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Buffer Overflow: Causes and Cures 

Typical memory exploit involves code injection 

• Put malicious code in a predictable location in 
memory, usually masquerading as data 

• Trick vulnerable program into passing control to it 

– Overwrite saved EIP, function callback pointer, etc. 

Defense: prevent execution of untrusted code 

• Make stack and other data areas non-executable 

– Note: messes up useful functionality (e.g., ActionScript) 

• Digitally sign all code 

• Ensure that all control transfers are into a trusted, 
approved code image 
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WX / DEP 

Mark all writeable memory locations as non-
executable 

• Example: Microsoft’s DEP - Data Execution Prevention 

• This blocks most (not all) code injection exploits 

Hardware support 

• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs) 

• OS can make a memory page non-executable 

Widely deployed 

• Windows (since XP SP2), Linux (via PaX patches), 
OpenBSD, OS X (since 10.5) 

slide 4 



 

What Does WX Not Prevent? 

Can still corrupt stack … 

• … or function pointers or critical data on the heap, but 
that’s not important right now 

As long as “saved EIP” points into existing code, 
WX protection will not block control transfer 

This is the basis of return-to-libc exploits 

• Overwrite saved EIP with address of any library 
routine, arrange memory to look like arguments 

Does not look like a huge threat 

• Attacker cannot execute arbitrary code 

• … especially if system() is not available 
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return-to-libc on Steroids 

Overwritten saved EIP need not point to the 
beginning of a library routine 

Any existing instruction in the code image is fine 

• Will execute the sequence starting from this instruction 

What if instruction sequence contains RET? 

• Execution will be transferred… to where? 

• Read the word pointed to by stack pointer (ESP) 

– Guess what?  Its value is under attacker’s control!  (why?)  

• Use it as the new value for EIP 

– Now control is transferred to an address of attacker’s choice! 

• Increment ESP to point to the next word on the stack 
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Chaining RETs for Fun and Profit 

Can chain together sequences ending in RET 

• Krahmer, “x86-64 buffer overflow exploits and the 
borrowed code chunks exploitation technique” (2005) 

What is this good for? 

Answer [Shacham et al.]: everything 

• Turing-complete language 

• Build “gadgets” for load-store, arithmetic, logic, 
control flow, system calls 

• Attack can perform arbitrary computation using no 
injected code at all! 
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Ordinary Programming 

Instruction pointer (EIP) determines which 
instruction to fetch and execute 

Once processor has executed the instruction, it 
automatically increments EIP to next instruction 

Control flow by changing value of EIP 
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Return-Oriented Programming 

Stack pointer (ESP) determines which instruction 
sequence to fetch and execute 

Processor doesn’t automatically increment ESP 

• But the RET at end of each instruction sequence does 
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No-ops 

No-op instruction does nothing but advance EIP 

Return-oriented equivalent 

• Point to return instruction 

• Advances ESP 

Useful in a NOP sled  (what’s that?) 
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Immediate Constants 

Instructions can encode constants 

Return-oriented equivalent 

• Store on the stack 

• Pop into register to use 
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Control Flow 
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Ordinary programming 

• (Conditionally) set EIP to new value 

Return-oriented equivalent 

• (Conditionally) set ESP to new value 



 

Gadgets: Multi-instruction Sequences 

Sometimes more than one instruction sequence 
needed to encode logical unit 

Example: load from memory into register 

• Load address of source word into EAX 

• Load memory at (EAX) into EBX 
slide 13 



 

“The Gadget”: July 1945 
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Gadget Design 

Testbed: libc-2.3.5.so, Fedora Core 4 

Gadgets built from found code sequences: 

• Load-store, arithmetic & logic, control flow, syscalls 

Found code sequences are challenging to use! 

• Short; perform a small unit of work 

• No standard function prologue/epilogue 

• Haphazard interface, not an ABI 

• Some convenient instructions not always available 
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Conditional Jumps 

cmp compares operands and sets a number of 
flags in the EFLAGS register 

• Luckily, many other ops set EFLAGS as a side effect 

jcc jumps when flags satisfy certain conditions 

• But this causes a change in EIP… not useful (why?) 

Need conditional change in stack pointer (ESP) 

Strategy: 

• Move flags to general-purpose register 

• Compute either delta (if flag is 1) or 0 (if flag is 0) 

• Perturb ESP by the computed delta 
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Phase 1: Perform Comparison 

neg calculates two’s complement 

• As a side effect, sets carry flag (CF) 
if the argument is nonzero 

Use this to test for equality 

 sub is similar, use to test if one 
number is greater than another 
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Phase 2: Store 1-or-0 to Memory 
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 Clear ECX 

 EDX points to destination 

 adc adds up its operands & the carry flag; 

    result will be equal to the carry flag (why?) 

 Store result of adc into destination  

 
 

 

 



 

Two’s-complement 
negation: 

0 becomes 0…0; 

1 becomes 1…1 

Bitwise AND with delta 

(in ESI) 
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Phase 4: Perturb ESP by Delta 
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Finding Instruction Sequences 

Any instruction sequence ending in RET is useful 

Algorithmic problem: recover all sequences of 
valid instructions from libc that end in a RET 

At each RET (C3 byte), look back: 

• Are preceding i bytes a valid instruction? 

• Recur from found instructions 

Collect found instruction sequences in a trie 
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ret } 

Unintended Instructions 

c7 

45 

d4 

01 

00 

00 

00 

f7 

c7 

07 

00 

00 

00 

0f 

95 

45 

c3 

movl $0x00000001, -44(%ebp) 

test $0x00000007, %edi 

setnzb -61(%ebp) 

add %dh, %bh 

movl $0x0F000000, (%edi) 

xchg %ebp, %eax 
inc %ebp } 

} 
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x86 Architecture Helps 

Register-memory machine 

• Plentiful opportunities for accessing memory 

Register-starved 

• Multiple sequences likely to operate on same register 

Instructions are variable-length, unaligned 

• More instruction sequences exist in libc 

• Instruction types not issued by compiler may be 
available 

Unstructured call/ret ABI 

• Any sequence ending in a return is useful 
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SPARC: The Un-x86 

Load-store RISC machine 

• Only a few special instructions access memory 

Register-rich 

• 128 registers; 32 available to any given function 

All instructions 32 bits long; alignment enforced 

• No unintended instructions 

Highly structured calling convention 

• Register windows 

• Stack frames have specific format 
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ROP on SPARC 

Use instruction sequences that are suffixes of real 
functions 

Dataflow within a gadget 

• Structured dataflow to dovetail with calling convention 

Dataflow between gadgets 

• Each gadget is memory-memory 

Turing-complete computation! 

• “When Good Instructions Go Bad: Generalizing Return-
Oriented Programming to RISC” (CCS 2008) 
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More ROP 

Harvard architecture: code separate from data  
code injection is impossible, but ROP works fine 

• Z80 CPU – Sequoia AVC Advantage voting machines 

• Some ARM CPUs – iPhone 

No returns = no problems 

• (Lame) defense against ROP: eliminate sequences with 
RET and/or look for violations of LIFO call-return order 

• Use update-load-branch sequences in lieu of returns + 
a trampoline sequence to chain them together 

• Read “Return-oriented programming without returns” 
(CCS 2010) 
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Other Issues with WX / DEP 

Some applications require executable stack 

• Example: Lisp interpreters 

Some applications are not linked with /NXcompat 

• DEP disabled (e.g., popular browsers) 

JVM makes all its memory RWX – readable, 
writable, executable (why?) 

• Spray attack code over memory containing Java 
objects (how?), pass control to them 

Return into a memory mapping routine, make 
page containing attack code writeable  
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