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Cryptographic Protocols 

Use cryptography to achieve some higher-level 
security objective 

• Authentication, confidentiality, integrity, key 
distribution or establishment… 

Examples: SSL/TLS, IPsec, Kerberos, SSH, 
802.11b and 802.11i, Skype, S/MIME, hundreds 
of others  

• New protocols constantly proposed, standardized, 
implemented, and deployed 

slide 2 



 

Needham and Schroeder. “Using Encryption for 
Authentication in Large Networks of Computers” 
(CACM 1979) 

Initiated the field of cryptographic protocol design 

• Led to Kerberos, IPsec, SSL, and all modern protocols 

Observed the need for rigorous protocol analysis 

• “Protocols … are prone to extremely subtle errors that 
are unlikely to be detected in normal operation… The 
need for techniques to verify the correctness of such 
protocols is great, and we encourage those interested 
in such problems to consider this area.” 

slide 3 

Needham-Schroeder Protocols 



 

Many simple attacks against protocols have 
been discovered over the years 

• Even carefully designed, widely deployed protocols 
...often years after the protocol has been deployed 

– Examples: SSL, SSH, 802.11b, GSM 

• Simple = attacks do not involve breaking crypto! 

Why is the problem difficult? 

• Concurrency + distributed participants + (often 
incorrect) use of cryptography 

• Active attackers in full control of communications   

• Implicit assumptions and goals behind protocols 
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Things Goes Wrong 



M. Abadi and R. Needham 

 

Prudent Engineering Practice for 

Cryptographic Protocols 

 
(Oakland 1994) 

 



 

Design Principles (1) 

1. Every message should say what it means 

2. The conditions for a message to be acted on   
should be clearly set out 

3. Mention the principal’s name explicitly in the 
message if it is essential to the meaning 

4. Be clear as to why encryption is being done 

5. Don’t assume a principal knows the content of 
encrypted material that is signed by that 
principal 
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Design Principles (2) 

6. Be clear on what properties you are assuming 
about nonces 

7. Predictable quantities used for challenge-
response should be protected from replay 

8. Timestamps must take into account local clock 
variation and clock maintenance mechanisms 

9. A key may have been used recently, yet be old 
 

slide 7 



 

Design Principles (3) 

10. If an encoding is used to present the meaning 
of a message, then it should be possible to tell 
which encoding is being used 

11. The protocol designer should know which trust 
relations his protocol depends on 
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NS Symmetric-Key Protocol  

Alice Bob 

 

{Kc, A}Kb 

Goal: A and B establish a fresh, shared, secret 
key Kc with the help of a trusted key server 

Trusted key server 

 

 
A, B, NonceA 

{ NonceA, B, Kc, {Kc, A}Kb }Ka Ka  
Kb  

 Ka, Kb 

 

 

{NonceB}Kc 

{NonceB-1}Kc 



 

Denning-Sacco Attack 

Attacker recorded an old session and 
compromised session key Kx used in that session 

 

 

 

 

B now believes he shares a fresh secret Kx with A 

Moral: use timestamps to detect replay of old 
messages 
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Bob 

 

{Kx, A}Kb 

 

 

{NonceB}Kx 

{NonceB-1}Kx 



G. Lowe 

 

Breaking and Fixing the 

Needham-Schroeder Public-Key Protocol 

using FDR 

 
(TACAS 1996) 

 



 

  A B 

A’s identity Fresh random number 
generated by A 

B’s reasoning: 
 The only way to learn NonceB is 
       to decrypt the second message 
 Only A can decrypt second message 
 Therefore, A is on the other end 
 
A is authenticated!  

 
Kb 

{ NonceB} 

Ka 
 

{ NonceA, NonceB } 

Kb 
 

{ A, NonceA } Encrypted with B’s public key 
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A’s reasoning: 
 The only person who could know NonceA 
     is the person who decrypted  the first message 
 Only B can decrypt message encrypted with Kb 
 Therefore, B is on the other end of the line 
    
B is authenticated!  

NS Public-Key Protocol 



 

What Does This Protocol Achieve? 

  A B 

 
Kb 

{ NonceB } 

Ka 
 

{ NonceA, NonceB } 

Kb 
 

{ A, NonceA } 

Protocol aims to provide both authentication and secrecy 

After this exchange, only A and B know NonceA and 
NonceB  they can be used to derive a shared key 

slide 13 



 

B can’t decrypt this message, 
but he can replay it 

  A B 

 

{ A, Na } 

 

Kc 

C 

 
{ A, Na } Kb 

 

{ Na, Nc } 
Ka 

 
{ Na, Nc } Ka 

 
{ Nc } Kb 

 

 

Evil participant B tricks 
honest A into revealing 
C’s nonce Nc 

C is convinced that he is talking to A! 

Evil B pretends 
that he is A 

Lowe’s Attack on NSPK 
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  A B 

 

{ A, Na } 

 

Kc 

C 

 
{ A, Na } Kb 

 

{ Na, Nc } Ka 

 
{ Na, Nc } Ka 

Abadi-Needham Principle #1 
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Every message should say what it means 

Who sent this message? 



 

  A B 

 
Kb 

{ NonceB} 

Ka 
 

{ NonceA, B, NonceB } 

Kb 
 

{ A, NonceA } 
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Does this solve the problem?  How? 

Lowe’s Fix to NSPK 



 

Lessons of Lowe’s Attack 

Attacker is a legitimate protocol participant! 

Exploits participants’ reasoning to fool them 

• A is correct that B must have decrypted {A,Na}Kb 
message, but this does not mean that the {Na,Nb}Ka 
message came from B 

• The attack does not rely on breaking cryptography! 

It is important to realize limitations of protocols 

• The attack requires that A willingly talk to adversary 

• In the original setting, each workstation is assumed to 
be well-behaved, and the protocol is correct! 

Discover attacks like this automatically? 
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Analyzing Security Protocols 

Model protocol 

Model adversary 

Formally state security properties 

See if properties preserved under attack 

 

Result: under given assumptions about the 
system, no attack of a certain form will destroy 
specified properties 

• There is no “absolute” security 
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Crypto Protocol Analysis 

Formal Models Computational Models 

Modal Logics Model Checking Game Theory 

Dolev-Yao 

(perfect cryptography) 

Random oracle 

Probabilistic process calculi 

Probabilistic I/O automata 

… 

Finite-state 

Checking 

Process Calculi 
… 

Symbolic Analysis 

Applied pi calculus BAN logic 

Finite processes, 

infinite attacker 

Finite processes, 

finite attacker 

Analysis Techniques 
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Dolev-Yao Model (1983) 

Abstract, idealized model of cryptography 

• Treat cryptographic operations as abstract data types 

– Symmetric-key decryption: decrypt({M}K,K) = M 

– Public-key decryption: decrypt({M}PubKey(A), PrivKey(A)) = M 

Attacker is a nondeterministic process 

• Can intercept any message, decompose into parts 

• Decrypt if and only if it knows the correct key 

• Create new message from data it has observed 

Attacker cannot perform computational analysis 

• Cannot analyze actual cryptographic scheme used  

• Cannot perform statistical tests, timing attacks… 
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Finite-State Analysis 

Describe protocol as a finite-state system 

• State variables with initial values 

• Transition rules 

• Communication by shared variables 

• Scalable: choose system size parameters 

Specify correctness condition 

Find violations by automatic exhaustive state 
enumeration 

• Many tools available: FDR, Mur, … 
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Rules for Protocol Participants 

Messages = abstract terms 

Participants = finite-state automata operating 
on terms 

IF  

  net[i].dest = B & 

  net[i].encKey = B.myPubKey 

THEN 

  msg.nonce1:= B.myNonce; 

  msg.nonce2:= net[i].nonce; 

  msg.encKey:= B.keys[net[i].snd]; 

  net[i+1]:= msg 

AB  {A,NA}pk(B) 

BA  {NB,NA}pk(A) 
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Rules for Dolev-Yao Attacker 

Read and write on the network 

• Full control over all messages exchanged by honest 
parties (but cannot break cryptography) 

Analyze messages 

• Decrypt if and only if correct key is known 

• Break into smaller pieces 

Construct messages 

• Concatenate known fragments 

• Encrypt with known keys 
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Correctness Conditions 

Specified as predicates over system variables 

Secrecy 

 ! setInclusion(B.myNonce, Attacker.KnownNonces) & 

 ! setInclusion(A.myNonce, Attacker.KnownNonces) 

 Authentication 

  A (B.state=DONE) & (B.talkingTo=A) -> 

        A.talkingTo=B 
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Protocol State Space 

  
 

 

 
... 

... 
 

 Participant + attacker rules 
define a state transition graph 

 Every possible execution of the 
protocol is a path in the graph 

 Exhaustively enumerate all 
nodes of the graph, verify 
whether correctness conditions 
hold in every node 

 If not, the path to the violating 
node describes the attack 

Correctness 

condition violated 
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Restrictions on the Model 

Two sources of infinite behavior 

• Multiple protocol runs, multiple participant roles 

• Message space or data space may be infinite 

Finite approximation 

• Assume finite number of participants 

–  Example: 2 clients, 2 servers 

• Assume finite message space 

–  Represent random numbers by r1, r2, r3, … 

–  Do not allow encrypt(encrypt(encrypt(…))) 

This is restriction is not necessary 

(symbolic analysis!) 

This restriction is necessary 

for decidability 
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Tradeoffs 

Finite models are abstract and greatly simplified 

• Components modeled as finite-state machines 

• Cryptographic functions modeled as abstract data types 

• Security property stated as unreachability of “bad” state 

They are tractable… 

• Lots of verification methods, many automated 

 …but not necessarily sound 

• Proofs in the abstract model are subject to simplifying 
assumptions which ignore some of attacker’s capabilities 

 Attack in the finite model implies actual attack 
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