Private Graph Algorithms in the Semi-Honest Model

Justin Brickell November 24, 2004

Two Party Graph Algorithms

- Parties P_1 and P_2 own graphs G_1 and G_2
- f is a two-input graph algorithm
- Compute f(G₁,G₂) without revealing "unnecessary information"

Unnecessary Information

- Intuitively, the protocol should function as if a trusted third party computed the output
- We use simulation to prove that a protocol is private

The Semi-Honest Model

- A malicious adversary can alter his input
- A semi-honest adversary
 - adheres to protocol
 - tries to learn extra information from the message transcript

General Secure Two Party Computation

- Any polynomial sized functionality can be made private (in the semi-honest model)
 - Yao's Method
- What are our goals?
 - Yao's Method is inefficient
 - Efficient, private protocols to compute particular graph functionalities
 - Take advantage of information "leaked" by the result

Two-Input Graph Algorithms?

- Graph Isomorphism
- Comparison of graph statistics
 - $-f(G_1) > f(G_2)$?
 - max flow, diameter, average degree
- Synthesized Graphs
 - $-f(G_1 \bullet G_2)$

Graph Synthesis

 G₁ and G₂ are weighted complete graphs on the same vertex and edge set

$$-G_1 = (V, E, w_1); G_2 = (V, E, w_2)$$

- gmax(G_1, G_2) = (V, E, w_{max})
 - $w_{\text{max}}(e) = \max(w_1(e), w_2(e))$
- gmin $(G_1, G_2) = (V, E, W_{min})$
 - $w_{\min}(e) = \min(w_1(e), w_2(e))$

Graph Synthesis

Graph Isomorphism

- Unlikely to find a private protocol
 - No known poly-time algorithm

Comparison of Graph Statistics

- 1. Compute statistic on own graph
 - Semi-honest participants can't lie
- 2. Use a private comparison protocol
 - Yao's Millionaire Protocol
 - Yao's method (circuit protocol)

Synthesized Graphs

- This is the interesting case
- All Pairs Shortest Distance and Single Source Shortest Distance both "leak" significant useful information
 - Solved: APSD(gmin),SSSD(gmin)
 - Solved with leaks:APSD(gmax),SSSD(gmax)

APSD(gmin(G_1, G_2))

- Basic Idea: Add edges to the solution graph in order of smallest to largest
- Private, because we can recover the order from the final solution graph

Run APSD on G_1 and G_2

Initialize G_0

Find shortest blue edge lengths

Privately find global shortest length

$$min1 = 2$$

$$min2 = 2$$

$$min0 = \infty$$

bluemin = min(min0,min1,min2) =2

Find edges of length bluemin

bluemin = min(min0,min1,min2) =2

Privately find all edges of length bluemin

$$S_1 = \{e_{23}\}$$

$$S_2 = \{e_{12}\}$$

$$S_0 = \{ \}$$

$$S = S_1 \cup S_2 \cup S_3 = \{e_{12}, e_{23}\}$$

Update S edges in G₀'

Run APSD on G₀'

Repeat!

$$S = S_1 \cup S_2 \cup S_3 = \{e_{13}, e_{24}\}$$

. . .

$$S = S_1 \cup S_2 \cup S_3 = \{e_{34}\}$$

. . .

$$S = S_1 \cup S_2 \cup S_3 = \{e_{14}\}$$

... until all edges are red

The solution is correct!

Other Results

- A similar protocol for SSSD(gmin)
 - This isn't free!
- Protocol for special case of APSD(gmax) and SSSD(gmax)
 - Input graphs obey triangle inequality
- "Leaky" protocol for APSD(gmax) and SSSD(gmax) in the general case

Final Thought

- Other graph algorithms don't leak enough information
- Questions?