

Game-Based Verification of Contract Signing Protocols

Alternating Transition Systems

Game variant of Kripke structures

• R. Alur, T. Henzinger, O. Kupferman. "Alternatingtime temporal logic". FOCS 1997.

Start by defining state space of the protocol

- Π is a set of propositions
- Σ is a set of players
- Q is a set of states
- $Q_0 \subseteq Q$ is a set of initial states
- π: Q →2^Π maps each state to the set of propositions that are true in the state
- \diamond So far, this is very similar to Mur ϕ

Transition Function

◆δ: $Q \times \Sigma \rightarrow 2^{2^{Q}}$ maps a state and a player to a nonempty set of choices, where each choice is a set of possible next states

- When the system is in state q, each player chooses a set Q_a∈δ(q,a)
- The next state is the intersection of choices made by all players ∩_{a∈Σ}δ(q,a)
- The transition function must be defined in such a way that the intersection contains a unique state

Informally, a player chooses a set of possible next states, then his opponents choose one of them

Example: Two-Player ATS

$\Sigma = \{$ Alice, Bob $\}$

Example: Computing Next State

Alternating-Time Temporal Logic

♦ Propositions $p \in \Pi$

- $\neg \phi$ or $\phi_1 \lor \phi_2$ where $\phi_1 \land \phi_2$ are ATL formulas • $\langle \langle A \rangle \rangle \bigcirc \phi_1 \langle \langle A \rangle \rangle \Box \phi_1 \langle \langle A \rangle \rangle \phi_1 U \phi_2$ where $A \subseteq \Sigma$ is a set of players, $\phi_1 \land \phi_2$ are ATL formulas
 - These formulas express the ability of coalition A to achieve a certain outcome
 - ○, □, U are standard temporal operators (similar to what we saw in PCTL)

• Define $\langle\langle A \rangle\rangle$ $\Leftrightarrow \phi$ as $\langle\langle A \rangle\rangle$ true U ϕ

Strategies in ATL

- ◆A strategy for a player $a \in \Sigma$ is a mapping $f_a: Q^+ \rightarrow 2^Q$ such that for all prefixes $\lambda \in Q^*$ and all states $q \in Q$, $f_a(\lambda \cdot q) \in \delta(q, a)$
 - For each player, strategy maps any sequence of states to a set of possible next states
- Informally, the strategy tells the player in each state what to do next
 - Note that the player cannot choose the next state. He can only choose a <u>set</u> of possible next states, and opponents will choose one of them as the next state.

Temporal ATL Formulas (I)

 $\langle \langle A \rangle \rangle \bigcirc \varphi$ iff there exists a set F_a of strategies, one for each player in A, such that for all future executions λ∈out(q,F_a) φ holds in first state λ[1]

Here out(q,F_a) is the set of all future executions assuming the players follow the strategies prescribed by F_a, i.e., λ=q₀q₁q₂...∈ out(q,F_a) if q₀=q and ∀i q_{i+1}∈ ∩_{a∈A} f_a(λ[0,i])

Informally, ((A)) Οφ holds if coalition A has a strategy such that φ always holds in the next state

Temporal ATL Formulas (II)

 $\langle \langle A \rangle \rangle \Box \phi$ iff there exists a set F_a of strategies, one for each player in A, such that for all future executions $\lambda \in out(q, F_a) \phi$ holds in all states

Informally, ((A)) □φ holds if coalition A has a strategy such that φ holds in every execution state

 $\langle \langle A \rangle \rangle \rangle \phi$ iff there exists a set F_a of strategies, one for each player in A, such that for all future executions $\lambda \in out(q, F_a) \phi$ eventually holds in some state

• Informally, $\langle\langle A \rangle\rangle \diamondsuit \phi$ holds if coalition A has a strategy such that ϕ is true at some point in every execution

Protocol Description Language

Guarded command language

 Very similar to PRISM input language (proposed by the same people)

 \blacklozenge Each action described as [] guard \rightarrow command

- guard is a boolean predicate over state variables
- command is an update predicate, same as in PRISM
- Simple example:

[]SigM1B ^ -SendM2 -> SendMrB1':=true;

Fairness in ATL

Bob in collaboration with communication channels does not have a strategy to reach a state in which Bob has Alice's signature but honest Alice does not have a strategy to reach a state in which Alice has Bob's signature

 $\neg \langle \langle B, Com \rangle \rangle \diamond (contract_A \land \neg \langle \langle A_h \rangle \rangle \diamond contract_B)$

Timeliness + Fairness in ATL

 $\langle\langle A_h \rangle\rangle$ $\langle \text{(stop}_A \land (\neg \text{contract}_B \rightarrow \neg \langle\langle B, \text{Com} \rangle\rangle \diamond \text{contract}_A))$

Honest Alice always has a strategy to reach a state in which she can stop the protocol and if she does not have Bob's signature then Bob does not have a strategy to obtain Alice's signature even if he controls communication channels

Abuse-Freeness in ATL

 $\neg \langle \langle A \rangle \rangle \diamondsuit$ (proveToC $\land \langle \langle A \rangle \rangle \diamondsuit$ contract_B \land

 $\langle \langle A \rangle \rangle \diamondsuit$ (aborted $\land \neg \langle \langle B_h \rangle \rangle \diamondsuit$ contract_A)) Alice doesn't have a strategy to reach state in which she can prove to Charlie that she has a strategy to obtain Bob's signature AND a strategy to abort the protocol, i.e., reach a state where Alice has received abort token and Bob doesn't have

a strategy to obtain Alice's signature

Modeling TTP and Communication

Trusted third party is impartial

- This is modeled by defining a unique TTP strategy
- TTP has no choice: in every state, the next action is uniquely determined by its sole strategy

Can model protocol under different assumptions about communication channels

- Unreliable: infinite delay possible, order not guaranteed
 Add "idle" action to the channel state machine
- Resilient: finite delays, order not guaranteed
 - Add "idle" action + special constraints to ensure that every message is eventually delivered (rule out infinite delay)
- Operational: immediate transmission

MOCHA Model Checker

- Model checker specifically designed for verifying alternating transition systems
 - System behavior specified as guarded commands
 - Essentially the same as PRISM input, except that transitions are nondeterministic (as in in Mur_{ϕ}), not probabilistic
 - Property specified as ATL formula
- Slang scripting language
 - Makes writing protocol specifications easier
- Try online implementation!
 - http://www-cad.eecs.berkeley.edu/~mocha/trial/