
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

H. Shacham

 The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

(CCS 2007)

Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection

• Put malicious code in a predictable location in
memory, usually masquerading as data

• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Defense: prevent execution of untrusted code

• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., ActionScript)

• Digitally sign all code

• Ensure that all control transfers are into a trusted,
approved code image

slide 3

WX / DEP

Mark all writeable memory locations as non-
executable

• Example: Microsoft’s DEP - Data Execution Prevention

• This blocks most (not all) code injection exploits

Hardware support

• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)

• OS can make a memory page non-executable

Widely deployed

• Windows (since XP SP2), Linux (via PaX patches),
OpenBSD, OS X (since 10.5)

slide 4

What Does WX Not Prevent?

Can still corrupt stack …

• … or function pointers or critical data on the heap, but
that’s not important right now

As long as “saved EIP” points into existing code,
WX protection will not block control transfer

This is the basis of return-to-libc exploits

• Overwrite saved EIP with address of any library
routine, arrange memory to look like arguments

Does not look like a huge threat

• Attacker cannot execute arbitrary code

• … especially if system() is not available
slide 5

return-to-libc on Steroids

Overwritten saved EIP need not point to the
beginning of a library routine

Any existing instruction in the code image is fine

• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?

• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (ESP)

– Guess what? Its value is under attacker’s control! (why?)

• Use it as the new value for EIP

– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack

slide 6

Chaining RETs for Fun and Profit

Can chain together sequences ending in RET

• Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

What is this good for?

Answer [Shacham et al.]: everything

• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic,
control flow, system calls

• Attack can perform arbitrary computation using no
injected code at all!

slide 7

[Shacham et al]

Ordinary Programming

Instruction pointer (EIP) determines which
instruction to fetch and execute

Once processor has executed the instruction, it
automatically increments EIP to next instruction

Control flow by changing value of EIP

slide 8

Return-Oriented Programming

Stack pointer (ESP) determines which instruction
sequence to fetch and execute

Processor doesn’t automatically increment ESP

• But the RET at end of each instruction sequence does

slide 9

No-ops

No-op instruction does nothing but advance EIP

Return-oriented equivalent

• Point to return instruction

• Advances ESP

Useful in a NOP sled (what’s that?)

slide 10

Immediate Constants

Instructions can encode constants

Return-oriented equivalent

• Store on the stack

• Pop into register to use

slide 11

Control Flow

slide 12

Ordinary programming

• (Conditionally) set EIP to new value

Return-oriented equivalent

• (Conditionally) set ESP to new value

Gadgets: Multi-instruction Sequences

Sometimes more than one instruction sequence
needed to encode logical unit

Example: load from memory into register

• Load address of source word into EAX

• Load memory at (EAX) into EBX
slide 13

“The Gadget”: July 1945

slide 14

Gadget Design

Testbed: libc-2.3.5.so, Fedora Core 4

Gadgets built from found code sequences:

• Load-store, arithmetic & logic, control flow, syscalls

Found code sequences are challenging to use!

• Short; perform a small unit of work

• No standard function prologue/epilogue

• Haphazard interface, not an ABI

• Some convenient instructions not always available

slide 15

Conditional Jumps

cmp compares operands and sets a number of
flags in the EFLAGS register

• Luckily, many other ops set EFLAGS as a side effect

jcc jumps when flags satisfy certain conditions

• But this causes a change in EIP… not useful (why?)

Need conditional change in stack pointer (ESP)

Strategy:

• Move flags to general-purpose register

• Compute either delta (if flag is 1) or 0 (if flag is 0)

• Perturb ESP by the computed delta

slide 16

Phase 1: Perform Comparison

neg calculates two’s complement

• As a side effect, sets carry flag (CF)
if the argument is nonzero

Use this to test for equality

 sub is similar, use to test if one
number is greater than another

slide 17

Phase 2: Store 1-or-0 to Memory

slide 18

 Clear ECX

 EDX points to destination

 adc adds up its operands & the carry flag;

 result will be equal to the carry flag (why?)

 Store result of adc into destination

Two’s-complement
negation:

0 becomes 0…0;

1 becomes 1…1

Bitwise AND with delta

(in ESI)

slide 19

Phase 3: Compute Delta-or-Zero

Phase 4: Perturb ESP by Delta

slide 20

Finding Instruction Sequences

Any instruction sequence ending in RET is useful

Algorithmic problem: recover all sequences of
valid instructions from libc that end in a RET

At each RET (C3 byte), look back:

• Are preceding i bytes a valid instruction?

• Recur from found instructions

Collect found instruction sequences in a trie

slide 21

ret }

Unintended Instructions

c7

45

d4

01

00

00

00

f7

c7

07

00

00

00

0f

95

45

c3

movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc %ebp }

}

slide 22

Actual code from ecb_crypt()

x86 Architecture Helps

Register-memory machine

• Plentiful opportunities for accessing memory

Register-starved

• Multiple sequences likely to operate on same register

Instructions are variable-length, unaligned

• More instruction sequences exist in libc

• Instruction types not issued by compiler may be
available

Unstructured call/ret ABI

• Any sequence ending in a return is useful

slide 23

SPARC: The Un-x86

Load-store RISC machine

• Only a few special instructions access memory

Register-rich

• 128 registers; 32 available to any given function

All instructions 32 bits long; alignment enforced

• No unintended instructions

Highly structured calling convention

• Register windows

• Stack frames have specific format

slide 24

ROP on SPARC

Use instruction sequences that are suffixes of real
functions

Dataflow within a gadget

• Structured dataflow to dovetail with calling convention

Dataflow between gadgets

• Each gadget is memory-memory

Turing-complete computation!

• “When Good Instructions Go Bad: Generalizing Return-
Oriented Programming to RISC” (CCS 2008)

slide 25

More ROP

Harvard architecture: code separate from data
code injection is impossible, but ROP works fine

• Z80 CPU – Sequoia AVC Advantage voting machines

• Some ARM CPUs – iPhone

No returns = no problems

• (Lame) defense against ROP: eliminate sequences with
RET and/or look for violations of LIFO call-return order

• Use update-load-branch sequences in lieu of returns +
a trampoline sequence to chain them together

• Read “Return-oriented programming without returns”
(CCS 2010)

slide 26

Other Issues with WX / DEP

Some applications require executable stack

• Example: Lisp interpreters

Some applications are not linked with /NXcompat

• DEP disabled (e.g., popular browsers)

JVM makes all its memory RWX – readable,
writable, executable (why?)

• Spray attack code over memory containing Java
objects (how?), pass control to them

Return into a memory mapping routine, make
page containing attack code writeable

slide 27

