
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

B. Lampson

A Note on the Confinement Problem

(CACM 1973)

slide 3

Information Channels

End-to-end security requires controlling
information channels

Legitimate channels: declared outputs

Storage channels: transmit explicitly

• Assign to variables, write to files, sockets

Covert channels: transmit by mechanisms not
intended for transmitting information

• System load, locks, power consumption, etc. etc.

• Timing channels: transmit information by when
something happens (rather than what)

Confinement Properties

Confinement is established through isolation

• Restrict a process’ access

• Enforce the principle of least privilege (means what?)

Total isolation: a process that cannot
communicate with any other process and cannot
be observed cannot leak information

• In practice, any process uses observable resources
such as CPU, secondary storage, networks, etc.

Confinement must be transitive

• If a confined process invokes a second process, the
second process must be as confined as the caller

slide 4

Simulating a Shared Variable

Procedure settrue (file)

 1: try opening file - if already open, then goto 1;

Procedure setfalse (file)

 close file;

Procedure value (file)

 value = true;

 try opening file - if already open, then goto 2;

 value = false;

 close file;

 2: return value;

slide 5

Covert Channel via File Open/Close

Three files: data, sendlock, receivelock

sender: settrue(data) or setfalse(data) -- sends 1 bit

 settrue(sendlock)

receiver: wait for value(sendlock)=true

 value(data) received bit

 settrue(receivelock)

sender: wait for value(receivelock)=true

 setfalse(sendlock)

receiver: wait for value(sendlock)=false

 setfalse(receivelock)

sender: wait for value(receivelock)=false
slide 6

Lipner’s Notes on Time

All processes can obtain rough idea of time

• Read system clock or wall clock time

• Determine number of instructions executed

All processes can manipulate time

• Wait some interval of wall clock time

• Execute a set number of instructions, then block

We’ll see some timing attacks later in the course

slide 7

Example of a Timing Channel

System has two VMs: sender S and receiver R

To send 0, S immediately yields CPU

• For example, run a process that instantly blocks

To send 1, S uses full quantum

• For example, run a CPU-intensive process

To receive, R measures how quickly it gets CPU

• Uses real-time clock to measure intervals between
accesses to a shared resource (CPU in this case)

slide 8

Covert Channels Without Time

Two VMs share disk cylinders 100 to 200,

 SCAN algorithm schedules disk accesses

Receiver: read data on cylinder 150

• Yields CPU when done, disk arm now at 150

Sender: to send “1”, read data on cylinder 140;
to send “0”, read data on cylinder 160

• Yields CPU when done, disk arm now at 140 or 160

Receiver: read data on cylinders 139 and 161

• SCAN: if arm is at 140, then reads 139 first; if arm is
at 160, reads 161 first - this leaks 1 bit (why?)

slide 9

140 variables both visible and alterable
• 90 out of those shared

• 25 can be used as covert channels

Resource exhaustion channels
• Example: signal by exhausting free inodes

Event-count channels
• Example: number of files created

Unexploitable channels
• Example: cause system crash

Analysis of Secure Xenix

slide 10

Covert vs. Side Channels

Covert channel: an unanticipated path of
communication exploited by an attacker to
convey confidential information

• Insider exfiltration, steganography …

Side channel: an unanticipated information leak
that an attacker uses to obtain confidential
information

• Pizza orders at the Pentagon, Tempest, power
analysis of smart cards, acoustic emanations,
compromising reflections …

slide 11

Memory protection

Sandboxes

• Java virtual machine

• Inline reference monitors

• System-call interposition

Virtual machine monitors

Modern Confinement Mechanisms

slide 12

slide 13

Access Control Model

Principal makes a request to access a resource
(object)

• Example: process tries to write into a file

Reference monitor permits or denies request

• Example: file permissions in Unix

slide 14

Rights and Actions

Access control matrix

• For each subject and object, lists subject’s rights

Subjects, objects, rights can be created…

• Example: new users, new files

• Creation of rights is sometimes called “delegation”

– Example: grant right R to subject S with respect to object O

…or deleted

Access control is undecidable (in general)

• In general, can’t determine if a given subject can get
a particular right with respect to a given object

– Harrison, Ruzzo, Ullman (1976)

slide 15

ACL: Access Control Lists

For each object, store a list of
 (Subject x Rights) pairs

• Resolving queries is linear in the size of the list

Easy to answer “who can access this object?”

Easy to revoke rights to a single object

Lists can get long

Authentication at every access can be expensive

slide 16

Capability Lists

For each subject, store a list of
 (Object x Rights) pairs – called capabilities

• Capabilities should be unforgeable (why?)

Authentication takes place when capability is
granted - don’t need to check at every access

Revocation is harder (why?)

slide 17

Implementing Capabilities

Unique identifiers that map to objects

• Extra level of indirection to access an object

• Integrity of the map must be protected

Capabilities must be unforgeable

• Special hardware: tagged words in memory

– Can’t be copied or modified

• Store capabilities in protected address space

• Use static scoping in programming languages

– “Private” fields in Java

• Cryptography

– Shared keys; OS could digitally sign capabilities

slide 18

OS: Coarse-Grained Access Control

Enforce security properties at the system call
layer (what are the issues?)

Enforcement decisions are made at the level of
“large” objects

• Files, sockets, processes …

Coarse notion of subject / “principal”

• UID

slide 19

DAC vs. MAC

Discretionary access control (DAC)

• Individual user may, at his own discretion, determine
who is authorized to access the objects he creates

– Example: Unix files

Mandatory access control (MAC)

• Creator of an object does not necessarily have the
ability to determine who has authorized access to it

• Policy typically governed by a central authority

– Recent research on decentralized information flow control

• Policy on an object depends on what object or
information was used to create it

slide 20

Multi-Level Security (Military)

Classification of personnel and data

• Class D = 〈rank, compartment〉

Dominance relation

• D1 ≤ D2 iff rank1 ≤ rank2 and compart1 ⊆ compart2

– Example: 〈Restricted, Iraq〉 ≤ 〈Secret, CENTCOM〉

Subjects: users or processes

• Class(S) = clearance of S

Objects: documents or resources

• Class(O) = classification of O

U,{ }

S,{SIOP} S,{NATO}
T,{ }

T,{NATO,SIOP}

T,{SIOP} T,{NATO}
S,{NATO,SIOP}

S, { }

Example of a Label Lattice

slide 21

slide 22

Bell-LaPadula Model

“No read up, no write down”

Principals are assigned clearance levels drawn
from a lattice of security labels

A principal may read objects with lower or equal
security label: C(O) ≤ C(S)

A principal may write objects with higher or
equal security label: C(S) ≤ C(O)

• Example: a user with Secret clearance can read
objects with Public and Secret labels, but can only
write objects with Secret label (why?)

• “Tainted” may not flow into “untainted”

slide 23

SELinux

Security-enhanced Linux system from NSA

MAC built into the OS kernel

• Each process has an associated domain

• Each object has an associated type (label)

• Configuration files specify how domains may access
types, interact, transition between domains

Role-based access control

• Each process has an associated role

– Separate system and user processes

• Configuration files specify the set of domains that may
be entered by each role

slide 24

Other MAC Policies

“Chinese Wall” [Brewer & Nash 1989]

• Object labels are classified into “conflict classes”

• If subject accesses an object with a particular label
from a conflict class, all accesses to objects labeled
with other labels from the conflict class are denied

• Policy changes dynamically

“Separation of Duties”

• Division of responsibilities among subjects

– Example: Bank auditor cannot issue checks

D. Denning and P. Denning

Certification of Programs for

Secure Information Flow

(CACM 1976)

slide 26

Beyond Access Control

Finer-grained data confidentiality policies

• At the level of principals rather than hosts or processes

Security enforcement decisions at the level of
application abstractions

• User interface: access control at window level

• Mobile code: no network send after file read

• E-commerce: no goods until payment

• Make security policies part of the programming
language itself

End-to-end security: control propagation of
sensitive data after it has been accessed

Information Flow Within Programs

Access control for program variables

• Finer-grained than processes

Use program analysis to prove that the program
has no undesirable flows

slide 27

slide 28

Confidentiality

Confidentiality via basic access control …

• “Only authorized processes can read a file”

– When should a process be “authorized”?

• Encryption provides end-to-end confidentiality, but
it’s difficult to compute on encrypted data

… vs. end-to-end confidentiality

• Information should not be improperly released by a
computation no matter how it is used

slide 29

Integrity

Integrity via basic access control …

• “Only authorized processes can write a file”

– When should a process be “authorized”?

• Digital signatures provide end-to-end integrity, but
cannot change signed data

… vs. end-to-end integrity

• Information should not be updated on the basis of
less trustworthy information

Explicit and Implicit Flows

Goal: prevent information flow from “high”
variables to “low” variables (why?)

Flow can be explicit …

h := <secret>

x := h

l := x

… or implicit

boolean h := <secret>

if (h) { l := true} else { l := false }

slide 30

Compile-Time Certification

Declare classification of information allowed to
be stored in each variable

• x: integer class { A,B }

Classification of function parameter =
classification of argument

Classification of function result =
 union of parameter classes

• … unless function has been verified as stricter

Certification becomes type checking!

slide 31

Assignments and Compound Stmts

Assignment: left-hand side must be able to
receive all classes in right-hand side

x = w+y+z requires lub{w,y,z} ≤ x

Compound statement

begin

 x = y+z;

 a = b+c –x

end

 requires lub{y,z} ≤ x and lub{b,c,x} ≤ a

slide 32

Conditional:

 classification of “then/else” must contain
classification of “if” part (why?)

Functions:

int sum (int x class{A}) {

 int out class{A,B} ;

 out = out + x;

}

 requires A ≤ B and B ≤ B

Conditionals and Functions

slide 33

Iterative Statements

In iterative statements, information can flow
from the absence of execution

while f(x1, x2, …, xn) do S

• Information flows from variables in the conditional
statement to variables assigned in S (why?)

For an iterative statement to be secure …

• Statement terminates

• Body S is secure

• lub{x1, x2, …, xn} ≤

 glb{target of an assignment in S}

slide 34

slide 35

Non-Interference

Observable behavior of the program should not
depend on confidential data

• Example: private local data should not “interfere”
with network communications

Network

Disk

Accounting
software

[Goguen and Meseguer]

slide 36

Declassification

Non-interference can be too strong

• Programs release confidential information as part of
normal operation

• "Alice will release her data after you pay her $10"

Idea: allow the program to release confidential
data, but only through a certain computation

Example: logging in using a secure password

if (password == input) login(); else fail();

• Information about password must be released …

 … but only through the result of comparison

A. Myers and B. Liskov

A Decentralized Model for

Information Flow Control

(SOSP 1997)

slide 38

Web Tax Example
[Myers]

slide 39

Principals

Principals are users, groups of users, etc.

Used to express fine-grained policies controlling
use of data

• Individual users and groups

• Close to the semantics of data usage policies

Principal hierarchy generated by the acts-for
relation

slide 40

Data Labels

Label each piece of data to indicate permitted
information flows (to and from)

• Label specifies a set of policies

Confidentiality constraints: who may read it?

• {Alice: Bob, Eve} label means that Alice owns this
data, and Bob and Eve are permitted to read it

• {Alice: Charles; Bob: Charles} label means that Alice
and Bob own this data, but only Charles can read it

Integrity constraints: who may write it?

• {Alice ? Bob} label means that Alice owns this data,
and Bob is permitted to change it

[Myers and Liskov]

slide 41

Label Lattice

 join
 order

{}

{Alice:Bob,Charles} {Alice: Bob,Eve}

{Alice:}

… …

T

… … … …

Labels higher in
the lattice are more

restrictive
{Alice:Bob}

… …

Computation Changes Labels

Assignment (X=Y) relabels a variable

• For every policy in the label of Y, there must be a
policy in the label of X that is at least as restrictive

Combining values (when does this happen?)

• Join labels – move up in the lattice

• Label on data reflects all of its sources

Declassification

• A principal can rewrite its own part of the label

slide 42

slide 43

Web Tax Example
[Myers]

slide 44

Jif

Jif: Java with information flow control

Represent principals as Java classes

Jif augments Java types with labels

• int {Alice:Bob} x;

• Object {L} o;

Subtyping follows the lattice order

Type inference

• Programmer may omit types - Jif will infer them from
how values are used in expressions

[Myers]

slide 45

Implicit Flows (1)

if (a > 0) then {
 b = 4;
}

int{Alice:} a;
int{Bob:} b;
...

This assignment leaks
information contained in
program counter (PC)

{Alice:; Bob:}

{}

{Alice:} {Bob:}

PC label

 {}

{}{Alice:}={Alice:}

{}

[Zdancewic]

slide 46

if (a > 0) then {
 b = 4;
}

int{Alice:} a;
int{Bob:} b;
...

To assign to variable
with label X, must have
PC X

{Alice:; Bob:}

{}

{Alice:} {Bob:}

PC label

 {}

{}{Alice:}={Alice:}

{}

Implicit Flows (2)
[Zdancewic]

slide 47

Effects inside function
can leak information
about program counter

{Alice:; Bob:}

{}

{Alice:} {Bob:}

Function Calls

if (a > 0) then {
 f(4);
}

int{Alice:} a;
int{Bob:} b;
...

PC label

 {}

{}{Alice:}={Alice:}

{}

[Zdancewic]

slide 48

Method Types

Constrain labels before and after method call

• To call the method, need PC B

• On return, should have PC E

• “where” clauses may be used to specify authority
(set of principals)

int{L1} method{B} (int{L2} arg) : {E}
 where authority(Alice)
{
 …
}

slide 49

Declassification

“downcast"
int{Alice:} to
int{Alice:Bob}

int{Alice:} a;

int Paid;

... // compute Paid

if (Paid==10) {
 int{Alice:Bob} b = declassify(a, {Alice:Bob});
 ...

}

slide 50

int{Alice:} a;

int Paid;

... // compute Paid

if (Paid==10) {
 int{Alice:Bob} b = declassify(a, {Alice:Bob});
 ...

}

Robust Declassification

Alice needs to trust
the contents of Paid

Introduces constraint

PC {Alice?}

[Zdancewic and Myers]

Jif Caveats

No threads

• Information flow hard to control

– Depends on scheduling, etc.

• Active area of current research

Timing channels not controlled

• Explicit choice for practicality

Differences from Java

• Some exceptions are fatal

• Restricted access to some system calls

slide 51

