

Formal Models of Cryptography: Symmetric Encryption

Overview

Dolev-Yao model

When is the Dolev-Yao model inadequate?

- A cautionary tale: recursive authentication protocol [Ryan, Schneider '97]
- Formal definitions of security for cryptographic schemes
 - Symmetric and asymmetric (public-key) encryption
 - CPA and CCA indistinguishability

Formal definitions of security for key exchange

"Dolev-Yao" Model

Inspired by a 1983 paper

• D. Dolev and A. Yao. "On the security of public key protocols". IEEE Transactions on Information Theory, 29(2):198-208.

Adversary is a nondeterministic process

- Can read any message, decompose it into parts and re-assemble
- Cannot gain partial knowledge, perform statistical tests, ...
- "Black-box" cryptography
 - Adversary can decrypt if and only if he knows the correct key
 - Assumes that cryptographic functions have no special properties

 Most mechanized formal methods for security analysis use some version of this model

Typical Dolev-Yao Term Algebra

Attacker's term algebra is a set of derivation rules

<u>v∈T</u> T⊳u if u=vσ for some σ		T⊳u T⊳v	T⊳u	T⊳v
		T⊳[u,v]	T⊳crypt _u [v]	
T⊳[u,v]	T⊳[u,v]	T⊳crypt _u [v] T⊳u		
T⊳u	T⊳v	T⊳v		

In the real world, there is no guarantee that attacker is restricted to these operations! He may perform probabilistic operations, learn partial information, etc.

Recursive Authentication

[Bull '97]

Each agent initially shares a pairwise key with the server

• K_{as}, K_{bs}, K_{cs}

 Goal: establish pairwise session keys K_{ab} and K_{bc} with minimal communication

Request Phase

Step 1.
$$A \oplus B \oplus C$$
 server
 $X_a = \text{Sign}_{K_{as}}(A, B, N_{a}, -)$
Step 2. $A \oplus B \oplus C$ server
 $X_b = \text{Sign}_{K_{bs}}(B, C, N_b, X_a)$
Step 3. $A \oplus B \oplus C$ server
 $X_c = \text{Sign}_{K_{cs}}(C, S, N_c, X_b)$

Key Distribution (1)

Key Distribution (2)

Key Distribution (3)

Abstract encryption: design of the protocol can be verified without modeling details of the underlying crypto system...

... proved correct by Paulson in his CSFW '97 paper using higher-order logic (in particular, malicious C cannot learn K_{ab})

Two Views of Encryption

Message M encrypted with key k in some symmetric cipher

Specific implementation from Bull's recursive authentication paper (perfectly reasonable: block ciphers are implemented like this)

Key Distribution "Refined"

Oops!

When abstraction is refined in a "provably secure" protocol, C learns secret key K_{ab}

Abstraction Gap

Formal models pretend that the output of a cryptographic primitive is an abstract data type

- Can only access values through the type interface
 - E.g., apply "decrypt" to a ciphertext and a key
- Cannot access values in any other way
 - This does <u>not</u> follow directly from cryptographic definitions of security
- Ignore possibility of partial information leakage
 - In the Dolev-Yao model, there is no way to say "adversary learns 7th bit with probability 0.55"

Goal: sound "abstraction" of cryptography that can be used by higher protocol levels

Typical Pattern for a Definition

Define cryptographic functionalities as oracles

Define a game between adversary and the oracles

- The goal of the adversary is to "break" security
- For example, adversary against an encryption scheme succeeds if he learns even a single bit of plaintext

 Computational security: probabilistic poly-time adversary succeeds only with negligible probability
 < 1/poly(n) for any polynomial of security parameter n
 Information-theoretic security: computationally unbounded adversary cannot succeed

Cryptographic "Oracles"

Formal representation of cryptographic operations available to the adversary

- E.g., adversary may use the protocol to obtain ciphertexts corresponding to plaintexts of his choice; we model this by giving adversary access to an encryption oracle
- Similar for decryption oracles, signing oracles, etc.

The rules of the game constrain how adversary may interact with the oracles

 Different types of attacks (CPA, CCA, etc.) depending on what the adversary is permitted to do

Symmetric Encryption

A symmetric encryption scheme SE consists in three algorithms K, E, D

- Key generation algorithm K returns a string from some set Keys(SE)
 - Key generation algorithm is randomized
- ◆Encryption algorithm E takes $k \in Keys(SE)$ and $m \in \{0,1\}^*$ and returns ciphertext $c \in \{0,1\}^* \cup \{\bot\}$

• Encryption algorithm may be randomized or stateful

◆ Decryption algorithm D takes $k \in Keys(SE)$ and $c \in \{0,1\}^*$ and returns some $m \in \{0,1\}^* \cup \{\bot\}$

Decryption algorithm is deterministic

What Does "Security" Mean?

Hard to recover the key?

• What if the adversary can learn plaintext without learning the key?

Hard to recover plaintext from ciphertext?

 What if the adversary learns some bits or some function of bits?

Fixed mapping from plaintexts to ciphertexts?

- What if the adversary see two identical ciphertexts and infers that the corresponding plaintexts are identical?
- Implication: encryption must be randomized or stateful

Left-Right Encryption Oracles

Idea: adversary should not be able to learn even a single bit

◆ Define left-right encryption oracle $E_k(LR(m_0,m_1,b))$ where $b \in \{0,1\}$ as if $|m_0| \neq |m_1|$ then return ⊥ else return $E_k(M_b)$

Given two plaintexts, returns encryption of one of them

 \diamond Adversary is given access to $E_k(LR(-,-,b))$

- Bit b is fixed, but adversary doesn't know its value
- Adversary can use any plaintexts m₀, m₁ as inputs; one of them will be returned as ciphertext. To learn bit b, adversary must determine which one was returned.

Chosen-Plaintext Indistinguishability

Consider two experiments

• A is the adversary with oracle access

 $\frac{Exp_{SE}^{0}(A)}{k \leftarrow K}$ $k \leftarrow K \quad (keygen)$ $d \leftarrow A(E_{k}(LR(-,-,0)))$ return d

 $\frac{Exp_{SE}^{-1}(A)}{k \leftarrow K}$ $k \leftarrow K \qquad (keygen)$ $d \leftarrow A(E_k(LR(-,-,1)))$ return d

The IND-CPA advantage of A is $Adv(A) = |Pr(Exp_{SE}^{0}(A)=1) - Pr(Exp_{SE}^{1}(A)=1)|$

"Measures" A's ability to make his output depend on oracle's bit

Encryption scheme is chosen-plaintext secure if advantage is negligible for any prob polytime A

CPA Game

- 1. Security parameter is given to all algorithms, including the adversary
- 2. The key is generated and given to all oracles
 - Adversary does not learn the key
- 3. Adversary makes as many queries as he wants to encryption oracles, obtaining encryption of any message of his choice
 - Number of queries must be polynomial in security parameter
- 4. When adversary is ready, he outputs m_0 and m_1 of his choice. The "test oracle" picks a random bit b and returns encryption of m_b to the adversary.
- 5. Adversary may continue asking for encryptions of any plaintexts, including m_0 and m_1
- 6. Adversary outputs b', which is his judgement about what bit b is
- 7. The scheme is secure if the probability that b'=b is at most negligibly better than a random coin toss, i.e. 1/2

Simple Example

Any deterministic, stateless symmetric encryption scheme is insecure

 Adversary can easily distinguish encryptions of different plaintexts from encryptions of identical plaintexts

Adversary A(E_k(LR(-,-,b))

Let X,Y be distinct strings in plaintext space

$$C_1 \leftarrow E_k(LR(X,Y,b))$$

 $C_2 \leftarrow E_k(LR(Y,Y,b))$

If $C_1 = C_2$ then return 1 else return 0

The IND-CPA advantage of A is 1 $Pr(Exp_{SE}^{0}(A)=1)=0 Pr(Exp_{SE}^{1}(A)=1)=1$

CBC Mode: Encryption

◆CBC (cipherblock chaining) is a common mode for using block ciphers such as DES and Rijndael
 ◆Let E: K×{0,1}ⁿ→{0,1}ⁿ be the n-bit block cipher

<u>Algorithm CBC-encrypt_k(M)</u>

Pseudo-random permutation family with fixed block length

 $\begin{array}{l} \text{if } |\mathsf{M}| \neq 0 \mod n \text{ or } |\mathsf{M}| = 0 \text{ then return } \bot \\ \text{break } \mathsf{M} \text{ into } n \text{ -bit blocks } \mathsf{M}[1]...\mathsf{M}[\mathsf{m}] \\ \mathsf{IV} \leftarrow \text{random } \{0,1\}^n \underbrace{\mathsf{Randomly generate initialization vector} \\ \mathsf{C}[0] \leftarrow \mathsf{IV} \\ \text{for } \mathsf{i} = 1 \text{ to } \mathsf{m} \text{ do } \mathsf{C}[\mathsf{i}] \leftarrow \mathsf{E}_{\mathsf{k}}(\mathsf{C}[\mathsf{i} - 1] \oplus \mathsf{M}[\mathsf{i}]) \\ \mathsf{C} \leftarrow \mathsf{C}[1] \dots \mathsf{C}[\mathsf{m}] \\ \text{return } (\mathsf{IV},\mathsf{C}) \end{aligned}$

CBC Mode: Decryption

Algorithm CBC-decrypt_k(IV,C)

if $|C| \neq 0 \mod n \text{ or } |C|=0$ then return ⊥ break C into n-bit blocks C[1]...C[m] C[0] ← IV for i=1 to m do M[i] ← E_k⁻¹(C[i])⊕C[i-1] M ← M[1] ... M[m] return M

CBC with random IV is IND-CPA secure

[Proof omitted]

CBCC: Use Counters for IV

Replace random initialization vectors with counters

Chosen-Plaintext Attack on CBCC

Problem: adversary can predict counter value
<u>Adversary A(E_k(LR(-,-,b))</u>

 $M_{0} \leftarrow 0^{n}, M_{1} \leftarrow 0^{n},$ $M'_{0} \leftarrow 0^{n}, M'_{1} \leftarrow 0^{n-1}1$ $(IV,C) \leftarrow E_{k}(LR(M_{0},M_{1},b))$ $(IV',C') \leftarrow E_{k}(LR(M'_{0},M'_{1},b))$ If C=C' then return 1 else return 0

$$\begin{split} IV=0, \ IV'=1\\ If \ b=0 \ then \ C=E_k(IV\oplus M_0)=E_k(0\oplus 0)=E_k(0)\\ C'= \ E_k(IV'\oplus M'_0)=E_k(1\oplus 0)=E_k(1)\neq C\\ If \ b=1, \ then \ C=E_k(IV\oplus M_0)=E_k(0\oplus 0)=E_k(0)\\ C'= \ E_k(IV'\oplus M'_0)=E_k(1\oplus 1)=E_k(0)=C \end{split}$$

The IND-CPA advantage of A is 1
Pr(Exp_{SE}⁰(A)=1)=0 Pr(Exp_{SE}¹(A)=1)=1

From CPA to CCA

A stronger form of security than chosen-plaintext indistinguishability is chosen-ciphertext indistinguishability

 Suppose that in addition to encryption oracles, adversary also has access to decryption oracles

- A decryption oracle is simply an algorithm that decrypts any ciphertext (or anything that looks like ciphertext) on adversary's request
- For example, in many protocols participants are expected to decrypt random challenges. This may give the adversary an opportunity to obtain a decryption of a ciphertext of his choice.

"Lunchtime" CCA Game (CCA-1)

- NA WARANALIYA MANE WARANA MANANA MANANA WARANA WARANA WARANANA WARANA WARANA WARANA MANA WARANA WARANA WARANA M
- 1. Security parameter is given to all algorithms, including the adversary
- 2. The key is generated and given to all oracles
 - Adversary does not learn the key
- 3. Adversary makes as many queries as he wants to encryption oracles, obtaining encryption of any message of his choice. Adversary also obtains decryptions of as many ciphertexts as he wants by querying decryption oracles.
 - Number of queries must be polynomial in security parameter
- 4. When adversary is ready, he outputs m_0 and m_1 of his choice. The "test oracle" picks a random bit b and returns encryption of m_b to the adversary.
- 5. Adversary may continue asking for encryptions of any plaintexts, including m_0 and m_1
- 6. Adversary outputs b', which is his judgement about what bit b is
- 7. The scheme is secure if the probability that b'=b is at most negligibly better than a random coin toss, i.e. 1/2

CCA-2 Game

- 1. Security parameter is given to all algorithms, including the adversary
- 2. The key is generated and given to all oracles
 - Adversary does not learn the key
- 3. Adversary makes as many queries as he wants to encryption oracles, obtaining encryption of any message of his choice. Adversary also obtains decryptions of as many ciphertexts as he wants by querying decryption oracles.
 - Number of queries must be polynomial in security parameter
- 4. When adversary is ready, he outputs m_0 and m_1 of his choice. The "test oracle" picks a random bit b and returns encryption of m_b to the adversary.
- Adversary may continue asking for encryptions of any plaintexts, including m₀ and m₁. Adversary may also continue asking for decryptions of any ciphertext <u>except</u> the one ciphertext returned by the test oracle.
- 6. Adversary outputs b', which is his judgement about what bit b is
- 7. The scheme is secure if the probability that b'=b is at most negligibly better than a random coin toss, i.e. 1/2