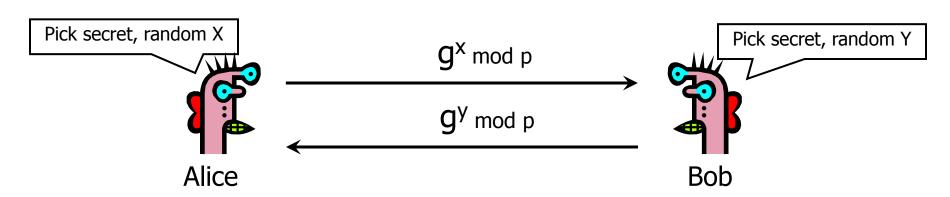
Ox1A Great Papers in Computer Security

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/

W. Diffie and M. Hellman


New Directions in Cryptography

(ToIT 1976)

Diffie-Hellman Key Establishment

- Alice and Bob never met and share no secrets
- ◆Public information: p and g, where p is a large prime number, g is a generator of Z*_p
 - $Z_p^*=\{1, 2 \dots p-1\}; \forall a \in Z_p^* \exists i \text{ such that } a=g^i \text{ mod } p$

Compute
$$k=(g^y)^x=g^{xy} \mod p$$

Compute
$$k=(g^x)^y=g^{xy} \mod p$$

Why Is Diffie-Hellman Secure?

- ◆ Discrete Logarithm (DL) problem: given g^x mod p, it's hard to extract x
 - There is no known <u>efficient</u> algorithm for doing this
 - This is not enough for Diffie-Hellman to be secure!
- ◆ Computational Diffie-Hellman (CDH) problem: given g^x and g^y, it's hard to compute g^{xy} mod p
 - ... unless you know x or y, in which case it's easy
- ◆ Decisional Diffie-Hellman (DDH) problem: given g^x and g^y, it's hard to tell the difference between g^{xy} mod p and g^r mod p where r is random

Security of Diffie-Hellman Protocol

- Assuming the DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Eavesdropper can't tell the difference between the established key and a random value
 - Can use the established key for symmetric cryptography
 - Approx. 1000 times faster than modular exponentiation
- ◆Basic Diffie-Hellman protocol is not secure against an active, man-in-the-middle attacker

Public-Key Encryption

- ★Key generation: computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key SK given only public key PK
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- ◆ Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - <u>Trapdoor</u> function: Decrypt(SK,Encrypt(PK,M))=M

ElGamal Encryption

Key generation

- Pick a large prime p, generator g of Z*_p
- Private key: random x such that $1 \le x \le p-2$
- Public key: (p, g, y = g^x mod p)

Encryption

- Pick random k, $1 \le k \le p-2$
- $E(m) = (g^k \mod p, m \cdot y^k \mod p) = (\gamma, \delta)$

Decryption

- Given ciphertext (γ, δ) , compute γ^{-x} mod p
- Recover $m = \delta \cdot (\gamma^{-x}) \mod p$

When Is Encryption "Secure"?

- Hard to recover the key?
 - What if attacker can learn plaintext without learning the key?
- Hard to recover plaintext from ciphertext?
 - What if attacker learns some bits or some property of the plaintext?
- (Informal) goal: ciphertext should hide all "useful" information about the plaintext
 - ... except its length

Attack Models

Assume that the attacker knows the encryption algorithm and wants to decrypt some ciphertext

- Ciphertext-only attack
- Known-plaintext attack (stronger)
 - Knows some plaintext-ciphertext pairs
- Chosen-plaintext attack (even stronger)
 - Can obtain ciphertext for any plaintext of his choice
- Chosen-ciphertext attack (very strong)
 - Can decrypt any ciphertext <u>except</u> the target

The Chosen-Plaintext (CPA) Game

Idea: attacker should not be able to learn any property of the encrypted plaintext

- Attacker chooses as many plaintexts as he wants and learns the corresponding ciphertexts
- ◆When ready, he picks two plaintexts M₀ and M₁
 - He is even allowed to pick plaintexts for which he previously learned ciphertexts!
- ◆He receives either a ciphertext of M₀, or a ciphertext of M₁
- He wins if he guesses correctly which one it is

CPA Game: Formalization

- ◆ Define Enc(M_0 , M_1 , b) to be a function that returns encrypted M_b or 1
 - Think of Enc as a magic box that computes ciphertexts on attacker's demand... he can obtain a ciphertext of any plaintext M by submitting $M_0=M_1=M$, or he can submit $M_0\neq M_1$
- Attacker's goal is to learn just one bit b

Chosen-Plaintext Security

Consider two experiments (A is the attacker)

Experiment 0

A interacts with Enc(-,-,0) and outputs bit d

Experiment 1

A interacts with Enc(-,-,1) and outputs bit d

- Identical except for the value of the secret bit
- d is attacker's guess of the secret bit
- Attacker's advantage is defined as

If A "knows" secret bit, he should be able to make his output depend on it

- | Prob(A outputs 1 in Exp0) Prob(A outputs 1 in Exp1)) |
- Encryption scheme is chosen-plaintext secure if this advantage is negligible for any efficient A

Simple Example

- Any deterministic, stateless encryption scheme is insecure against chosen-plaintext attack
 - Attacker can easily distinguish encryptions of different plaintexts from encryptions of identical plaintexts

```
Attacker A interacts with Enc(-,-,b)

Let X,Y be any two different plaintexts
C_1 \leftarrow \text{Enc}(X,Y,b);
C_2 \leftarrow \text{Enc}(Y,Y,b);
If C_1 = C_2 then output 1 else output 0
```

The advantage of this attacker A is 1

```
Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1
```

Semantic Security

[Goldwasser and Micali 1982]

Ciphertext hides even partial information about the plaintext

- No matter what prior knowledge attacker has about the plaintext, it does not increase after observing ciphertext
- Equivalent to ciphertext indistinguishability under the chosen-plaintext attack
 - It is infeasible to find two messages whose encryptions can be distinguished

Semantic Security of ElGamal

Semantic security of ElGamal encryption is equivalent to DDH

- Given an oracle for breaking DDH, show that we can find two messages whose ElGamal ciphertexts can be distinguished
- Given an oracle for distinguishing ElGamal ciphertexts, show that we can break DDH
 - Break DDH = given a triplet <g^a, g^b, Z>, we can decide whether Z=g^{ab} mod p or Z is random

$DDH \Rightarrow ElGamal$

- ◆Pick any two messages m₀, m₁
- ightharpoonup Receive E(m) = g^k , m·y^k
 - y = g^x is the ElGamal public key
 - To break ElGamal, must determine if m=m₀ or m=m₁
- Run the DDH oracle on this triplet:

$$< g^{k}, y \cdot g^{v}, (m \cdot y^{k}) \cdot g^{kv}/m_{0} > = < g^{k}, g^{x+v}, m \cdot g^{(x+v)k}/m_{0} >$$

- v is random
- ◆If this is a DH triplet, then $m=m_0$, else $m=m_1$
- ◆This breaks semantic security of ElGamal (why?)

(1) ElGamal \Rightarrow DDH

- Suppose some algorithm A breaks ElGamal
 - Given any public key, A produces plaintexts m₀ and m₁ whose encryptions it can distinguish with advantage Adv

We will use A to break DDH

- Decide, given (g^a, g^b, Z), whether Z=g^{ab} mod p or not
- ◆Give y=g^a mod p to A as the public key
- ◆A produces m₀ and m₁
- ◆Toss a coin for bit x and give A the ciphertext (g^b, m_x·Z) mod p
 - This is a valid ElGamal encryption of m_x iff Z=g^{ab} mod p

(2) ElGamal \Rightarrow DDH

- ◆A receives (g^b, m_x·Z) mod p
 - This is a valid ElGamal encryption of m_x iff Z=g^{ab} mod p
- A outputs his guess of bit x (why?)
- ◆If A guessed x correctly, we say that Z=g^{ab} mod p, otherwise we say that Z is random
- What is our advantage in breaking DDH?
 - If Z=g^{ab} mod p, we are correct with probability Adv(A)
 - If Z is random, we are correct with probability ½
 - Our advantage in breaking DDH is Adv(A)/2

Beyond Semantic Security

- Chosen-ciphertext security
 - "Lunch-time" attack [Naor and Yung 1990]
 - Adaptive chosen-ciphertext security [Rackoff and Simon 1991]
- ◆ Non-malleability [Dolev, Dwork, Naor 1991]
 - Infeasible to create a "related" ciphertext
 - Implies that an encrypted message cannot be modified without decrypting it
 - Equivalent to adaptive chosen-ciphertext security