
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

X. Chen, T, Garfinkel, E. Lewis, P. Subrahmanyam,

C. Waldspurger, D. Boneh, J. Dwoskin, D. Ports

Overshadow:
A Virtualization-Based Approach to Retrofitting

Protection in Commodity Operating Systems

(ASPLOS 2008)

Goal: Bypass an Insecure OS

Secure software runs on commodity OS,
thus even a 100% secure application can
be compromised if the OS is compromised

Goal of Overshadow: securely execute
application even if the OS is not trusted

• Guarantee confidentiality and integrity for
application’s data in memory and on disk

• Trust only VMM, not the OS

Backward compatibility!

• No modifications to OS or application binary

slide 3

Virtual Machines

 Hardware-level abstraction

• Virtual hardware: CPU, memory,
chipset, I/O devices, etc.

• Encapsulates all OS and
application state

 Virtualization software

• Extra level of indirection
decouples hardware and OS

• Multiplexes physical hardware
across multiple “guest” VMs

• Strong isolation between VMs

• Manages physical resources,
improves utilization

slide 4

Key Idea: Cloaking

VMM provides multiple views of application’s
memory depending on who is looking

• Application: unencrypted read-write access

• Guest OS: “cloaked” view

– Encrypted and integrity-protected

Application/OS interaction mediated by shim

• Public (unprotected) shim on guest OS

• Private (protected) shim on application

slide 5

Overshadow Architecture

VMM switches between
two views of memory

• App sees normal view

• OS sees encrypted view

Shim manages
application/OS interactions

• Interposes on system calls,
interrupts, faults, signals

• Transparent to application

Two Virtualization Barriers

 Shim

 Cloaked app

 VMM

 Hardware

 Guest OS kernel

Other Apps
Other Apps Other apps

Virtual Machine

slide 6

Memory Mapping: OS and VMM

machine

VMM

slide 7

virtual

“physical”

guest OS

GVPN

(guest virtual

page number)

GPPN

(guest physical

page number)

MPN

(machine

page number)

shadow page tables

Multi-Shadowing

virtual

“physical”

machine1

guest OS

view2

view1

machine2

The view of memory is context-dependent!

slide 8

Basic Cloaking Protocol

At any time, each page is
mapped into only one of
the two shadows

• App (A) sees plaintext
via application shadow

• Kernel (K) sees ciphertext
via system shadow

Protection metadata

• IV – random initialization
vector

• H – secure hash of page
contents

slide 9

OS Accesses a Page

virtual

physical

guest OS

Application’s

view

slide 10

OS’s view

Page is unmapped in current shadow fault into VMM

VMM encrypts the page, computes integrity hash,

 remaps encrypted page into system shadow

X

encrypted

machine

Application Accesses a Page

virtual

physical

X

guest OS

Application’s

view plaintext

machine

OS’s view

Page is unmapped in current shadow fault into VMM

VMM verifies the integrity hash, decrypts the page,

 remaps plaintext page into application shadow

slide 11

Cloaking Application Resources

Protect memory-mapped objects

• Stack, heap, mapped files, shared mmaps

Make everything else look like a memory-
mapped object

• For example, emulate file read/write using mmap

OS still manages application resources

• Including demand-paged application memory

• Moves cloaked data without seeing its true contents

• Encryption/decryption typically infrequent

– OS accesses application’s page encrypt

– Application accesses OS-touched page decrypt

slide 12

Shim

Challenges

• Securely identify which application is running

• Securely transfer control between OS and application

• Adapt system calls

Solution: shim

• OS-specific user-level program

• Linked into application address space

• Mostly cloaked, plus uncloaked trampolines and buffers

• Communicates with VMM via hypercalls

slide 13

Hypercalls

Used by shims to invoke VMM

Uncloaked shim (untrusted, invoked by OS)

• Can initialize a new cloaked context

– When starting an application

• Can enter and resume existing cloaked execution

– When returning to a running application

Cloaked shim (trusted, invoked by application)

• Can cloak new memory regions (when is this
needed?), unseal cloaked data, create new shadow
contexts, access metadata cache

slide 14

Secure Context Identification

VMM must identify unique application contexts in
order to switch shadow page tables

Cloaked Thread Context (CTC)

• Sensitive data used for OS-application control transfers

– Saved registers, entry points to shim functions, ASID (address
space identifier – used to identify context), a special random
value generated during initialization

• Uncloaked cloaked (OS application) transition:
uncloaked shim makes a hypercall, passes ASID and
the pointer to CTC to VMM, VMM verifies expected
ASID and the random value

– What prevents malicious OS from messing with CTC?

slide 15

Handling Faults and Interrupts

1. App is executing

2. Fault traps into VMM

• Saves and scrubs registers

• Sets up trampoline back to
shim so kernel can return

• Transfers control to kernel

3. Kernel executes

• Handles fault as usual

• Returns to shim via trampoline

4. Shim hypercalls into VMM

• Resume cloaked execution

5. VMM returns to app

• Restores registers

• Transfers control to app

slide 16

Handling Systems Calls

Extra transitions

• Superset of fault handling

• Handlers in cloaked shim
interpose on system calls

System call adaptation

• Arguments may be pointers to
cloaked memory

• Marshal and unmarshal
via buffer in uncloaked shim

• More complex: pipes, signals,
fork, file I/O

slide 17

Marshalling

Unmarshalling

Marshalling Syscall Arguments

For some system calls, OS needs to read or
modify arguments in caller’s address space

• Path names, socket structures, etc.

• This does not work with cloaked applications (why?)

Instead, arguments are marshalled into a buffer
in the uncloaked shim and registers are modified
so that the call uses this buffer as the new source
or destination

Results are copied back into the cloaked
application’s memory

slide 18

Resuming Cloaked Execution

OS can ask to resume cloaked execution from a
“wrong” point, but integrity checking will fail
unless the CTC is mapped in the proper location

• What’s the “right” point to resume execution?

VMM will always enter cloaked execution with
proper saved registers, including the IP, and all
application pages unaltered (why?)

Thus, OS can only cause a cloaked execution to
be resumed at the proper point in the proper
application code

slide 19

Signal Handling

Parts of the shim cannot be preempted

Application registers a signal handler the shim
emulates the OS and records it in a table

Signal is received shim passes to VMM the
signal, parameters, context in which it occurred

• If during a cloaked execution, VMM passes control to a
proper signal entry point in the shim

• If during a shim execution, VMM either rolls back the
execution to the last application system call entry, or
defers signal delivery until shim returns to application

slide 20

Cloaked File I/O

Interpose on I/O system calls

• Read, write, lseek, fstat, etc.

Uncloaked files use simple marshalling

Cloaked files emulated using memory

• Emulate read and write using mmap

– Copy data to/from memory-mapped buffers

• Decrypted automatically when read by application,
encrypted automatically when flushed to disk by OS

• Shim caches mapped file regions (1MB chunks)

• Prepend file header containing size, offset, etc.

slide 21

Protection Metadata

VMM enforces integrity, ordering, freshness for
application’s memory pages

Metadata for each memory page tracks what’s
supposed to be in it

• IV – random initialization vector

• H – secure integrity hash of page content

• VMM keeps the mapping (ASID, GVPN) (IV, H)

– ASID = “application” (address space) identifier

– GVPN = guest virtual page number

slide 22

Managing Protection Metadata

slide 23

Details of Metadata Protection

Protected resources: files and memory regions

• (RID, RPN) – unique resource id, app page number

Metadata lookup in VMM:

 (ASID, VPN) (RID, RPN) (IV, H)

• Shim tracks mappings (start, end) (RID, RPN)

– VMM caches these mappings in “metadata lookaside buffer”
(MLB), upcalls into shim on MLB miss

• Indirection needed to support sharing and persistence

– Two processes of the same app may access same resource

– Application may want to keep a resource between executions

– Persistent metadata is stored securely in the guest filesystem

slide 24

Cloning a Cloaked Process

Allocate local storage for new thread

Copy parent’s CTC and fix pointers to the new
thread’s local storage

Change instruction pointer and stack pointer in
the child’s CTC

Set up the uncloaked stack so that the child starts
execution in a special child_start function
within the child’s shim, it finishes initialization

slide 25

Cloning Metadata

Problem: copy-on-write private memory regions
shared between a process and its clone

If parent encrypts shared memory after the fork,
how does the child find metadata for decrypting?

Solution: data structure with metadata
information, mirroring the process trees

• Whenever a page is encrypted, new metadata (random
IV, hash) is propagated to all children with pages
whose contents existed prior to the fork

slide 26

Security Guarantees (1)

OS cannot modify or inject application code

• Application code resides in cloaked memory, where it
is encrypted and integrity-protected

• Any modifications detected because page contents
won’t match the hash in VMM’s metadata cache

OS cannot modify application’s instruction pointer

• All application registers are saved in the cloaked thread
context (CTC) after all faults/interrupts/syscalls and
restored when cloaked execution resumes

• CTC resides in cloaked memory and is encrypted and
integrity-protected, so the OS can’t read or modify it

slide 27

Security Guarantees (2)

OS cannot tamper with the loader

• Before entering cloaked execution, VMM verifies that
the shim was loaded properly by comparing hashes of
the appropriate memory pages with expected values

– If check fails, the application can access resources only in
encrypted form

OS can execute an arbitrary program instead, but
it cannot access any protected data

slide 28

Overshadow: Key Ideas

VM-based protection of application data – even
if the OS is compromised!

No modifications to OS or applications

• Shim extends the “reach” of VMM

Multi-shadowing and cloaking

• Use the shim and faults into VMM to switch between
encrypted and unencrypted views on all transitions
between the application and the OS

slide 29

