
First-Order Verification of Cryptographic

Protocols

Ernie Cohen
Microsoft Research

Abstract

We describe a verification method for cryptographic protocols, based
on first-order invariants. For typical protocols, a suitable invariant can be
generated mechanically from the program text, allowing safety properties
to be proved by ordinary first-order reasoning.

The method has been implemented in an automatic verifier, TAPS,
that proves safety properties comparable to those in published Isabelle
verifications, but does so much faster with little or no guidance from the
user. TAPS has verified properties of about 80 protocols, including all
but three protocols from the Clark & Jacob survey; on average, these
verifications require less than a second of CPU time and less than 4 bytes
of hints from the user.

1 Introduction

A cryptographic protocol is a program that uses cryptographic primitives (e.g.,
ciphers and hash functions), typically to implement distributed computing prim-
itives (e.g., reliable messaging, shared memory) in a hostile communication en-
vironment. These protocols are notoriously tricky; for example, bugs have been
found in a number of published authentication protocols. The brevity and sub-
tlety of these protocols make them an attractive target for formal methods.

Most modern methods for verifying these protocols model them as concur-
rent systems, consisting of a collection of principals following the rules of the
protocol along with an active adversary who controls all message delivery and
can generate new messages from old ones using a limited set of operations (typ-
ically tupling, untupling, encryption, decryption, and nonce/key generation).
Protocol properties (e.g. authentication) are then checked using conventional
program verification techniques. This approach seems to strike a good balance
between the complexity-based proofs favored by cryptographers [3, 4] (which
cannot be produced for most existing protocols) and proofs in special-purpose
authentication logics [7, 11] (which are insensitive to many flaws of interest).

A variety of verification techniques have been applied to the resulting concur-
rent systems; we give only some examples here. Model checkers have been used
to find bugs [15, 9], but combinatorial explosion in the number of sessions/roles



forces the models to be severely constrained, which can lead to missed attacks1.
Bounded-session techniques using symbolic traces and constraints (e.g. [6])
suffer from the same problem2. Symbolic search tools like Athena [23] and
Rankanalyser [13] are much faster, and can often prove protocols correct with-
out bounding the number of sessions, but depend on bounded message size3

and structural limitations on the protocol4. Finally, approaches that use classi-
cal program invariants (e.g. [21, 22, 17, 10]) handle unbounded message depth
and protocol instances, but require judiciously chosen recursively defined sets
of messages [18], and require substantial effort and proof-checking expertise.

We present a very different approach to verifying protocols in the unbounded
model, based on first-order invariants. Unlike other approaches, our invariants
are constructed without regard for the properties being checked. Nevertheless,
suitable invariants can be constructed automatically for most protocols, allowing
safety properties to be proved with first-order reasoning.

Our method is implemented in an automatic verifier, TAPS, that proves
safety properties roughly equivalent to those proved in published Isabelle ver-
ifications. However, TAPS generates these proofs quickly (typically around a
second or less), with almost no user guidance (none for 90% of our examples,
an average of about 40 bytes each for the remaining ones). TAPS has verified
about 80 protocols, including almost all of the Clark & Jacob Survey (see sec-
tion 5). TAPS can perform sophisticated mathematical reasoning on functions
and predicates as part of a verification process, a feature important for our long
term goal of analyzing systems in which cryptography is used as part of a larger
security infrastructure. It can also handle recursive protocols to a limited ex-
tent, and has verified protocols that use chains of certificates and hashes. The
main downside compared to search-based systems is that TAPS does not gen-
erate counterexamples (although the failure of a proof obligation can provide
information useful in the construction of such counterexamples).

Although TAPS can verify many protocols quickly and fully automatically,
we emphasize that TAPS searches for proofs, not attacks. The utility of TAPS
lies not in its ability to find attacks that search tools miss, but in its ability to
quickly find proofs that make such searches unnecessary.

1 For example, overconstraint caused Murphi to miss a serious bug in a rationalized recon-
struction of SSL [20], a bug we found by trying to prove the protocol correct.

2They do, however, handle unbounded message size.
3These bounds can often be justified by strong typing, which can be added to most to most

protocols using the tagging scheme of [12]. However, this doesn’t work for protocols that re-
quire unbounded encryption depth (e.g. SKEY and paywords), and the additional explicitness
of type tagging can open up new avenues of attack (e.g., offline guessing attacks). Moreover,
our experience TAPS shows that strong typing is rarely needed for protocol correctness.

4For example, protocols must be loop-free (so they can’t handle recursive protocols, re-
peated authentication, or certificate chains) and can’t test messages for inequality (so they
can’t handle protocols that use such tests to prevent replay or reflection attacks). Similar
limitations apply to verifiers based on monadic Horn theories, e.g. [25, 5]

2



1.1 Roadmap

We model protocols as transition systems, where the state of the system is
given by the set of transitions that have been executed and the set of messages
that have been published (i.e., sent in the clear). A typical transition generates
some fresh values (to be used as nonces or keys), checks that some precondition
holds, records that the transition has taken place, and publishes a new message.
Several implicit transitions model the actions of the spy, and the states of the
system can be further restricted by user-supplied axioms.

From the protocol description, we generate a number of invariants. All but
one of these is invariant by construction. The one exception is the secrecy invari-
ant, which says that if a message is published, then either we know something
interesting about the states of some principals, or the message is a tuple or
encryption whose components are also published5. Safety properties like au-
thentication are proved from the invariants using ordinary first-order reasoning.

To show the invariance of the secrecy invariant, we have to show that it is
closed under the destructors; proving this usually requires substantial reasoning
about message authentication. Fortunately, we have all of the invariants to
work with (including the secrecy invariant), so these proofs are rather easy. If
one of these proofs fails, it suggests the last step of an attack through which
illicit information can leak out to the spy. (It does not, however, guarantee the
existence of such an attack.)

In TAPS, all of this logical reasoning is performed by a resolution theorem
prover6; For most protocols, TAPS generates a suitable secrecy invariant with-
out any help, but for some protocols, the user has to provide hints (typically a
formula proposing conditions necessary for the publication of a particular nonce,
key, or nested encryption)7.

We illustrate the method with what has become the standard example, the
Needham-Schroeder-Lowe (NSL) protocol [14], for which the complete TAPS
input appears in figure 1. Because we want to show both how the method can
be applied by hand and how it is used within TAPS, we present a complete hand
proof, but describe TAPS only down to the level of first-order proof obligations.
(To make the proof easier to follow, and to illustrate some additional features,
figure 1 includes some axioms and hints that TAPS doesn’t actually need.)
Additional examples of TAPS input appear in the appendix.

5Backward chaining through this invariant leads one to consider only smaller published
messages, so this method does not suffer from the same infinite regression problem as backward
symbolic search through destructors.

6The current version of TAPS uses SPASS [26]; previous versions used Gandalf [24] and
Otter [16].

7These hints only effect the choice of secrecy invariant; they do not affect the soundness of
the verification.

3



Protocol NeedhamSchroederLowe
/* k(X) represents X’s public key, but the protocol below works

for any type of key */

Definitions {
m0 = {A,Na}_k(B)
m1 = {B,Na,Nb}_k(A)
m2 = {Nb}_k(B)

}
Transitions {

/* A->B */ Na: pub(A) /\ pub(B) -p0-> m0
/* B->A */ Nb: pub(B) /\ pub(m0) -p1-> m1
/* A->B */ p0 /\ pub(m1) -p2-> m2
/* B */ p1 /\ pub(m2) -p3-> {}
/* A */ p0 /\ dk(k(A)) -oopsNa-> Na
/* B */ p1 /\ dk(k(B)) -oopsNb-> Nb

}
Axioms {

/* Not necessary - honest principals can safely share keys */
k injective

}
Labels {

/* Hints used to generate the secrecy invariant (illustration
only - TAPS generates better ones automatically)
the spy sees Na/Nb only if A or B is compromised */

Na, Nb: dk(k(A)) \/ dk(k(B))
}
Goals {

/* if A has executed p2, then B has executed p1 with the
same values for A,B,Na,Nb, or one of their private keys
has been compromised */

p2 => p1 \/ dk(k(A)) \/ dk(k(B))

/* if B has executed p3, then A has executed p2 with the
same values for A,B,Na,Nb, or one of their private keys
has been compromised */

p3 => p2 \/ dk(k(A)) \/ dk(k(B))
}

Figure 1: TAPS input for the Needham-Schroeder-Lowe (NSL) protocol

4



2 The protocol model

2.1 Messages

Each protocol makes use of an underlying set of messages whose structure
is given by a first-order theory8. Identifiers starting with uppercase letters
(X,Y ,Na,. . . ) are first-order variables, ranging over messages; in displayed for-
mulas, all such variables are implicitly universally quantified. Identifiers start-
ing with lowercase letters (nil , pub, p0,. . . ) are first-order functions, first-order
predicates, and state predicates (section 2.2). The message theory includes the
following predicate and function symbols (individual protocols may use addi-
tional predicate and function symbols):

nil the empty message
cons(X, Y ) the ordered pair 〈X, Y 〉
enc(X, Y ) encryption of Y under the key X
atom(X) iff X is an atomic message (e.g., a nonce or a key)
d(X, Y ) iff messages encrypted under X can be decrypted using Y

The first-order theory says that nil , cons, and enc are injective, with disjoint
ranges, and do not yield atoms . The user can provide additional axioms in the
Axioms section.

example: The NSL protocol makes use of the additional function k, mapping
names of principals to their public keys. The injectivity of k means that prin-
cipals do not share public keys9.
end of example

TAPS allows the standard comma-separated list notation for right-associated
tuples; for example, {X,Y,z} abbreviates cons(X, cons(Y, cons(z,nil))). TAPS
uses the binary infix operator _ as a synonym for enc (with arguments reversed),
so {A,B}_X abbreviates enc(X, cons(A, cons(B,nil))). To make protocols easier
to read and modify, TAPS allows the user to define abbreviations for message
terms (in the Definitions section).

example (continued): The Definitions section of the NSL protocol intro-
duces the definition

m0 = enc(k(B), cons(A, cons(Na,nil)))

end of example

8We do not assume an induction principle for message destructors, so for example there is
nothing to prevent the message theory from having a fixed point for encryption.

9Using the built-in declarations for injective functions and hash functions lets TAPS do a
better job of simplifying lemmas and proof obligations, leading to more efficient verification.

5



2.2 States

We model protocols as transition systems, where the state of the system is
given by the interpretations of a (protocol-specific) collection of state predicates.
(Recall that in standard model theory, the interpretation of a predicate is a set
of tuples, so a state predicate can also be viewed as an ordinary program variable
ranging over sets of message tuples.) Each protocol makes use of the special
state predicate pub; pub(X) means that the message X has been published (sent
in the clear). The remaining state predicates are history predicates that track
which transitions have been executed. For each history predicate p, TAPS
generates a signature Σp (a list of distinct variables), as described in section
2.3.1; in formulas, p abbreviates the formula p(Σp). TAPS does not allow history
predicates to appear with explicit arguments (although argument substitution
can be achieved using the import notation of section 3); this prevents users from
writing formulas whose meaning depends on the ordering of variables within
a signature. This discipline makes it much easier to read and modify large
protocols (whose state predicates might contain a dozen or more arguments).

example (continued): In the NSL protocol, p0 is a history predicate, with
signature Σp0 = A,B,Na. Thus, the guard of the third transition, p0∧pub(m1),
is syntactic sugar for the formula p0(A,B,Na) ∧ pub(m1).
end of example

TAPS also defines10

dk(X) ⇔ (∃ Y : d(X, Y ) ∧ pub(Y ))

dk is, in effect, a state predicate (except that it can’t be assigned to); dk(X)
means that messages encrypted under X are decryptable by the spy.

Various flavors of keys can be defined using the predicate d, but weaker
specifications in terms of dk are strong enough for all practical purposes. For
example, the predicate sk(X) (“X is a symmetric key”) could be defined with
the axiom

sk(X) ⇔ (∀Y : d(X, Y ) ⇔ X = Y )

but we prefer the weaker axiom

sk(X) ⇒ (dk(X) ⇔ pub(X))

Explicit axioms for keys are usually needed only for protocols that dynamically
generate such keys (for example, the protocols in the appendix); simple protocols
like NSL can be written in a form that is independent of the kind of encryption
used (e.g., by writing goals using dk instead of pub).

A formula without free (message) variables is said to be stable if, once true, it
is guaranteed to remain true thereafter. (A formula with free variables is stable

10Simply adding this formula as an axiom would be unsound, because TAPS would treat dk
as an ordinary first-order predicate (i.e., assume that its interpretation remains fixed during
execution).

6



iff each of its instances is stable.) All state predicates are stable (messages,
once published, remain published; transitions, once executed, remain executed).
A formula is positive if no state predicate occurs with negative polarity (i.e.,
guarded by an odd number of negations); a simple inductive argument shows
that positive formulas are also stable.

2.3 Protocols

The behavior of a protocol is given by a set of actions, each of the form

guard −→ p(args)

where guard is a formula, p is a state predicate, and args is a list of terms. This
action is executed as follows:

1. choose arbitrary message values for the free variables of guard and args;

2. check that guard holds in the current state;

3. modify the state by adding the tuple args to the interpretation of p;

4. check that all user-supplied axioms hold.

A protocol is executed by starting from a state where all state predicates are
false and all user-supplied axioms hold, and executing an arbitrary sequence of
actions.

2.3.1 Transitions

Protocol actions are not given directly; instead, the user provides a set of tran-
sitions, labeled with distinct history predicates. The transition labeled p has
the form

nvp : gp
p−→ Mp

where nvp is a list of distinct variables (the nonce variables of p), gp is a positive
formula, and Mp is a message term. For convenience, we will assume that
the nvp’s are disjoint, although this restriction is not essential. TAPS treats
any predicate symbol that appears as the label of a transition as a history
predicate, and assumes the remaining predicate symbols are ordinary first-order
predicates of the underlying message theory. Then, for each history predicate
p, TAPS chooses a minimal signature Σp that includes all free variables of nvp,
gp and Mp; this restriction determines the signatures uniquely, up to variable
reordering11. The transition above is syntactic sugar for the two actions

fresh(nvp) ∧ gp −→ p(Σp)
p(Σp) −→ pub(Mp)

11Because TAPS allows recursive protocols (e.g., where p occurs in its own guard), this
definition of Σp is actually recursive, but it still has a minimal solution.

7



where fresh(nvp) means that the values assigned to the variables of nvp are
distinct atoms that have not been previously chosen as instantiations for nonce
variables of state predicates12; formally,

fresh(v0, . . .) ⇔ (∀i : atom(vi)) ∧ (∀i, j : i 6= j ⇒ vi 6= vj)
∧ (∀i, p,w : w ∈ nvp ∧ p(Σp

′) ⇒ vi 6= w′)

(This effect is approximated in real protocols by choosing fresh atoms randomly
from a large pool of candidates.)

example (continued): Here are the transitions of the NSL protocol:

Na : pub(A) ∧ pub(B)
p0−→ m0

Nb : pub(B) ∧ pub(m0)
p1−→ m1

p0 ∧ pub(m1)
p2−→ m2

p1 ∧ pub(m2)
p3−→ nil

p0 ∧ dk(k(A))
oopsNa−→ Na

p1 ∧ dk(k(B))
oopsNb−→ Nb

From these transitions, TAPS generates the signatures

Σp0 = ΣoopsNa = A,B,Na
Σp1 = Σp2 = Σp3 = ΣoopsNb = A,B,Na,Nb

The first transition translates to the (desugared) actions

fresh(Na) ∧ pub(A) ∧ pub(B) −→ p0(A,B,Na)
p0(A,B,Na) −→ pub(m0)

The first of these actions is executed by choosing arbitrary values for A, B, and
Na, checking that A and B are published (a common, weak way to test values
as being suitable for use as names of principals) and that Na is a fresh atom,
adding the tuple 〈A,B,Na〉 to the interpretation of p0, and finally checking that
all of the user-defined axioms hold. (The NSL axioms don’t mention any state
predicates, so the last check is unnecessary.)
end of example

In addition to the transitions explicitly given, each protocol implicitly in-
cludes actions modeling the capabilities of the spy. These include the transition

Trash : true trash−→ Trash

12Note that nothing prevents a transition from making use of an atom that has not yet been
issued as a nonce value; typically, this will prevent verification of the secrecy invariant.

8



(the spy can generate new atoms) and the actions

true −→ pub(nil)
pub(X) ∧ pub(Y ) −→ pub(cons(X, Y ))
pub(X) ∧ pub(Y ) −→ pub(enc(X, Y ))
pub(cons(X, Y )) −→ pub(X)
pub(cons(X, Y )) −→ pub(Y )
pub(enc(X, Y )) ∧ dk(X) −→ pub(Y )

(the spy can tuple, encrypt, and untuple previously published messages, and
decrypt messages encrypted with decryptable keys). Note that in each case, the
spy publishes the result, allowing these actions to be chained together.

3 Imports

To motivate our last bit of notational machinery, consider a transition system
with the single action

g −→ pub(t)

where g is positive (hence stable) and t is a term. Suppose we arrive in a state
where pub(m) holds, for some value m. If m has no free variables, we can
conclude

(∃ V : g ∧ t = m)

where V is a superset of the variables occurring free in g or t. Intuitively, this
is because pub(m) must have been truthified by the action above (it’s the only
one); the execution that truthified it must have chosen variable bindings for
which t = m; g must have held just before the action was executed (for the
chosen bindings), and must hold now (because g is stable). In the general case
where m might contain free variables, we have to rename variables of g and t to
avoid capturing free variables of m in the scope of the existential quantification,
so we write instead

(I V ′ : g′ ∧ t′ = m)

where g′ is g with each variable primed (similarly for t′). It is helpful to think
of this formula as specifying a new context (the one given by the values of the
primed variables), related to the surrounding context by the constraint t′ = m.
(In general, we may have several such constraints.) Since the list of variables
V and the primed symbols are really not carrying any information other than
separating the constraints from the new context, we abbreviate this formula
with the new notation

(I [m : t] : g)

(“import m as t in g”).

9



In general, let V be the set of all free variables in the formula f or in any
of the terms Yi, let V ′ be V with all variables primed, and let f′ be f with all
variables primed. We define

(I [X0 : Y0,X1 : Y1, . . .] : f) ⇔ (∃ V ′ : X0 = Y′
0 ∧ X1 = Y′

1 ∧ . . . ∧ f′)
(I [X0,X1, . . .] : f) ⇔ (I [X0 : X0,X1 : X1, . . .] : f)

(The first form is pronounced “import Y0 as X0, Y1 as X1,. . . from f”, the second
as “import X0,X1,. . . from f”.) For example,

(I [X · Y ] : p(X, Z)) ⇔ (∃ X ′, Y ′, Z ′ : X · Y = X ′ · Y ′ ∧ p(X ′, Z ′))
(I [f(X) : X] : p(X)) ⇔ p(f(X))

In hand proofs, we work directly with imports using the following rules (here,
h is injective and fv.f is the set of free variables in f):

f ⇒ (I [. . .] : f)
(I [. . .] : f ∨ g) ⇔ (I [. . .] : f) ∨ (I [. . .] : g)

(I [h(X), . . .] : f) ⇔ (I [X, . . .] : f)
f ∧ (I [fv.f, . . .] : g) ⇔ (I [fv.f, . . .] : f ∧ g)

TAPS uses imports internally only to facilitate communication with the user; it
replaces imports with existential quantification before doing any deduction.

4 Invariants

For each protocol, TAPS generates several invariants:

• guard lemmas say that history predicates imply their guards;

• unicity lemmas say that nonce values are not reused13;

• the secrecy invariant classifies the messages that the protocol can publish,
and what conditions are implied by each.

The guard and unicity lemmas are generated in such a way that their invari-
ance is guaranteed without further justification. However, the secrecy invariant
is conjectural, and its invariance depends on discharging a number of proof
obligations.

4.1 Guard Lemmas

For each history variable p (other than trash), TAPS generates the invariant

p ⇒ (gp ∧ (∀v ∈ nvp : atom(v)))

13Our unicity lemmas are similar to those used by Paulson [21], except that they are gen-
erated in a uniform way.

10



Intuitively, this is an invariant because the implicant holds before p is first
truthified, and the implicant is positive (hence stable).

example (continued): NSL generates the following guard lemmas:

p0 ⇒ pub(A) ∧ pub(B) ∧ atom(Na)
p1 ⇒ pub(B) ∧ pub(m0) ∧ atom(Nb)
p2 ⇒ p0 ∧ pub(m1)
p3 ⇒ p1 ∧ pub(m2)

oopsNa ⇒ p0 ∧ dk(k(A))
oopsNb ⇒ p1 ∧ dk(k(B))

end of example

4.2 Unicity Lemmas

Unicity lemmas come in two flavors. The first unicity lemma says that for
variable assignments satisfying a given state predicate, the value assigned to any
nonce variable of the predicate uniquely determines the other variables in the
signature of the predicate (because nonce variables are not reused). Formally,
for v ∈ nvp,

p(Σp) ∧ p(Σp
′) ∧ v = v′ ⇒ Σp = Σp

′

TAPS actually uses the following (equivalent) formulation, which is more effi-
cient for most theorem provers: for v ∈ nvp, w ∈ Σp,

p(Σp) ⇒ w = fv,w(v)

where fv,w is a new Skolem function.
For hand proofs, we want to avoid explicit arguments to state predicates, so

we use instead the following schema: for any formula f,

p ∧ (I [v, . . .] : p ∧ f)) ⇔ (I [Σp, . . .] : p ∧ f)

This captures the way we use unicity in hand proofs – to widen the scope of an
import.

The second unicity lemma says that the same nonce value cannot be assigned
to two different nonce variables: for distinct nonce variables v ∈ nvp and w ∈ nvq,

p(Σp) ∧ q(Σq
′) ⇒ v 6= w′

or, equivalently,

¬(p ∧ (I [v : w] : q))

TAPS does not generate explicit unicity lemmas involving the spy-generated
atoms (Trash), because they are not needed for useful protocol properties. These
lemmas are, however, needed to prove the soundness of the nonce lemmas below.

11



example (continued): NSL generates the following unicity lemmas:

p0(A,B,Na) ⇒ A = fNa,A(Na) ∧B = fNa,B(Na)
p1(A,B,Na,Nb) ⇒ A = fNb,A(Nb) ∧B = fNb,B(Nb) ∧Na = fNb,Na(Nb)

p0(A,B,Na) ∧ p1(A′, B′,Na ′,Nb′) ⇒ Na 6= Nb′

For hand proofs, we have instead the lemma schemas

p0 ∧ (I [Na, . . .] : p0 ∧ f) ⇔ (I [A,B,Na, . . .] : p0 ∧ f)
p1 ∧ (I [Nb, . . .] : p1 ∧ f) ⇔ (I [A,B,Na,Nb, . . .] : p1 ∧ f)
¬(p0 ∧ (I [Na : Nb] : p1))

end of example

4.3 The Secrecy Invariant

We would like to prove an invariant inv given by a definition of the form

inv ⇔ (∀X : pub(X) ⇒ ok(X))

where ok is a stable, unary predicate14 Intuitively, ok is our way of describing
the constraints we put on the set of published messages; we will use a hypo-
thetical proof of the invariance of inv to generate a suitable definition of ok .
(Similarly, we will use the predicates prime and primeAt below before giving
their definitions.)

To show that inv is an invariant, we must show that it holds initially and
that it is stable. inv holds initially because pub is initially false. To show the
stability of inv , we need to show that it is preserved by every action of the
protocol. Because ok is stable, inv is preserved by actions that do not update
pub, so we need only consider actions of the form g −→ pub(M); to show that
such an action preserves inv , it suffices to prove the proof obligation

inv ∧ g ⇒ ok(M)

(again, because ok(M) is stable). Each of the proof obligations assumes inv ,
and their collective proofs implies the invariance of inv , so we simply assume
inv throughout, keeping in mind that anything we prove along the way is mean-
ingless unless all of the proof obligations are discharged.

Expanding out the proof obligations for all of the relevant program actions
gives us the following set of formulas to prove:

p ⇒ ok(Mp)(1)
ok(nil)(2)

14We describe ok , prime and primeAt as predicates to emphasize that their interpretations
can depend on the state.

12



pub(X) ∧ pub(Y ) ⇒ ok(cons(X, Y ))(3)
pub(X) ∧ pub(Y ) ⇒ ok(enc(X, Y ))(4)
pub(cons(X, Y )) ⇒ ok(X) ∧ ok(Y )(5)

pub(enc(X, Y )) ∧ dk(X) ⇒ ok(Y )(6)

We satisfy (2–5) as follows. Let prime be a stable unary predicate (defined
below), and define

ok(X) ⇔ (X = nil) ∨ prime(X)
∨(I [X : cons(Y, Z)] : pub(Y ) ∧ pub(Z))
∨(I [X : enc(Y, Z)] : pub(Y ) ∧ pub(Z))

(2)–(4) then follow immediately. Since

pub(cons(X, Y )) ∧ ¬prime(cons(X, Y )) ⇒ {inv }
ok(cons(X, Y )) ∧ ¬prime(cons(X, Y )) ⇒ {def ok}
pub(X) ∧ pub(Y ) ⇒ {inv }
ok(X) ∧ ok(Y )

the proof obligation (5) follows from

prime(cons(X, Y )) ⇒ ok(X) ∧ ok(Y )(7)

Similarly, the obligation (6) follows from

prime(enc(X, Y )) ∧ dk(X) ⇒ ok(Y )(8)

We are thus left with the obligations (1), (7), and (8).
The obligations (1) are each of the form f ⇒ ok(X). Although there is no

induction principle for messages, there is an induction principle for terms, so we
repeatedly replace these obligations with simpler ones based on the structure of
X:

• drop obligations of the form f ⇒ ok(nil);

• replace the obligation f ⇒ ok(cons(Y,Z)) with the obligations
f ⇒ prime(cons(Y,Z)), f ⇒ ok(Y) and f ⇒ ok(Z);

• replace the obligation f ⇒ ok(enc(Y,Z)) with the obligations
f ⇒ prime(enc(Y,Z)) and f ∧ dk(Y) ⇒ ok(Z).

The soundness of each of these rules follows from the definition of ok .

example (continued): To illustrate this procedure, consider the first transi-
tion of the NSL protocol. The corresponding obligation (1) is

p0 ⇒ ok(m0)

Since m0 is defined as enc(k(B), cons(A, cons(Na,nil))), this obligation is re-
placed with the obligations

p0 ∧ dk(k(B)) ⇒ ok(cons(A, cons(Na,nil)))
p0 ⇒ prime(m0)

13



The first of these obligations, in turn, is replaced with

p0 ∧ dk(k(B)) ⇒ prime(cons(A, cons(Na,nil)))
p0 ∧ dk(k(B)) ⇒ ok(A)
p0 ∧ dk(k(B)) ⇒ ok(cons(Na,nil))

end of example

This procedure leaves us with obligations of the forms

• fi ⇒ prime(cons(Yi,Zi));

• gj ⇒ prime(enc(Yj ,Zj)); and

• fk ⇒ ok(Zk), where Zk is not an application of nil ,cons, or enc.

We satisfy obligations of the first two types by defining

prime(X) ⇔ primeCons(X) ∨ primeEnc(X) ∨ primeAt(X)
primeCons(X) ⇔ (∨i : (I [X : cons(Yi,Zi)] : fi))
primeEnc(X) ⇔ (∨j : (I [X : enc(Yj ,Zj)] : gj))

where primeAt is a stable unary predicate such that primeAt(X) ⇒ atom(X).
Because we already introduced the obligations f ⇒ ok(Yi) and f ⇒ ok(Zi) for
each proof obligation of the form fi ⇒ prime(cons(Yi,Zi)), this definition of
prime satisfies (7). Because we already introduced the obligation f ∧ dk(Yi) ⇒
ok(Zi) for each proof obligation of the form fi ⇒ prime(enc(Yi,Zi)), this defi-
nition of prime satisfies (8).

The proof obligations of the third type are delegated to the resolution the-
orem prover. To discharge these, we need to generate a suitable definition of
primeAt . TAPS defines it as

primeAt(X) ⇔ (∨v, p : v ∈ nvp ∧ (I [X : v] : p ∧ Lv))

where Lv (the label of v) is a formula giving conditions under which an atom
generated as v might be published.

Because these conditions might be arbitrarily complex, TAPS allows the user
to specify Lv in the Labels section; if absent, TAPS chooses

Lv ≡ (∨k : (Zk ≡ v) ∧ fk)

where k ranges over the obligations of the third type and ≡ is syntactic iden-
tity. This choice of Lv is heuristic and fragile (it generates different invariants
for protocols that are equivalent modulo renaming of variables in a transition),
but it has proved very effective in practice. This heuristic leverages informa-
tion implicit in the choice of variable names used in a protocol: if one protocol
transition generates a fresh value, and another transition publishes a message
with a component using the same name, then by stripping off encryption sur-
rounding the published component, an adversary should only be able to get

14



information about the generated value. The best defense of this heuristic is
that it chooses correct nonce labels for all of the examples we have tried (i.e., it
allowed us to simply remove existing nonce labels without further modification
to the protocols).

example (continued): In NSL (figure 1), we explicitly gave labels for the two
nonce types:

LNa = LNb = dk(k(A)) ∨ dk(k(B))

Intuitively, this says that the nonces should only be published only if the private
key of one of the two participating principals has been compromised. This
annotation generates the definitions

primeEnc(X) ⇔ (I [X : m0] : p0) ∨ (I [X : m1] : p1) ∨ (I [X : m2] : p2)

primeAt(X) ⇔ (I [X : Na] : p0 ∧ (dk(k(A)) ∨ dk(k(B))))
∨ (I [X : Nb] : p1 ∧ (dk(k(A)) ∨ dk(k(B))))
∨ (I [X : Trash] : trash)

and the proof obligations:

p0 ∧ dk(k(B)) ⇒ ok(A)
p0 ∧ dk(k(B)) ⇒ ok(Na)
p1 ∧ dk(k(A)) ⇒ ok(B)
p1 ∧ dk(k(A)) ⇒ ok(Na)
p1 ∧ dk(k(A)) ⇒ ok(Nb)
p2 ∧ dk(k(B)) ⇒ ok(Nb)
oopsNa ⇒ ok(Na)
oopsNb ⇒ ok(Nb)

Had the labels not been given explicitly, TAPS would have defined

LNa ⇔ (p0 ∧ dk(k(B))) ∨ (p1 ∧ dk(k(A))) ∨ oopsNa)
LNb ⇔ (p1 ∧ dk(k(A))) ∨ (p2 ∧ dk(k(B))) ∨ oopsNb)

end of example

4.4 Consequences of the secrecy invariant

Instead of working with inv directly, TAPS uses the following corollaries:

ok(nil)
ok(cons(X, Y )) ⇒ ok(X) ∧ ok(Y )

pub(X) ∧ pub(Y ) ⇒ ok(cons(X, Y ))
ok(enc(X, Y )) ⇔ primeEnc(enc(X, Y )) ∨ (pub(X) ∧ pub(Y ))

p ⇒ (ok(v) ⇔ (I [Σp] : Lv)) for v ∈ nvp

15



The first four corollaries are jointly referred to as message lemmas, and corol-
laries of the last type are called nonce lemmas. To see that the nonce lemmas
are sound, for v ∈ nvp,

p ∧ ok(v) ⇔ {guard lemma for p }
p ∧ atom(v) ∧ ok(v) ⇔ {def of ok }
p ∧ primeAt(v) ⇔ {def of primeAt }
p ∧ (∨ w, q : w ∈ nvq ∧ (I [v : w] : q ∧ Lw)) ⇔ {logic }
(∨ w, q : w ∈ nvq ∧ p ∧ (I [v : w] : q ∧ Lw)) ⇔ {second unicity lemma}
p ∧ (I [v] : p ∧ Lv) ⇔ {first unicity lemma }
(I [Σp] : Lv)

example (continued): Using these corollaries, we rewrite pub(m0) as follows:

pub(m0) ⇒ {inv }
ok(m0) ⇒ {corollaries of ok}
primeEnc(m0) ∨ (pub(k(B)) ∧ ok(A) ∧ ok(Na)) ⇒ {def primeEnc }
(I [m0] : p0) ∨ (I [m0: m1] : p1) ∨ (I [m0: m2] : p2)
∨ (pub(k(B)) ∧ ok(A) ∧ ok(Na)) ⇒ {m0 6= m1′,m2′ }
(I [m0] : p0) ∨ (pub(k(B)) ∧ ok(A) ∧ ok(Na)) ⇒ {injectivities }
p0 ∨ (pub(k(B)) ∧ ok(A) ∧ ok(Na))

By similar reasoning,

pub(m1) ⇒ p1 ∨ (pub(k(A)) ∧ ok(B) ∧ ok(Na) ∧ ok(Nb))
pub(m2) ⇒ (I [B,Nb] : p2) ∨ (pub(k(B)) ∧ ok(Nb))

NSL also generates the nonce lemmas

p0 ⇒ (ok(Na) ⇔ (dk(k(A)) ∨ dk(k(B))))
p1 ⇒ (ok(Nb) ⇔ (dk(k(A)) ∨ dk(k(B))))

We can then discharge the proof obligations for NSL as follows:

p0 ∧ dk(k(B)) ⇒ {p0 ⇒ pub(A) (guard lemma for p0)}
pub(A) ⇒ {inv }
ok(A)

p0 ∧ dk(k(B)) ⇒ {nonce lemma for Na}
ok(Na)

p1 ∧ dk(k(A)) ⇒ {p1 ⇒ pub(B) (guard lemma for p1); inv}
ok(B)

p1 ∧ dk(k(A)) ⇒ {p1 ⇒ pub(m0) (guard lemma for p1)}
pub(m0) ∧ dk(k(A)) ⇒ {message lemma for m0 }
(p0 ∨ ok(Na)) ∧ dk(k(A)) ⇒ {logic }
(p0 ∧ dk(k(A))) ∨ ok(Na) ⇒ {nonce lemma for Na }
ok(Na)

16



p1 ∧ dk(k(A)) ⇒ {nonce lemma for Nb}
ok(Nb)

p2 ∧ dk(k(B)) ⇒ {p2 ⇒ pub(m1) (guard lemma for p2)}
pub(m1) ∧ dk(k(B)) ⇒ {message lemma for m1 }
(p1 ∨ ok(Nb)) ∧ dk(k(B)) ⇒ {logic }
(p1 ∧ dk(k(B))) ∨ ok(Nb) ⇒ {nonce lemma for Nb }
ok(Nb)

oopsNa ⇒ {guard lemma for oopsNa}
p0 ∧ dk(k(A)) ⇒ {nonce lemma for Na }
ok(Na)

oopsNb ⇒ {guard lemma for oopsNb}
p1 ∧ dk(k(B)) ⇒ {nonce lemma for Nb }
ok(Nb)

end of example

example (continued): The original Needham–Schroeder public key protocol
omitted B from the message m1; replacing B with nil15 gives the definition

m1 = enc(k(A), cons(nil , cons(Na, cons(Nb,nil))))

Thus, we would have only the weaker

pub(m1) ⇒ (I [A,Na,Nb] : p1) ∨ (pub(k(A)) ∧ ok(Na) ∧ ok(Nb))

As a result, it is no longer possible to prove the proof obligation

p2 ∧ dk(k(B)) ⇒ ok(Nb)

which says that the third protocol message does not release inappropriate infor-
mation (i.e., a message that is not ok) if the recipient is compromised. This is
just what happens in Lowe’s man-in-the-middle attack [14] — the last message
sent by an honest initiator of a session with a compromised responder can leak
to the spy the value of a nonce generated by an uncompromised responder, even
though neither the uncompromised responder nor the principal he believes to
be his initiator are compromised.
end of example

15To simplify the comparison, we avoid reducing m1 to a 2-tuple, which creates additional
complication because of the collision with m0.

17



4.5 Proving authentication properties

Finally, the guard, unicity, message, and nonce lemmas are used to prove any
desired authentication properties (given in the Goals section).

example (continued): Here are proofs of the authentication properties for
the NSL protocol. The first theorem says that, if A completes his final step,
then either A or B is compromised, or B has completed his first step, with the
same values for A,B,Na and Nb:

p2 ⇒ {guard lemma for p2 }
p0 ∧ pub(m1) ⇒ {message lemma for m1}
p0 ∧ (p1 ∨ ok(Na)) ⇒ {logic }
(p0 ∧ ok(Na)) ∨ p1 ⇒ {nonce lemma for Na }
dk(k(A)) ∨ dk(k(B)) ∨ p1

The second theorem says that, if B completes his final step, then either A
or B is compromised, or A has completed his final step, with the same values
for A,B,Na and Nb:

p3 ⇒ {guard of p3 }
p1 ∧ pub(m2) ⇒ {message m2 }
p1 ∧ ((I [B,Nb] : p2) ∨ ok(Nb)) ⇒ {guard of p2 }
p1 ∧ ((I [B,Nb] : p2 ∧ pub(m1)) ∨ ok(Nb)) ⇒ {message m1 }
p1 ∧ ((I [B,Nb] : p2 ∧ (p1 ∨ ok(Nb))) ∨ ok(Nb)) ⇒ {logic }
p1 ∧ ((I [B,Nb] : p2 ∧ p1) ∨ ok(Nb)) ⇒ {logic }
(p1 ∧ ok(Nb)) ∨ (p1 ∧ (I [B,Nb] : p2 ∧ p1)) ⇒ {unicity for Nb}
(p1 ∧ ok(Nb)) ∨ (I [B,Σp1] : p2)) ⇒ {nonce Nb }
dk(k(A)) ∨ dk(k(B)) ∨ (I [B,Σp1] : p2)) ⇒ {Σp2 ⊆ Σp1 }
dk(k(A)) ∨ dk(k(B)) ∨ p2

end of example

4.6 Output Annotations

There is an important case where the secrecy invariant generated by the proce-
dure above is too strong (and TAPS is unable to discharge the resulting proof
obligations). The problem arises when one protocol step publishes a nested
encryption, and another protocol step strips off the outer encryption and pub-
lishes the inner encryption without looking at its structure16. The best-known
protocols that do this kind of “blind stripping” are the Needham-Schroeder
Symmetric Key Protocol and various flavors of Kerberos.

16This issue does not arise if the inner encryption is re-packaged and re-encrypted with the
original key (e.g. as is done in the final message of the Needham-Schroeder Symmetric Key
protocol).

18



example: Consider the following (artificial) protocol, where m0 = enc(Na,nil):

Na : true
p0−→ enc(k,m0)

enc(k, Y )
p1−→ Y

TAPS generates the following definition of primeEnc:

primeEnc(X) ⇔ (I [X : enc(k, m0)] : p0) ∨ (I [X : m0] : p0 ∧ dk(k))

However, this invariant is too strong (it isn’t an invariant), and TAPS fails to
prove the proof obligation p1 ⇒ ok(Y ). To get a satisfactory invariant, the
second disjunct above has to be weakened to

(I [X : m0] : p0 ∧ (dk(k) ∨ (I [m0: Y ] : p1)))

end of example

To cater to such protocols, we allow the user to guide the construction of the
secrecy invariant by labeling subterms of outputs of protocol steps with positive
formulas. The label is written in square brackets; the formula associated with
this label is given in the Labels section. Intuitively, the formula gives condi-
tions that necessarily hold if the surrounding encryption is ever stripped away,
revealing a previously unpublished message. We add a new rule for breaking up
a proof obligation of the form f ⇒ ok(X):

• replace the obligation f ⇒ ok([S]X) with the obligations f ⇒ LS and
LS ⇒ ok(Y), where LS is the formula associated with the label S.

example (continued): To generate an appropriate secrecy invariant for the
protocol shown above, we decorate the first transition with the label S

Na : true
p0−→ enc(k, [S]m0)

enc(k, Y )
p1−→ Y

where LS = p0∧ (dk(k)∨ (I [m0: Y ] : p1)). The modified proof obligation rules
allow TAPS to generate the appropriate definition of prime.
end of example

For a more realistic example where explicit annotation is necessary, see the
Needham-Schroeder shared key protocol (figure 3 in the appendix), which uses
explicit annotation on the subterm m0 published in step p1. In practically all
cases, the hints are of precisely the form illustrated in the example above. The
generation of these hints could be further automated by introducing notation
that makes explicit the correspondence between the variable bindings in actions
that send and receive messages. (For example, both the Casper [15] and CAPSL
[19] languages provide such notations.)

19



4.7 Transition Labels and Recursive Protocols

Recall that we required the guard of a transition to be positive, in order to
guarantee that the guard is stable. TAPS actually allows arbitrary formulas as
guards, and allows the user to provide a positive formula L(p) to use in place
of gp the guard lemma. (The user provides this formula in the Labels section).
The guard lemma then becomes

p ⇒ (I [Σp] : L(p)) ∧ (∀v ∈ nvp : atom(v)))

and TAPS has to prove the additional proof obligation

gp ∧ fresh(nvp) ⇒ (I [Σp] : L(p))

We originally intended these labels to be used in protocols like Woo-Lam,
where a principal has to check that incoming nonce challenges do not collide with
nonce challenges previously sent out; such a test introduces a negation in the
guard. However, it is just as easy (if slightly less honest) to simply rule out such
collisions using an axiom. In practice, the critical application of transition labels
is in verifying recursive protocols. The procedure is similar to Floyd’s method
for sequential program verification: we choose a set of “cut” transitions, such
that every transition loop is in the cut, and for each cut transition, we add the
necessary inductive hypotheses as an explicit label.

example: Consider the protocol consisting of the single transition

p
p−→ nil

Defining L(p) = false in the Labels section introduces a new assumption p ⇒
false and a new proof obligation p ⇒ false, which is trivially discharged from
the assumption. The conclusion is that ¬p holds in all states.
end of example

This approach to recursive protocols is somewhat weaker than what one
would wish; there are no recursive functions, and the labels have to be positive.
Thus, we can model chains of various sorts, but we have no good way to state
conditions such as “X’s value is good or one of X’s ancestors is compromised”.
In order to cope with such assertions, we are considering extending the input
language to allow users to axiomatize new state predicates.

5 Experimental Results

We used TAPS to analyze all but three of the authentication protocols in the
Clark & Jacob survey [8] (we did not analyze Diffie-Hellman key exchange
(which depends explicitly on exponentiation), Shamir-Rivest-Adelman Three-
pass (which uses commutative encryption), or the Gong mutual authentication
(which uses XOR)). Such a statement has to be taken with a grain of salt, since
the meaning of “verification” depends on how protocols are modeled and what

20



properties are being verified. (For example, TAPS has no built-in notion of
“injective authentication”, and Casper tests mostly make strong type assump-
tions, so our results and those obtained using Casper [9] are not completely
comparable.) We formalized each of these protocols and tried to prove what
we expected the protocols could reasonably achieve. For protocols with known
bugs (or bugs that we discovered accidentally), we weakened the specification
appropriately and/or fixed the protocol (typically by adding type information to
prevent obvious message confusion attacks). Output annotations were needed
only for Kerberos, the Needham-Schroeder Symmetric Key protocol, and the
Amended Needham-Schroeder Symmetric Key protocol. In addition, a transi-
tion label was needed for each of the Woo-Lam protocols (since, in the absence
of additional type checks, they have recursive executions). Verification time
averaged about half a second per protocol; the longest verification times were
for the ISO four-pass protocol and for Kerberos, each of which required about
two and a half seconds.

For each protocol, we were either able to prove the desired properties or find
anomalous behaviors that prevented verification. The results were generally in
agreement with those reported in [9], but we did not detailed comparison17.
The only definite discrepancy we noticed (i.e., an attack on a protocol that was
certified by Casper/FDR, Clark/Jacob, and Brackin) is a self-authentication
attack on the ISO Four-Pass protocol, which Casper/FDR could have caught
but for a mistake in the checking configuration.

We also used TAPS to verify the examples included in the Isabelle distri-
bution. For each protocol, we tried to reproduce faithfully the Isabelle formal-
izations and tried to prove those safety properties that seemed to be of interest
(as opposed to those that seemed of interest only as a step toward proving
other results). The major changes were that (1) we eliminated timestamps
from BAN Kerberos and Kerberos (but see section 6.1), (2) we rewrote the
Bull-Otway recursive protocol to eliminate the recursive server function, and
(3) we eliminated the explicit types and typechecking in those protocols where
it seemed unnecessary (basically, wherever it was not needed to disambiguate
protocol messages). (The Isabelle proofs would probably also go through with-
out these type assumptions.) For protocols admitting reasonable comparison
and for which Paulson provided estimated development times (Yahalom, TLS,
Needham-Schroeder public key), the TAPS developments required about an or-
der of magnitude less user time to formalize and verify. (Of course this compar-
ison is somewhat unfair, since we had his protocol models to use as guidance.)

6 Detours

In this section, we describe some features that are not currently part of TAPS.
17A fair comparison is difficult, for many reasons. For examples, by default, TAPS allows

the intruder to copy protocol sessions, but does not require authentication to be injective.

21



6.1 Timestamps

A previous version of TAPS provided built-in support for timestamps, primar-
ily to reproduce the Isabelle analyses of BAN Kerberos [1] and Kerberos [2].
Typically, one wants to show that with appropriate use of timeouts, the authen-
tication properties of the protocol are robust to the addition of “oops” actions
that expose nonces or keys to the spy sufficiently long after their generation.

TAPS used Trash atoms as timestamps; this guaranteed that they were
published and did not collide with atoms generated by other transitions. To
reason about timestamp ordering, we introduced a linear ordering < and a
binary associative, commutative operation + all values, along with the axioms

x < x + y

x < y ⇔ x + z < y + z

(Intuitively, think of each element of the model being mapped to a positive
nonstandard real.)

Timestamps were introduced along with transitions, just like nonces. The
introduction of a timestamp t for a transition p introduced the following addi-
tional proof rules:

• All timestamps are published:

p ⇒ pub(t)

• Timestamps uniquely determine the other values in the signature of their
transitions:

p ∧ p′ ∧ t = t′ ⇒ Σp = Σp
′

For w a nonce or timestamp of q, distinct from t and Trash,

¬(p ∧ q′ ∧ t = w′)

• A timestamp is said to be timely if it is greater than all other issued
timestamps. (Note that timeliness is not stable.) If the transition in which
a timestamp is declared is given an explicit label, then the timeliness of the
timestamp is added as a conjunct to the guard. Note that the ordering on
timestamps is based on the order in which they are used as timestamps,
not the order in which they are generated, so the spy can freely forge
future or past timestamps.

Using this timestamp mechanism, we were able to reproduce the main Is-
abelle results on BAN Kerberos and Kerberos. We were also able to add times-
tamp reasoning to protocols from the Clark and Jacob Survey without much
difficulty. However, making use of timestamps required introducing new tran-
sition labels on every transition where timestamp freshness is important. This

22



was not surprising; like nonce freshness, timestamp freshness is not stable, but
unlike nonce freshness, the content of timestamp freshness cannot be eliminated
by introducing simple axioms. However, these hints could have been eliminated
by using temporal guard lemmas (see below).

The main reasoning for removing timestamp support from TAPS was that
timestamp reasoning slowed theorem proving down substantially (typically a
factor of about 3-10; in the extreme case of Kerberos, a factor of 20). The
degradation is not entirely surprising; it is well known that transitive relations
like < can wreak havoc with theorem provers not specially designed to handle
them. The problem could be fixed by changing theorem proving strategies, but
this is probably not worth the effort.

6.2 General Invariants

Currently, TAPS checks stability of a formula by checking that it is positive.
This has not seriously hindered the usefulness of TAPS for cryptographic proto-
cols, because the only nonpositive formulas needed in practice are for protocols
with branching behavior; we handle these by simply postulating the necessary
exclusion as an axiom. (Axioms like this, which mention only the control state
of a principal, are not very risky, and letting TAPS deduce their invariance
would not significantly enhance its usefulness.) However, we plan to extend
TAPS to allow arbitrary formulas in place of positive ones, checking their sta-
bility using standard weakest preconditions. This will make TAPS applicable to
a wider variety of systems (e.g., systems where cryptography is used to enforce
a dynamically changing security policy).

6.3 Temporal Guard Lemmas

The guard lemmas that TAPS generates are not as strong as they might be.
If a history predicate is true, TAPS concludes that the guard holds, whereas
it could reach the stronger conclusion that the guard held at an earlier time
when the history predicate was false. This stronger rule would eliminate most
of the user-supplied hints needed for recursive protocols and for protocols that
use timestamps. For example, applying this to the protocol

p
p−→ nil

TAPS could conclude ¬p without needing a user-supplied transition label. This
type of deduction is exploited by several systems, including Athena, Isabelle,
and NPA18

However, this approach has a drawback: it takes us from first-order reasoning
to a form of first-order temporal reasoning, which might have a serious impact
in performance. (The reasoning is easier than general temporal reasoning, since
all the predicates are stable, but it still involves reasoning in multiple contexts.)

18In Athena and NPA, this is built into the search strategy: when searching for how one
of a set of terms can be produced, a path is ignored if it requires previous production of a
member of the set.

23



7 Acknowledgments

Anish Arora, Steve Brackin, Jay Misra, Larry Paulson, J. R. Rao, Paul Syverson,
and several anonymous referees provided valuable feedback on earlier versions of
this paper. Dawn Song, James Heather, and Cathy Meadows provided helpful
information on Athena, RankAnalyser, and the NPA respectively. The author
is grateful to Gavin Lowe for providing access to the verification scripts from
the Casper/FDR analysis of the Clark & Jacob survey.

References

[1] G. Bella and L. Paulson. Mechanising BAN Kerberos by the inductive
method. In CAV 10, pages 416–427, 1998.

[2] G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the
secrecy goals. In ESORICS 5, pages 361–375, 1998.

[3] M. Bellaire and P. Rogaway. Entity authentication and key distribution
(extended abstract). In CRYPTO 13, 1993.

[4] M. Bellare and P. Rogaway. Provably secure session key distribution: the
three party case. In STOC 27, pages 57–66, 1995.

[5] B. Blanchet. An efficient cryptographic prolotocol verifier based on prolog
rules. In CSFW 14, 2001.

[6] M. Boreale. Symbolic analysis of cryptographic protocols in the spi-
calculus. In ICALP ’01, 2001.

[7] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In
Practical Cryptography for Data Internetworks. IEEE Computer Society
Press, 1996.

[8] J. Clark and J. Jacob. A survey of authentication protocol literature:
Version 1.0, 1997.

[9] B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security proto-
cols using Casper and FDR. In Workshop on Formal Methods and Security
Protocols, 1999.

[10] F. Fabrega, J. Herzog, and J. Guttman. Honest ideals in strand spaces. In
CSFW 11, 1998.

[11] L. Gong, R. Needham, and R. Yahalom. Reasoning About Belief in Cryp-
tographic Protocols. In Proceedings 1990 IEEE Symposium on Research in
Security and Privacy, pages 234–248, 1990.

[12] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks
on security protocols. In CSFW 13, pages 255–268, 2000.

24



[13] J. Heather and S. Schneider. Towards automatic verification of authenti-
cation protocols on an unbounded network. In CSFW 13, pages 132–143,
2000.

[14] G. Lowe. Breaking and fixing the needham-schroeder public-key protocol
using FDR. In Tools and Algorithms for Construction and Analysis of
Systems, pages 147–166, 1996.

[15] G. Lowe. Casper: A compiler for the analysis of security protocols. In
CSFW 10, 1997.

[16] W. McCune. OTTER 3.0 reference manual and guide. Technical report,
Argonne National Laboratory, 1994.

[17] C. Meadows. Language generation and verification in the NRL protocol
analyzer. In CSFW 9, pages 48–61, 1996.

[18] C. Meadows. Invariant generation techniques in cryptographic protocol
analysis. In CSFW 13, 2000.

[19] J. K. Millen. CAPSL: Common authentication protocol specification lan-
guage. In Proceedings on the Workshop on New Security Paradigms, pages
132–133, 1997.

[20] J. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL 3.0. In
Proceedings of the Seventh USENIX Security Symposium, pages 201–215,
1998.

[21] L. Paulson. The inductive approach to verifying cryptographic protocols.
JCS, 6:85–128, 1998.

[22] S. Schneider. Verifying authentication protocols with CSP. In CSFW 10,
1997.

[23] D. Song. Athena: A new efficient automatic checker for security protocol
analysis. In CSFW 12, 1999.

[24] T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204,
April 1997.

[25] C. Weidenbach. Towards an automatic analysis of security protocols in
first-order logic. In CADE 16, 1999.

[26] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen,
C. Theobalt, and D. Topić. System description: SPASS version 1.0.0. In
CADE 15, pages 378–382, 1999.

25



Protocol Yahalom
/* .5 seconds */

Definitions {
m0 = {A,Na}
m1 = {A,Na,Nb}_k(B)
m2 = {B,Kab,Na,Nb}_k(A)
m3 = {A,Kab}_k(B)
m4 = {Nb}_Kab

}

Transitions {
/* A->B */ Na : pub(A) /\ pub(B) -p0-> m0
/* B->S */ Nb : pub(B) /\ pub(m0) -p1-> m1
/* S->A */ Kab: sk(Kab) /\ pub(m1)

/\ pub(A) /\ pub(B) -p2-> {m2,m3}
/* A->B */ p0 /\ pub({m2,X}) -p3-> {X,m4}
/* B */ p1 /\ pub({m3,m4}) -p4-> {}
/* S-> */ p2 -oops-> {Na,Nb,Kab}
}

Axioms {
sk(X) /\ dk(X) => pub(X)
sk(k(X))
k injective

}

Goals {
p3 => pub(k(A)) \/ pub(k(B)) \/ (p1 /\ p2)
p4 => pub(k(A)) \/ pub(k(B)) \/ (I [A,B,Kab]: p3)

\/ (I [A,B,Na,Nb]: oops)
}

Figure 2: TAPS input for the Yahalom protocol

26



Protocol NeedhamSchroederConventional
/* .6 seconds */

Definitions {
m0 = {A,B,Na}
m3 = {Kab,A,{}}_k(B)
m1 = {Na,B,Kab,[G] m3}_k(A)
m2 = {Na,B,Kab,X}_k(A)
m4 = {Nb}_Kab
m5 = {Nb,Nb}_Kab

}
Transitions {

/* A->S */ Na : pub(A) /\ pub(B) -p0-> m0
/* S->A */ Kab: pub(m0) /\ sk(Kab) -p1-> m1
/* A->B */ p0 /\ pub(m2) -p2-> X
/* B->A */ Nb : pub(m3) -p3-> m4
/* A->B */ p2 /\ pub(m4) -p4-> m5
/* B */ p3 /\ pub(m5) -p5-> {}

p1 /\ p3 -oops-> {Na,Nb,Kab}
}

Axioms {
sk(k(X))
sk(X) /\ dk(X) => X
k injective

}

Labels {
G : p1 /\ (dk(k(A)) \/ (I [m1:m2]:p2))

}

Goals {
p2 => (I [A,B,Kab,Na,X]: p1) \/ ok(Kab)
p3 => (I [A,B,Kab]: p2) \/ pub(k(B)) \/ pub(k(A))
p4 => p3 \/ pub(k(A)) \/ pub(k(B)) \/ (I [A,B,Kab]: oops)
p5 => (I [A,B,Nb,Kab]: p4) \/ pub(k(A)) \/ pub(k(B))

\/ (I [A,B,Kab]: oops)
}

Figure 3: TAPS input for the Needham-Schroeder Shared Key Protocol

27


