is at most negligibly

better than a random coin toss, i.e. 1/2

Simple Example

Any deterministic, stateless symmetric encryption
scheme is insecure
• Adversary can easily distinguish encryptions of different

plaintexts from encryptions of identical plaintexts
Adversary A(Ek(LR(-,-,b))

Let X,Y be distinct strings in plaintext space
C1 ← Ek(LR(X,Y,b))
C2 ← Ek(LR(Y,Y,b))
If C1=C2 then return 1 else return 0

The IND-CPA advantage of A is 1
Pr(ExpSE

0(A)=1)=0 Pr(ExpSE
1(A)=1)=1

CBC Mode: Encryption

CBC (cipherblock chaining) is a common mode for
using block ciphers such as DES and Rijndael
Let E: K×{0,1}n→{0,1}n be the n-bit block cipher

Algorithm CBC-encryptk(M)
if |M| ≠ 0 mod n or |M|=0 then return ⊥
break M into n-bit blocks M[1]…M[m]
IV ← random {0,1}n

C[0] ← IV
for i=1 to m do C[i] ← Ek(C[i-1]⊕M[i])
C ← C[1] … C[m]
return (IV,C)

Randomly generate initialization vector

XOR each plaintext with previous cipherblock and
encrypt using block cipher to produce next cipherblock

Pseudo-random permutation family
with fixed block length

CBC Mode: Decryption

Algorithm CBC-decryptk(IV,C)
if |C| ≠ 0 mod n or |C|=0 then return ⊥
break C into n-bit blocks C[1]…C[m]
C[0] ← IV
for i=1 to m do M[i] ← Ek

-1(C[i])⊕C[i-1]
M ← M[1] … M[m]
return M

CBC with random IV is IND-CPA secure
• [Proof omitted]

CBCC: Use Counters for IV

Replace random initialization vectors with counters

Algorithm CBCC-encryptk(M)
static ctr ← 0
if |M| ≠ 0 mod n or |M|=0 then return ⊥
break M into n-bit blocks M[1]…M[m]
if ctr≥2n then return ⊥
IV ← [ctr]n

C[0] ← IV
for i=1 to m do C[i] ← Ek(C[i-1]⊕M[i])
C ← C[1] … C[m]
ctr ← ctr+1
return (IV,C)

Values of ctr are persistent across
multiple invocations of CBCC-encrypt

Use current counter value as initialization vector

Increase counter on each invocation of CBCC-encrypt

Chosen-Plaintext Attack on CBCC

Problem: adversary can predict counter value
Adversary A(Ek(LR(-,-,b))

M0 ← 0n, M1 ← 0n,

M’0 ← 0n, M’1 ← 0n-11

(IV,C)← Ek(LR(M0,M1,b))

(IV’,C’)← Ek(LR(M’0,M’1,b))

If C=C’ then return 1 else return 0

IV=0, IV’=1
If b=0 then C=Ek(IV⊕M0)=EK(0⊕0)=EK(0)

C’= Ek(IV’⊕M’0)=EK(1⊕0)=EK(1) ≠ C
If b=1, then C=Ek(IV⊕M0)=EK(0⊕0)=EK(0)

C’= Ek(IV’⊕M’0)=EK(1⊕1)=EK(0) = C

The IND-CPA advantage of A is 1

Pr(ExpSE
0(A)=1)=0 Pr(ExpSE

1(A)=1)=1

From CPA to CCA

A stronger form of security than chosen-plaintext
indistinguishability is chosen-ciphertext
indistinguishability
Suppose that in addition to encryption oracles,
adversary also has access to decryption oracles
• A decryption oracle is simply an algorithm that

decrypts any ciphertext (or anything that looks like
ciphertext) on adversary’s request

• For example, in many protocols participants are
expected to decrypt random challenges. This may
give the adversary an opportunity to obtain a
decryption of a ciphertext of his choice.

“Lunchtime” CCA Game (CCA-1)

1. Security parameter is given to all algorithms, including the adversary
2. The key is generated and given to all oracles

Adversary does not learn the key

3. Adversary makes as many queries as he wants to encryption oracles,
obtaining encryption of any message of his choice. Adversary also obtains
decryptions of as many ciphertexts as he wants by querying decryption
oracles.

Number of queries must be polynomial in security parameter

4. When adversary is ready, he outputs m0 and m1 of his choice. The “test
oracle” picks a random bit b and returns encryption of mb to the adversary.

5. Adversary may continue asking for encryptions of any plaintexts, including
m0 and m1

6. Adversary outputs b’, which is his judgement about what bit b is
7. The scheme is secure if the probability that b’=b is at most negligibly better

than a random coin toss, i.e. 1/2

CCA-2 Game

1. Security parameter is given to all algorithms, including the adversary
2. The key is generated and given to all oracles

Adversary does not learn the key

3. Adversary makes as many queries as he wants to encryption oracles,
obtaining encryption of any message of his choice. Adversary also obtains
decryptions of as many ciphertexts as he wants by querying decryption
oracles.

Number of queries must be polynomial in security parameter

4. When adversary is ready, he outputs m0 and m1 of his choice. The “test
oracle” picks a random bit b and returns encryption of mb to the adversary.

5. Adversary may continue asking for encryptions of any plaintexts, including
m0 and m1. Adversary may also continue asking for decryptions of any
ciphertext except the one ciphertext returned by the test oracle.

6. Adversary outputs b’, which is his judgement about what bit b is
7. The scheme is secure if the probability that b’=b is at most negligibly better

than a random coin toss, i.e. 1/2

	Formal Models of Cryptography:Symmetric Encryption
	Overview
	“Dolev-Yao” Model
	Typical Dolev-Yao Term Algebra
	Recursive Authentication
	Request Phase
	Key Distribution (1)
	Key Distribution (2)
	Key Distribution (3)
	Two Views of Encryption
	Key Distribution “Refined”
	Abstraction Gap
	Typical Pattern for a Definition
	Cryptographic “Oracles”
	Symmetric Encryption
	What Does “Security” Mean?
	Left-Right Encryption Oracles
	Chosen-Plaintext Indistinguishability
	CPA Game
	Simple Example
	CBC Mode: Encryption
	CBC Mode: Decryption
	CBCC: Use Counters for IV
	Chosen-Plaintext Attack on CBCC
	From CPA to CCA
	“Lunchtime” CCA Game(CCA-1)
	CCA-2 Game

