Group Diffie Hellman Protocols and ProVerif

CS 395T - Design and Analysis of Security Protocols

Ankur Gupta

Secure Multicast Communication

- Examples: Live broadcast of a match, stock quotes, video conferencing.
- Security has become a major issue.
- Challenges:
- 1. Secrecy of messages.
- 2. Authenticity:
- a) Group Authenticity
- b) Source Authenticity
- 3. Anonymity
- 4. Access Control

Key Exchange

- Main Step: Key Exchange is the main step in multicast communication.
- Members communicate to set up a common key that is then used to encrypt messages.
- Several key exchange protocols exist today.
- Examples:
- 1. 2-party: IKE, JFK.
- 2. Multi-party: GDH.1, GDH.2, GDH.3.

Security Issues

- Depends on kind of adversary:
- 1. Passive Adversary: Can read messages but not inject/delete/modify messages.
- 2. Active Adversary: Can read/modify/delete messages.

Passive Adversary

- Secrecy: The key exchanged must be a secret.
- Key Agreement: All participants in the protocol agree on the same key.
- Resistance to Known-Key attacks: A key compromised in one session cannot help in compromising keys in other sessions.
- Key Independence: For dynamic memberships, old keys cannot be known to new members and new keys cannot be known to old members.

Active Adversary

- Authentication: Each participant has the assurance that only legitimate users belong to the group.
- Perfect Forward Secrecy (PFS): Compromise of long-term keys cannot result in the compromise of past session keys.
- Resistance to Known-Key attacks: Session keys known in one session cannot help an active adversary to impersonate one of the protocol parties in another session.

Group Diffie Hellman Protocols

Steiner, Tsudik, et al

- Five Group Key Exchange (GKE) protocols are proposed.
- First three assume static group membership.
- Last two deal with member addition and deletion.
- We will focus on the first three.
- Proved secure against passive attacker.
- Ateniese, Steiner et al proposed an authenticated GKE protocol that "tolerates" active adversary.

GDH.1

- Let 'g' be the generator of a group.
- For 4 participants the protocol works as follows:
- Each participant P₁, P₂, P₃ and P₄ generates a nonce n₁, n₂, n₃ and n₄ respectively.
- P_1 sends $\{g^{n_1}\}$ to P_2 .
- P_2 sends $\{g^{n_1}, g^{n_1n_2}\}$ to P_3 .
- P_3 sends { g^{n_1} , $g^{n_1n_2}$, $g^{n_1n_2n_3}$ } to P_4 .
- P_4 sets group key to $g^{n_1n_2n_3n_4}$.
- P_4 sends { g^{n_4} , $g^{n_1n_4}$, $g^{n_1n_2n_4}$ } to P_3 .
- P_3 sends { $g^{n_4n_3}$, $g^{n_1n_4n_3}$ } to P_2 .
- P_2 sends $\{g^{n_4n_3n_2}\}$ to P_1 .

GDH.2

- P_1 sends $\{g^{n_1}\}$ to P_2 .
- P_2 sends { g^{n_1} , g^{n_2} , $g^{n_1n_2}$ } to P_3 .
- P_3 sends { $g^{n_1n_2}$, $g^{n_1n_3}$, $g^{n_2n_3}$, $g^{n_1n_2n_3}$ } to P_4 .
- P_4 sets group key to $g^{n_1n_2n_3n_4}$.
- P_4 broadcasts { $g^{n_1n_2n_4}$, $g^{n_1n_3n_4}$, $g^{n_2n_3n_4}$ } to everyone.

GDH.3

- P_1 sends $\{g^{n_1}\}$ to P_2 .
- P_2 sends $\{g^{n_1n_2}\}$ to P_3 .
- P_3 sends $\{g^{n_1n_2n_3}\}$ to P_4 .
- P_4 sets group key to $g^{n_1n_2n_3n_4}$.
- P_4 broadcasts { $g^{n_1n_2n_3}$ } to everyone.
- P₃ computes inverse and sends {gⁿ¹ⁿ²} to P₄.
- P₂ computes inverse and sends {gⁿ¹ⁿ³} to P₄.
- P₁ computes inverse and sends {gⁿ²ⁿ³} to P₄.
- P₄ broadcasts {gⁿ¹ⁿ²ⁿ⁴, gⁿ¹ⁿ³ⁿ⁴, gⁿ²ⁿ³ⁿ⁴} to everyone.

Comparison of GDH protocols

Protocol	Rounds	Messages	Exponentiat ions per P _i	Total Exponentia tions
GDH.1	2(n-1)	2(n-1)	(i+1) for i <n, for<br="" n="">P_n</n,>	$\frac{(n+3)n}{2} - 1$
GDH.2	n	n	(i+1) for i <n, for<br="" n="">P_n</n,>	$\frac{(n+3)n}{2} - 1$
GDH.3	n+1	2n-1	4 for i < n- 1, 2 for n- 1, n for P _n	5n-6

Authenticated GDH.2

- Above protocols tolerate only passive adversary.
- For static membership, an easy fix to GDH.2 "tolerates" active adversary.
- An attack was later found against AGDH.2 in which an adversary behaving as a legitimate participant in one session can learn the key in another session of which it is not a member.

AGDH.2

- P₄ shares long term shared keys K₁₄, K₂₄, K₃₄ with P₁, P₂ and P₃.
- P_1 sends $\{g^{n_1}\}$ to P_2 .
- P_2 sends { g^{n_1} , g^{n_2} , $g^{n_1n_2}$ } to P_3 .
- P_3 sends { $g^{n_1n_2}$, $g^{n_1n_3}$, $g^{n_2n_3}$, $g^{n_1n_2n_3}$ } to P_4 .
- P₄ sets group key to gⁿ¹ⁿ²ⁿ³ⁿ⁴.
- P_4 broadcasts $\{g^{n_1n_2n_4k_{34}},\,g^{n_1n_3n_{4k_{24}}},\,g^{n_2n_3n_{4k_{14}}}\}$ to everyone .

ProVerif

Bruno Blanchet

- Protocols can be modeled as applied pi-calculus processes.
- Explicit modeling of attacker not required.
- Possible to state if an attacker is passive or active.
- Reasonable arithmetic properties of encryption/decryption can be specified as mathematical equations in ProVerif.
- Security proofs are done by querying ProVerif if an attacker knows a key or content of an encrypted message.

GDH.2 in **ProVerif**

- free c01, c30, c12, c31, c23, c32, c, sc.
- private free m, sameKey, p04, p14, p24, p34.
- (* Check if attacker can recover m and that all participants generate the same key*)
- •
- query attacker:m;
- attacker:sameKey.
- (* Shared key cryptography *)
- •
- fun enc/2.
- fun dec/2.
- equation dec(enc(x,y),y) = x.

GDH.2 Contd.

- (* Diffie-Hellman functions *)
- data g/0.
- fun exp/2.
- equation $\exp(\exp(g,x),y) = \exp(\exp(g,y),x)$.
- equation exp(exp(g,y),z),x)=exp(exp(exp(g,y),x),z).
- equation exp(exp(g,y),z),x)=exp(exp(exp(g,x),z),y).equation exp(exp(exp(g,x),y),z),t)=exp(exp(exp(exp(g,x),y),t),z).
- equation exp(exp(exp(g,x),y),z),t) = exp(exp(exp(exp(g,x),z),t),y).
- equation exp(exp(exp(g,x),y),z),t) = exp(exp(exp(exp(g,y),z),t),x).
- reduc inv(exp(exp(exp(g,x),y),z),t),t) = exp(exp(exp(g,x),y),z);inv(exp(exp(exp(g,x),y),z),t),z) = exp(exp(exp(g,x),y),t);

- inv(exp(exp(exp(g,x),y),z),t),y) = exp(exp(exp(g,x),z),t);inv(exp(exp(exp(g,x),y),z),t),x) = exp(exp(exp(g,y),z),t);
- inv(exp(exp(exp(g,y),z),t),y) = exp(exp(g,t),z);
- inv(exp(exp(g,y),z),t),z) = exp(exp(g,y),t);
- inv(exp(exp(g,y),z),t),t) = exp(exp(g,y),z);
- inv(exp(exp(g,y),z),z) = exp(g,y);
- inv(exp(exp(g,y),z),y) = exp(g,z).

GDH.2 Contd.

```
   param attacker = passive.
```

```
• let p0 = new n0;
```

```
• out(c01,exp(g,n0)); (* g^n0 *)
```

```
• in(c30,u);
```

```
• let comk0 = exp(u,n0) in
```

```
• out(c, enc(m,comk0));
```

```
• out(p04,comk0).
```

```
•
```

```
let p1 = new n1;
```

```
• in(c01,v);
```

```
out(c12,(v,exp(g,n1),exp(v,n1)));
```

```
(* (g^n0, g^n1, g^n0n1) *)
```

```
• in(c31,w);
```

```
let comk1 = exp(w,n1) in
```

```
out(p14,comk1).
```

GDH.2 Contd.

- let p3 = new n3;
- in(c23,(u,v,w,x)); (* g^n0n1, g^n0n2, g^n1n2, g^n0n1n2 *) out(c30,exp(w,n3)); (* g^n1n2n3*) out(c31,exp(v,n3)); (* g^n0n2n3*) out(c32,exp(u,n3)); (* g^n0n1n3*)

- let comk3 = exp(x,n3) in
 - out(p34,comk3).
- let p4 =
- in(p04, k0);
- in(p14, k1);
- in(p24, k2);
- in(p34, k3);
- if k0 = k1 then
- if k1 = k2 then
- if $k^2 \ll k^3$ then
 - out(sc,sameKey)

0

- else
- else
 - out(sc, sameKey)
- else
- out(sc, sameKey).
- process (p0 | p1 | p2 | p3)

Conclusion

- Modeled GDH.1, GDH.2, and GDH.3 protocols in ProVerif.
- Proved they preserve secrecy and key agreement against a passive attacker.
- Modeled AGDH.2 to allow active adversary.
- ProVerif was not able to prove/disprove its security properties.