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Information Channels 

End-to-end security requires controlling  
information channels 

Legitimate channels: declared outputs 

Storage channels: transmit explicitly 

• Assign to variables, write to files, sockets 

Covert channels: transmit by mechanisms not 
intended for transmitting information 

• System load, locks, power consumption, etc. etc. 

• Timing channels: transmit information by when 
something happens (rather than what) 



 

Confinement Properties 

Confinement is established through isolation 

• Restrict a process’ access 

• Enforce the principle of least privilege (means what?) 

Total isolation: a process that cannot 
communicate with any other process and cannot 
be observed cannot leak information 

• In practice, any process uses observable resources 
such as CPU, secondary storage, networks, etc. 

Confinement must be transitive 

• If a confined process invokes a second process, the 
second process must be as confined as the caller 

slide 4 



 

Simulating a Shared Variable 

Procedure settrue (file)  

 1: try opening file - if already open, then goto 1; 

Procedure setfalse (file) 

   close file; 

Procedure value (file) 

   value = true; 

   try opening file - if already open, then goto 2; 

   value = false; 

   close file; 

 2: return value; 
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Covert Channel via File Open/Close 

Three files: data, sendlock, receivelock 

sender: settrue(data) or setfalse(data)  -- sends 1 bit  

   settrue(sendlock) 

receiver: wait for value(sendlock)=true 

   value(data)  received bit 

   settrue(receivelock) 

sender: wait for value(receivelock)=true 

   setfalse(sendlock) 

receiver: wait for value(sendlock)=false 

   setfalse(receivelock) 

sender: wait for value(receivelock)=false 
slide 6 



 

Lipner’s Notes on Time 

All processes can obtain rough idea of time 

• Read system clock or wall clock time 

• Determine number of instructions executed 

All processes can manipulate time 

• Wait some interval of wall clock time 

• Execute a set number of instructions, then block 

 

We’ll see some timing attacks later in the course 
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Example of a Timing Channel 

System has two VMs: sender S and receiver R 

To send 0, S immediately yields CPU 

• For example, run a process that instantly blocks 

To send 1, S uses full quantum 

• For example, run a CPU-intensive process 

To receive, R measures how quickly it gets CPU 

• Uses real-time clock to measure intervals between 
accesses to a shared resource (CPU in this case) 
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Covert Channels Without Time 

Two VMs share disk cylinders 100 to 200,  

   SCAN algorithm schedules disk accesses 

Receiver: read data on cylinder 150 

• Yields CPU when done, disk arm now at 150 

Sender: to send “1”, read data on cylinder 140; 
to send “0”, read data on cylinder 160 

• Yields CPU when done, disk arm now at 140 or 160 

Receiver: read data on cylinders 139 and 161 

• SCAN: if arm is at 140, then reads 139 first; if arm is 
at 160, reads 161 first  -  this leaks 1 bit (why?)  
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140 variables both visible and alterable 
• 90 out of those shared 

• 25 can be used as covert channels 

Resource exhaustion channels 
• Example: signal by exhausting free inodes 

Event-count channels 
• Example: number of files created 

Unexploitable channels 
• Example: cause system crash 

Analysis of Secure Xenix 
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Covert vs. Side Channels 

Covert channel: an unanticipated path of 
communication exploited by an attacker to 
convey confidential information 

• Insider exfiltration, steganography … 

Side channel: an unanticipated information leak 
that an attacker uses to obtain confidential 
information 

• Pizza orders at the Pentagon, Tempest, power 
analysis of smart cards, acoustic emanations, 
compromising reflections … 
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Memory protection 

Sandboxes 

• Java virtual machine 

• Inline reference monitors 

• System-call interposition 

Virtual machine monitors 

Modern Confinement Mechanisms 
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Access Control Model 

Principal makes a request to access a resource 
(object) 

• Example: process tries to write into a file 

Reference monitor permits or denies request 

• Example: file permissions in Unix 
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Rights and Actions 

Access control matrix  

• For each subject and object, lists subject’s rights 

Subjects, objects, rights can be created… 

• Example: new users, new files 

• Creation of rights is sometimes called “delegation” 

– Example: grant right R to subject S with respect to object O 

…or deleted 

Access control is undecidable (in general) 

• In general, can’t determine if a given subject can get 
a particular right with respect to a given object 

– Harrison, Ruzzo, Ullman (1976) 
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ACL: Access Control Lists 

For each object, store a list of  
   (Subject x Rights) pairs 

• Resolving queries is linear in the size of the list 

Easy to answer “who can access this object?” 

Easy to revoke rights to a single object 

Lists can get long 

Authentication at every access can be expensive 
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Capability Lists 

For each subject, store a list of  
   (Object x Rights) pairs – called capabilities 

• Capabilities should be unforgeable (why?) 

Authentication takes place when capability is 
granted - don’t need to check at every access 

Revocation is harder (why?) 
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Implementing Capabilities 

Unique identifiers that map to objects 

• Extra level of indirection to access an object 

• Integrity of the map must be protected 

Capabilities must be unforgeable 

• Special hardware: tagged words in memory 

– Can’t be copied or modified 

• Store capabilities in protected address space 

• Use static scoping in programming languages 

– “Private” fields in Java 

• Cryptography 

– Shared keys; OS could digitally sign capabilities 
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OS: Coarse-Grained Access Control 

Enforce security properties at the system call 
layer (what are the issues?) 

Enforcement decisions are made at the level of 
“large” objects 

• Files, sockets, processes … 

Coarse notion of subject / “principal” 

• UID 
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DAC vs. MAC 

Discretionary access control (DAC) 

• Individual user may, at his own discretion, determine 
who is authorized to access the objects he creates 

– Example: Unix files 

Mandatory access control (MAC) 

• Creator of an object does not necessarily have the 
ability to determine who has authorized access to it 

• Policy typically governed by a central authority 

– Recent research on decentralized information flow control 

• Policy on an object depends on what object or 
information was used to create it 
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Multi-Level Security (Military) 

Classification of personnel and data 

• Class D = 〈rank, compartment〉 

Dominance relation 

• D1 ≤ D2 iff rank1 ≤ rank2 and compart1 ⊆ compart2 

– Example: 〈Restricted, Iraq〉 ≤ 〈Secret, CENTCOM〉 

Subjects: users or processes 

• Class(S) = clearance of S 

Objects: documents or resources 

• Class(O) = classification of O 



 

U,{ } 

S,{SIOP} S,{NATO} 
T,{ } 

T,{NATO,SIOP} 

T,{SIOP} T,{NATO} 
S,{NATO,SIOP} 

 

 

 

S, { } 

Example of a Label Lattice 
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Bell-LaPadula Model 

“No read up, no write down” 

Principals are assigned clearance levels drawn 
from a lattice of security labels 

A principal may read objects with lower or equal 
security label: C(O) ≤ C(S) 

A principal may write objects with higher or 
equal security label: C(S) ≤ C(O) 

• Example: a user with Secret clearance can read 
objects with Public and Secret labels, but can only 
write objects with Secret label (why?) 

• “Tainted” may not flow into “untainted” 
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SELinux 

Security-enhanced Linux system from NSA 

MAC built into the OS kernel 

• Each process has an associated domain 

• Each object has an associated type (label) 

• Configuration files specify how domains may access 
types, interact, transition between domains 

Role-based access control 

• Each process has an associated role 

– Separate system and user processes 

• Configuration files specify the set of domains that may 
be entered by each role 
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Other MAC Policies 

“Chinese Wall”  [Brewer & Nash 1989] 

• Object labels are classified into “conflict classes” 

• If subject accesses an object with a particular label 
from a conflict class, all accesses to objects labeled 
with other labels from the conflict class are denied 

• Policy changes dynamically 

“Separation of Duties” 

• Division of responsibilities among subjects 

– Example: Bank auditor cannot issue checks 



D. Denning and P. Denning 
 

Certification of Programs for  

Secure Information Flow 
 

(CACM 1976) 
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Beyond Access Control 

Finer-grained data confidentiality policies 

• At the level of principals rather than hosts or processes 

Security enforcement decisions at the level of 
application abstractions 

• User interface: access control at window level 

• Mobile code: no network send after file read 

• E-commerce: no goods until payment 

• Make security policies part of the programming 
language itself 

End-to-end security: control propagation of 
sensitive data after it has been accessed 



 

Information Flow Within Programs 

Access control for program variables 

• Finer-grained than processes 

Use program analysis to prove that the program 
has no undesirable flows 
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Confidentiality 

Confidentiality via basic access control … 

• “Only authorized processes can read a file” 

– When should a process be “authorized”? 

• Encryption provides end-to-end confidentiality, but 
it’s difficult to compute on encrypted data 

… vs. end-to-end confidentiality 

• Information should not be improperly released by a 
computation no matter how it is used 
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Integrity 

Integrity via basic access control … 

• “Only authorized processes can write a file” 

– When should a process be “authorized”? 

• Digital signatures provide end-to-end integrity, but 
cannot change signed data 

… vs. end-to-end integrity 

• Information should not be updated on the basis of 
less trustworthy information 



 

Explicit and Implicit Flows 

Goal: prevent information flow from “high” 
variables to “low” variables (why?) 

Flow can be explicit … 

h := <secret> 

x := h 

l := x 

… or implicit 

boolean h := <secret> 

if (h) { l := true}  else { l := false } 
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Compile-Time Certification 

Declare classification of information allowed to 
be stored in each variable 

• x: integer class { A,B } 

Classification of function parameter = 
classification of argument 

Classification of function result =  
   union of parameter classes 

• … unless function has been verified as stricter 

Certification becomes type checking! 
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Assignments and Compound Stmts 

Assignment: left-hand side must be able to 
receive all classes in right-hand side 

x = w+y+z requires  lub{w,y,z} ≤ x 

Compound statement 

begin 

 x = y+z; 

 a = b+c –x 

end 

   requires  lub{y,z} ≤ x and lub{b,c,x} ≤ a 
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Conditional:  

 classification of “then/else” must contain 
classification of “if” part (why?) 

Functions: 

int sum (int x class{A}) { 

     int out class{A,B} ; 

     out = out + x; 

} 

   requires  A ≤ B and B ≤ B  

Conditionals and Functions 
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Iterative Statements 

In iterative statements, information can flow 
from the absence of execution 

while f(x1, x2, …, xn) do S 

• Information flows from variables in the conditional 
statement to variables assigned in S (why?) 

For an iterative statement to be secure … 

• Statement terminates 

• Body S is secure 

• lub{x1, x2, …, xn} ≤  

   glb{target of an assignment in S} 
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Non-Interference 

Observable behavior of the program should not 
depend on confidential data 

• Example: private local data should not “interfere” 
with network communications 

 

Network 
 

  

  

Disk 

Accounting 
software 

 

[Goguen and Meseguer] 
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Declassification 

Non-interference can be too strong 

• Programs release confidential information as part of 
normal operation 

• "Alice will release her data after you pay her $10" 

Idea: allow the program to release confidential 
data, but only through a certain computation 

Example: logging in using a secure password 

if (password == input) login(); else fail(); 

• Information about password must be released … 

   … but only through the result of comparison 



A. Myers and B. Liskov 
 

A Decentralized Model for 

Information Flow Control 
 

(SOSP 1997) 
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Web Tax Example 
[Myers] 
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Principals 

Principals are users, groups of users, etc. 

Used to express fine-grained policies controlling 
use of data 

• Individual users and groups 

• Close to the semantics of data usage policies 

Principal hierarchy generated by the acts-for 
relation 
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Data Labels 

Label each piece of data to indicate permitted 
information flows (to and from) 

• Label specifies a set of policies 

Confidentiality constraints: who may read it? 

• {Alice: Bob, Eve} label means that Alice owns this 
data, and Bob and Eve are permitted to read it 

• {Alice: Charles; Bob: Charles} label means that Alice 
and Bob own this data, but only Charles can read it 

Integrity constraints: who may write it? 

• {Alice ? Bob} label means that Alice owns this data, 
and Bob is permitted to change it 

[Myers and Liskov] 
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Label Lattice 

 join 
 order 

{} 

{Alice:Bob,Charles} {Alice: Bob,Eve} 

{Alice:} 

   

 

 

 

… … 

 

  

    

T 

    

… … … … 

Labels higher in  
the lattice are more 

restrictive 
{Alice:Bob} 

… … 

 



 

Computation Changes Labels 

Assignment (X=Y) relabels a variable 

• For every policy in the label of Y, there must be a 
policy in the label of X that is at least as restrictive 

Combining values (when does this happen?) 

• Join labels – move up in the lattice 

• Label on data reflects all of its sources 

Declassification 

• A principal can rewrite its own part of the label 
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Web Tax Example 
[Myers] 
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Jif 

Jif: Java with information flow control 

Represent principals as Java classes  

Jif augments Java types with labels 

•  int {Alice:Bob} x; 

•  Object {L} o; 

Subtyping follows the  lattice order 

Type inference 

• Programmer may omit types - Jif will infer them from 
how values are used in expressions 

[Myers] 
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Implicit Flows (1) 

if (a > 0) then {  
    b = 4; 
}  

int{Alice:} a; 
int{Bob:} b; 
... 

This assignment leaks 
information contained in 
program counter (PC) 

{Alice:; Bob:} 

{} 

{Alice:} {Bob:} 
  

  

PC label                     

          {} 
 

{}{Alice:}={Alice:} 
 
 

{} 
 

 

 

 

[Zdancewic] 
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if (a > 0) then {  
    b = 4; 
}  

int{Alice:} a; 
int{Bob:} b; 
... 

To assign to variable 
with label X, must have 
PC  X 

{Alice:; Bob:} 

{} 

{Alice:} {Bob:} 
  

  

PC label                     

          {} 
 

{}{Alice:}={Alice:} 
 
 

{} 
 

 

 

 

 

Implicit Flows (2) 
[Zdancewic] 
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Effects inside function 
can leak information 
about program counter 

{Alice:; Bob:} 

{} 

{Alice:} {Bob:} 
  

  

Function Calls 

if (a > 0) then {  
    f(4); 
}  

int{Alice:} a; 
int{Bob:} b; 
... 

PC label                     

          {} 
 

{}{Alice:}={Alice:} 
 
 

{} 
 

 

 

 

[Zdancewic] 
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Method Types 

Constrain labels before and after method call 

• To call the method, need PC  B 

• On return, should have PC  E 

• “where” clauses may be used to specify authority 
(set of principals) 

int{L1} method{B} (int{L2} arg) : {E} 
      where authority(Alice) 
{  
   … 
}  
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Declassification 

“downcast" 
int{Alice:} to 
int{Alice:Bob} 

int{Alice:} a; 

int Paid; 

...   // compute Paid  

if (Paid==10) { 
       int{Alice:Bob} b = declassify(a, {Alice:Bob}); 
       ... 

} 
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int{Alice:} a; 

int Paid; 

...   // compute Paid  

if (Paid==10) { 
       int{Alice:Bob} b = declassify(a, {Alice:Bob}); 
       ... 

} 

Robust Declassification 

Alice needs to trust 
the contents of Paid 

Introduces constraint  

PC  {Alice?} 

[Zdancewic and Myers] 



 

Jif Caveats 

No threads 

• Information flow hard to control 

– Depends on scheduling, etc. 

• Active area of current research 

Timing channels not controlled 

• Explicit choice for practicality 

Differences from Java 

• Some exceptions are fatal 

• Restricted access to some system calls 
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