
CS 395T

Probabilistic Polynomial-Time
Calculus

Security as Equivalence

Intuition: encryption scheme is secure if ciphertext
is indistinguishable from random noise
Intuition: protocol is secure if it is indistinguishable
from a perfectly secure “ideal” protocol
Security is defined as observational equivalence
between protocol and its ideal functionality
• Both formal methods and cryptography use this

approach, but with different notions of what it means for
the adversary to “observe” the protocol execution

Bridging the Gap

Cryptography: observational equivalence is
defined as computational indistinguishability
• No probabilistic poly-time algorithm can tell the

difference between the real and the ideal protocol with
more than negligible probability

Formal methods: observational equivalence is
defined as some form of process bisimulation
• No probabilitities, no computational bounds

Goal: bridge the gap by explicitly supporting
probability and complexity in process calculus

Standard Example: PRNG

Pseudo-random sequence
Pn: let b = nk-bit sequence generated from n random bits (”seed”)

in PUBLIC〈b〉 end

Truly random sequence
Qn: let b = sequence of nk random bits

in PUBLIC〈b〉 end

P is a cryptographically strong pseudo-random
number generator if the two sequences are
observationally equivalent P ≈ Q
• Equivalence is asymptotic in security parameter n

Process Calculus Approach

Write protocol in process calculus
• For example, applied pi-calculus

Express security using observational equivalence
• Standard relation from programming language theory

P ≈ Q iff for all contexts C[],
same observations about C[P] and C[Q]

• Inherently compositional (quantifies over all contexts)
• Context (environment) represents adversary

Use proof rules for ≈ to prove observational
equivalence to the “ideal” protocol

[Abadi-Gordon and others]

Challenges

Probabilistic formal model for crypto primitives
• Key generation, random nonces, randomized encryption

Probabilistic attacker
• Replace nondeterminism with probability
• Need a formal way of representing complexity bounds

Asymptotic form of observational equivalence
• Relate to polynomial-time statistical tests

Proof rules for probabilistic observational
equivalence

Nondeterminism Is Too Strong

Alice encrypts message and sends to Bob
A → B: { msg } K

Adversary “nondeterministically” guesses every
bit of the key
Process E0 c〈0〉 | c〈0〉 | … | c〈0〉
Process E1 c〈1〉 | c〈1〉 | … | c〈1〉
Process E c(b1).c(b2)...c(bn).decrypt(b1b2...bn, msg)

In reality, at most 2-n chance to guess n-bit key

PPT Calculus: Syntax

Bounded π-calculus with integer terms
P :: = 0
| cq(|n|)〈T〉 send up to q(|n|) bits
| cq(|n|)(x).P receive
| υcq(|n|).P private channel
| [T=T] P test
| P | P parallel composition
| !q(|n|) P bounded replication

Size of expressions is
polynomial in |n|

Terms may contain symbol n;

channel width and replication bounded by polynomial of |n|

Probabilistic Operational Semantics

Basic idea: alternate between terms & processes
• Probabilistic scheduling of parallel processes
• Probabilistic evaluation of terms (incl. rand)

Outer term evaluation
• Evaluate all exposed terms, evaluate tests

Communication
• Match up pairs “send” and “receive” actions
• If multiple pairs, schedule them probabilistically

– Probabilistic if multiple send-receive pairs

alternate

Probabilistic Scheduling

Outer term evaluation
• Evaluate all exposed terms in parallel
• Multiply probabilities

Communication
• E(P) = set of eligible subprocesses
• S(P) = set of schedulable pairs
• Schedule private communication first
• Probabilistic poly-time computable scheduler that

makes progress

Simple Example

Process
• c〈rand+1〉 | c(x).d〈x+1〉 | d〈2〉 | d(y).e〈y+1〉

Outer evaluation
• c〈1〉 | c(x).d〈x+1〉 | d〈2〉 | d(y). e〈y+1〉
• c〈2〉 | c(x).d〈x+1〉 | d〈2〉 | d(y). e〈y+1〉

Communication
• c〈1〉 | c(x).d〈x+1〉 | d〈2〉 | d(y). e〈y+1〉

rand is 0 or 1 with prob. ½

Each with
prob ½

Choose according to probabilistic scheduler

Complexity

Bound on number of communications
• Count total number of inputs, multiplying by q(|n|) to

account for bounded replication !q(|n|)P

Bound on term evaluation
• Closed term T is evaluated in time qT(|n|)

Bound on time for each communication step
• Example: c〈m〉 | c(x).P → [m/x]P

– Bound on size of m; previous steps preserve # of x occurrences

For each closed process P, there is a polynomial
q(x) such that for all n, all probabilistic poly-time
schedulers, evaluation of P halts in time q(|n|)

How To Define Process Equivalence?

Intuition: P and Q are equivalent if no test by any
context can distinguish them
• | Prob{ C[P] → “yes” } - Prob{ C[Q] → “yes” } | < ε

How do we choose ε?
– Less than 1/2, 1/4, … ? (not an equivalence relation)
– Vanishingly small? As a function of what?

Solution: asymptotic form of process equivalence
• Use security parameter (e.g., key length)
• Protocol is a family { Pn }n>0 indexed by key length

Probabilistic Observat’l Equivalence

Asymptotic equivalence within f
• Families of processes { Pn }n>0 { Qn }n>0

• Family of contexts { Cn }n>0

• P ≈f Q if ∀ context C[]. ∀ observation v. ∃n0. ∀n>n0

| Prob(Cn[Pn] → v) – Prob(Cn[Qn] → v) | < f(n)

Asymptotic polynomial indistinguishability
• P ≈ Q if P ≈f Q for every f(n) = 1/p(n) where p(n) is

a polynomial function of n

Probabilistic Bisimulation

Labeled transition system
• Evaluate process in a “maximally benevolent context”
• Process may read any input on public channel or send

output even if no matching input exists in process
• Label with numbers “resembling probabilities”

Bisimulation relation
• If P ~ Q and P P’, then exists Q’ such that

Q Q’ and P’ ~ Q’ , and vice versa

Strong form of probalistic equivalence
• Implies probabilistic observational equivalence, but

not vice versa

r

r

[van Glabbeek, Smolka, and Steffen]

Provable Equivalences (1)

Assume scheduler is stable under bisimulation

P ~ Q ⇒ C[P] ~ C[Q]
P ~ Q ⇒ P ≈ Q
P | (Q | R) ≈ (P | Q) | R
P | Q ≈ Q | P
P | 0 ≈ P

Provable Equivalences (2)

P ≈ υc. (c<T> | c(x).P) if x ∉FV(P)

P{a/x} ≈ υc.(c<a> | c(x).P) if bandwidth of c large enough

P ≈ 0 if no public channels in P

P ≈ Q ⇒ P{d/c} ≈ Q{d/c} if c, d have the same bandwidth,

d is fresh

c<T> ≈ c<T’> if Prob[T → a] = Prob[T’ → a] for all a

Connection with Cryptography

Can use probabilistic observational equivalence in
process calculus to carry out proofs of protocol
security
Example: semantic security of ElGamal public-key
cryptosystem is equivalent to Decisional Diffie-
Hellman
Reminder: semantic security is indistinguishability
of encryptions
• enck(m) is indistinguishable from enck(m’)

Review: Decisional Diffie-Hellman

n is security parameter (e.g., key length)
Gn is cyclic group of prime order p,

length of p is roughly n,
g is generator of Gn

For random a, b, c ∈ {0, … , p-1}
〈 ga , gb , gab 〉 ≈ 〈 ga , gb , gc 〉

ElGamal Cryptosystem

n is security parameter (e.g., key length)
Gn is cyclic group of prime order p,

length of p is roughly n, g is generator of Gn

Keys
• Private key = 〈g, x〉, public key = 〈g, gx〉

Encryption of m∈Gn is 〈gk, m⋅(gx)k〉
• k ∈ {0, . . . , p-1} is random

Decryption of 〈v, w〉 is w⋅(vx)-1

• For v=gk, w=m⋅(gx)k get w⋅(vx)-1 = m⋅gxk/gkx = m

DDH ⇒ Semantic Security of ElGamal

Start with 〈ga, gb, gab〉 ≈ 〈ga, gb, gc〉 (random a,b,c)

Build up statement of semantic security from this
• in(c, 〈x,y〉).out(c, 〈gk, m⋅gxk〉) ≈

in(c, 〈x,y〉).out(c, 〈gk, n⋅gxk〉)

Use structural transformations
• E.g., out(c,T(r)) ≈ out(c,U(r)) (any random r)

implies in(c,x).out(c,T(x)) ≈ in(c,x).out(c,U(x))

Use domain-specific axioms
• E.g., out(c, 〈ga,gb,gab〉) ≈ out(c, 〈ga,gb,gc〉) implies

out(c, 〈ga,gb,m⋅gab 〉) ≈ out(c, 〈ga,gb,m⋅gc〉) (any M)

Encryption of m is observationally
equivalent to encryption of n

Semantic Security of ElGamal ⇒ DDH

Harder direction: “break down” vs. “build up”
• Want to go from

in(c,〈x,y〉).out(c,〈gk,m⋅gxk〉) ≈ in(c, 〈x,y〉).out(c,〈gk,n⋅gxk〉)
to 〈gx, gk, gkx〉 ≈ 〈gx, gk, gc〉

Main idea: if m=1, then we essentially have DDH
Proof “constructs” a DDH tuple
• Hide all public channels except output challenge
• Set the message to 1
Need structural rule equating a process with the
term simulating the process
• Special case: process with 1 public output

	Probabilistic Polynomial-Time Calculus
	Security as Equivalence
	Bridging the Gap
	Standard Example: PRNG
	Process Calculus Approach
	Challenges
	Nondeterminism Is Too Strong
	PPT Calculus: Syntax
	Probabilistic Operational Semantics
	Probabilistic Scheduling
	Simple Example
	Complexity
	How To Define Process Equivalence?
	Probabilistic Observat’l Equivalence
	Probabilistic Bisimulation
	Provable Equivalences (1)
	Provable Equivalences (2)
	Connection with Cryptography
	Review: Decisional Diffie-Hellman
	ElGamal Cryptosystem
	DDH  Semantic Security of ElGamal
	Semantic Security of ElGamal  DDH

