
Formal verification of distance 
vector routing protocols



Routing in a network
(Find the cheapest route from Source to Destination)

Source

Destination

L(i, j)   = Cost of direct link i --- j.

R(a, b) = Cost of route from a to b.

R(a, b) = min{ L(a, k) + R(k, b) }



Outline

• RIP (Routing Information Protocol)
– Internet routing protocol

• AODV (Ad-hoc On-demand Distance 
Vector routing)
– Used for mobile ad-hoc networking.
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RIP

Routing table: Each node maintains the cost of route to every 
other node

Initially: All nodes know cost to neighbors
Desired Final Goal: All nodes know cost to all other nodes

while(1) 
{

Nodes periodically send their routing table to every neighbor;
R(a, b) = min{ L(a, k) + R(k, b) };

}
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Poisoned reverse

Works for loops of two routers (adds more cases for Verification)

5A B C

C: ∞

RIP limitation: Doesn’t work for loops of three or more routers



Infinity = 16

• Since we can’t solve the loop problem
– Set Infinity to 16

• RIP is not to be used in a network that has 
more than 15 hops.



Convergence

• Convergence:
– All nodes eventually agree upon routes

• Divergence:
– Nodes exchange routing messages indefinitely.

• Ignore topology changes
– We are concerned only with the period between 

topology changes.



Some definitions

• Universe is modeled as a bipartite graph
– Nodes are partitioned into routers and networks
– Interfaces are edges.
– Each routers connects to at least two networks.
– Routers are neighbors if they connect to same network

• Actually, we can do away with bipartite graph by 
assuming that router = network (i.e. each network 
has one router) .

• An entry for destination d at a router r has:
– hops(r): Current distance estimate
– nextR(r): next router on the route to d.
– nextN(r): next network on route to d.



More definitions

• D(r) = 1 if r is connected to d
= 1 + min{ D(s)| s is a neighbor of r }

• k-circle around d is the set of routers:
Ck = { r | D(r)  ≤ k}

• Stability: For 1 ≤ k ≤ 15, universe is k-stable if:
(S1): Every router r in Ck has hops(r) = D(r)

Also, D(nextR(r)) = D(r) – 1.
(S2): For every router r outside Ck, hops(r) > k.



Convergence

• Aim of routing protocol is to expand k-circle 
to include all routers

• A router r at distance k+1 from d is (k+1)-
stable if it has an optimal route:
– Hops(r)=k+1 and nextR(r) is in Ck.

• Convergence theorem (Correctness of RIP)
– For any k < 16, starting from an arbitrary state of 

the universe, for any fair sequence of messages, 
there is a time tk, such that the universe is k-stable 
at all times t ≥ tk.



Tools

• HOL (higher order logic)
– Theorem prover (more expressive, more effort)

• SPIN 
– Model checker (less expressive, easier 

modeling)
• Number of routers is infinite

– SPIN would have too many states
– States reduced by using abstraction



Lemmas in convergence proof
• Proved by induction on k.

– Lemma 1: Universe is initially 1-stable. (Proved in 
HOL).

– Lemma 2: Preservation of Stability. For any k < 16, if 
the universe is k-stable at some time t, then it is k-stable 
at any time t’ ≥ t. (Proved in HOL).

– Lemma 3: For any k < 15 and router r such that
D(r)=k+1, if the universe is k-stable at some time tk, 
then there is a time tr,k ≥ tk such that r is (k+1)-stable at 
all times t ≥ tr,k. (Proved in SPIN)

– Lemma 4: Progress. For any k < 15, if the universe is k-
stable at some time tk, then there is a time tk+1 ≥ tk such 
that the universe is (k+1)-stable at all times t ≥ tk+1.
(Proved in HOL).



Abstraction

• To reduce state-space for SPIN
• Abstraction examples:

– If property P holds for two routers, then it will hold for 
arbitrarily many routers.

– Advertisements of distances can be assumed to be k or 
k+1.

• Abstraction should be:
– Finitary: should reduce system to finite number of 

states
– Property-preserving: Whenever abstract system 

satisfies the property, concrete system also satisfies the 
property



Abstraction of universe

hops > k+1

hops = k+1
hops < k+1 Advertiser send

updates

Router processes 
Updates

Hop-count is {LT, EQ, GR}

Concrete system with many routers Abstract system with 3 routers



Bound on convergence time

• Theorem: A universe of radius R becomes 
15-stable within time = min{15, R}* ∆.
(Assuming there were no topology 
changes).

After ∆ weakly 2-stable
After 2∆ weakly 3-stable
After 3∆ weakly 4-stable
After 4∆ weakly 5-stable
… …
After (R-1)∆ weakly R-stable
After R∆ R-stable



Weak stability

• Universe is weakly k-stable if:
– Universe is k-1 stable
– For all routers on k-circle: either r is k-stable or 

hops(r) > k.
– For all routers r outside Ck (D(r) > k), 

hops(r) > k.

• By using weak stability, we can prove a 
sharp bound



Lemmas in Proof of timing 
bound

• Lemma 5: Preservation of weak stability. For 
any 2 ≤ k ≤ 15, if the universe is weakly k-
stable at some time t, then it is weakly k-
stable at any time t’ ≥ t.

• Lemma 6: Initial Progress. If the topology 
does not change, the universe becomes 
weakly 2-stable after ∆ time.

• Lemma 7: For any 2 ≤ k ≤ 15, if the universe 
is weakly k-stable at some time t, then it is k-
stable at  time t + ∆.



Proof continued

• Lemma 8: Progress. For any 2 ≤ k ≤ 15, if 
the universe is weakly k-stable at some time 
t, then it is weakly (k+1)-stable at  time t + 
∆.



AODV
Routes are computed on-demand to save bandwidth.
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AODV
• Each route request has a sequence number for 

freshness.
• Among two routes of equal freshness, smaller 

hop-count is preferred.
• Property formally verified is loop freedom

• Above conditions mean a lot of cases 
need to be checked

A B D



Searching for loop formation
• The 3-node network shown previously, is run 

in SPIN.
• Ὼ(!((nextD(A)==B) /\ (nextD(B)==A))) 

• Four ways of loop formation are found.
• Standard does not cover these cases.
• Formal verification can aid protocol design.



Ways of loop formation

• To get an idea of case-analysis required, loops can 
be formed by:
• Route reply from B to A getting dropped.
• B deleting route on expiry.
• B keeping route but marks it as expired.
• A not detecting a crash of B.

• Loop was avoided by:
• B keeping route as expired, incrementing the 

sequence number and never deleting it.
• Is a good indicator of a loop-free solution.



Guaranteeing AODV loop 
freedom

• Based on the avoidance of loops for 3 nodes, we 
assume:
– Nodes never delete routes, incrment sequence number 

of expired routes, detect crashes immediately.

• Based on these assumptions, loop freedom is 
proved.

• Theorem: Consider an arbitrary network of nodes 
running AODVv2. If all nodes conform to above 
assumption, there will be no routing loops.



Abstraction

• Abstract sequence number is {GR, EQ, LT }
• Abstract hop count is {GR, EQ, LT }
• Abstract next pointer is {EQ, NE}
• Lemma 9: If t1 ≤ t2 and for all t: t1 < t ≤ t2

.￢restart(n)(t), then:
seqnod(n)(t1) ≤ seqnod(n)(t2)

• Lemma 10: If t1 ≤ t2 and 
seqnod(n)(t1)=seqnod(n)(t2), and for all t: t1< 
t ≤ t2.￢restart(n)(t), then hopsd(n)(t1) ≥
hopsd(n)(t2)



Adding to abstraction
• The following lemma involves two nodes.
• Abstract sequence number is {GR, EQ, LT} x {EQ, 

NE}
• Abstract hop count is {GR, EQ, LT } x {EQ, NE}
• Abstract next pointer is {EQ, NE} x {EQ, NE}
• Lemma 11: If nextd(n)(t)=n’, then there exists a time 

lut ≤ t, such that:
– seqnod(n)(t) = seqnod(n)(lut)
– 1 + hopsd(n)(t) = hopsd(n’)(lut)    
– For all t’: lut < t’ ≤ t .￢restart(n’)(t’).



Conclusion

• Specific technical contributions
– First proof of correctness of the RIP standard.
– Statement and automated proof of a sharp real-

time bound on RIP convergence
– Automated proof of loop-freedom for AODV.
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