CS 380S

0x1A Great Papers in Computer Security

Vitaly Shmatikov

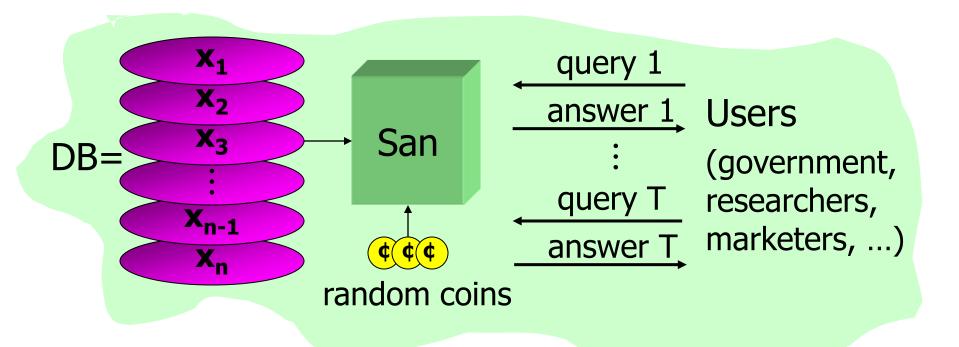
http://www.cs.utexas.edu/~shmat/courses/cs380s/

C. Dwork

Differential Privacy

(ICALP 2006 and many other papers)

Basic Setting



Examples of Sanitization Methods

Input perturbation

• Add random noise to database, release

Summary statistics

- Means, variances
- Marginal totals
- Regression coefficients
- Output perturbation
 - Summary statistics with noise
- Interactive versions of the above methods
 - Auditor decides which queries are OK, type of noise

Strawman Definition

Assume x₁, ..., x_n are drawn i.i.d. from unknown distribution

 Candidate definition: sanitization is safe if it only reveals the distribution

Implied approach:

- Learn the distribution
- Release description of distribution or re-sample points
- This definition is tautological
 - Estimate of distribution depends on data... why is it safe?

Clustering-Based Definitions

 Given sanitization S, look at all databases consistent with S

 Safe if no predicate is true for all consistent databases

k-anonymity

- Partition D into bins
- Safe if each bin is either empty, or contains at least k elements
- Cell bound methods
 - Release marginal sums

r			
	brown	blue	Σ
blond	[0,12]	[0,12]	12
brown	[0,14]	[0,16]	18
Σ	14	16	

Issues with Clustering

Purely syntactic definition of privacy

What adversary does this apply to?

- Does not consider adversaries with side information
- Does not consider probability
- Does not consider adversarial algorithm for making decisions (inference)

Classical Intution for Privacy

"If the release of statistics S makes it possible to determine the value [of private information] more accurately than is possible without access to S, a disclosure has taken place." [Dalenius 1977]

 Privacy means that anything that can be learned about a respondent from the statistical database can be learned without access to the database

Similar to semantic security of encryption

• Anything about the plaintext that can be learned from a ciphertext can be learned without the ciphertext

Problems with Classic Intuition

- Popular interpretation: prior and posterior views about an individual shouldn't change "too much"
 - What if my (incorrect) prior is that every UTCS graduate student has three arms?
- How much is "too much?"
 - Can't achieve cryptographically small levels of disclosure and keep the data useful
 - Adversarial user is <u>supposed</u> to learn unpredictable things about the database

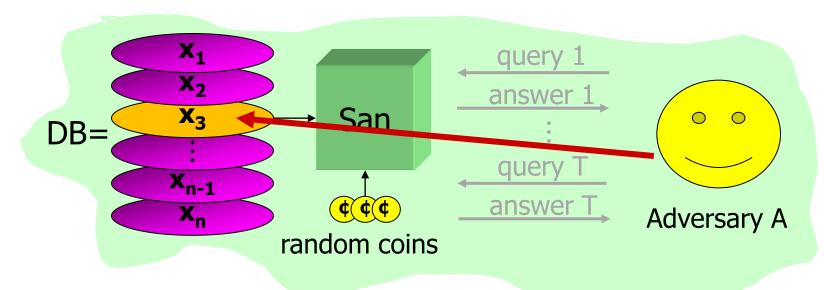
Absolute Guarantee Unachievable

- Privacy: for some definition of "privacy breach,"
 - \forall distribution on databases, \forall adversaries A, \exists A'
 - such that $Pr(A(San)=breach) Pr(A'()=breach) \le \varepsilon$
 - For reasonable "breach", if San(DB) contains information about DB, then some adversary breaks this definition

Example

- Vitaly knows that Chad is 2 inches taller than the average Russian
- DB allows computing average height of a Russian
- This DB breaks Chad's privacy according to this definition... even if his record is <u>not</u> in the database!

Differential Privacy



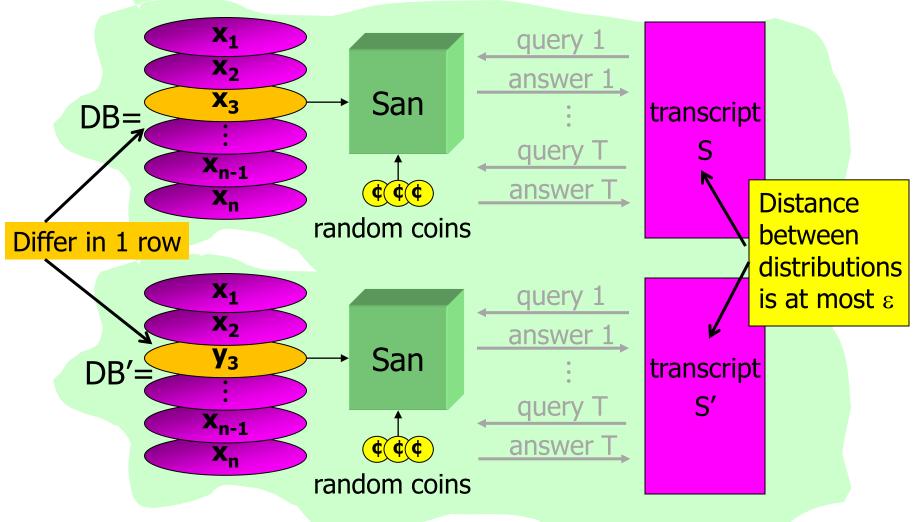
Absolute guarantees are problematic

• Your privacy can be "breached" (per absolute definition of privacy) even if your data is not in the database

Relative guarantee: "Whatever is learned would be learned regardless of whether or not you participate"

• Dual: Whatever is already known, situation won't get worse

Indistinguishability



Which Distance to Use?

• Problem: ε must be large

- Any two databases induce transcripts at distance $\leq n\epsilon$
- To get utility, need $\varepsilon > 1/n$
- Statistical difference 1/n is not meaningful!
 - Example: release a random point from the database
 - San($x_1,...,x_n$) = (j, x_j) for random j
 - For every i, changing x_i induces statistical difference 1/n
 - But some x_i is revealed with probability 1
 - Definition is satisfied, but privacy is broken!

Formalizing Indistinguishability

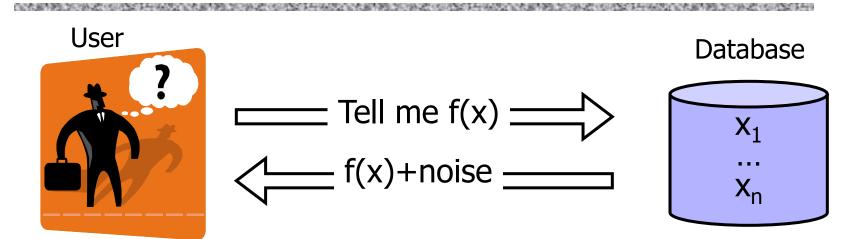
Definition: San is ϵ -indistinguishable if

 \forall A, \forall <u>DB</u>, <u>DB</u>' which differ in 1 row, \forall sets of transcripts S

p(San(DB) \in S) \in (1 ± ϵ) p(San(DB') \in S)

Equivalently,
$$\forall$$
 S: $\frac{p(San(DB) = S)}{p(San(DB') = S)} \in 1 \pm \varepsilon$

Laplacian Mechanism



 Intuition: f(x) can be released accurately when f is insensitive to individual entries x₁, ... x_n

• Global sensitivity $GS_f = max_{neighbors x,x'} ||f(x) - f(x')||_1$

• Example: $GS_{average} = 1/n$ for sets of bits

• Theorem: $f(x) + Lap(GS_f/\varepsilon)$ is ε -indistinguishable

Noise generated from Laplace distribution

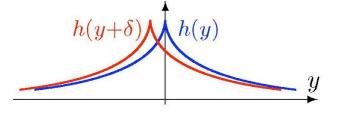
Lipschitz

constant of f

Sensitivity with Laplace Noise

$\frac{\text{Theorem}}{If A(x) = f(x) + \mathsf{Lap}\left(\frac{\mathsf{GS}_f}{\varepsilon}\right) \text{ then } A \text{ is } \varepsilon \text{-indistinguishable.}}$

Laplace distribution $Lap(\lambda)$ has density $h(y) \propto e^{-\frac{||y||_1}{\lambda}}$



Sliding property of $Lap\left(\frac{GS_f}{\varepsilon}\right)$: $\frac{h(y)}{h(y+\delta)} \le e^{\varepsilon \cdot \frac{\|\delta\|}{GS_f}}$ for all y, δ *Proof idea:* A(x): blue curve A(x'): red curve $\delta = f(x) - f(x') \le GS_f$

Differential Privacy: Summary

San gives ε-differential privacy if for all values of DB and Me and all transcripts t:

