
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

Cryptographic Protocols

Use cryptography to achieve some higher-level
security objective

• Authentication, confidentiality, integrity, key
distribution or establishment…

Examples: SSL/TLS, IPsec, Kerberos, SSH,
802.11b and 802.11i, Skype, S/MIME, hundreds
of others

• New protocols constantly proposed, standardized,
implemented, and deployed

slide 2

Needham and Schroeder. “Using Encryption for
Authentication in Large Networks of Computers”
(CACM 1979)

Initiated the field of cryptographic protocol design

• Led to Kerberos, IPsec, SSL, and all modern protocols

Observed the need for rigorous protocol analysis

• “Protocols … are prone to extremely subtle errors that
are unlikely to be detected in normal operation… The
need for techniques to verify the correctness of such
protocols is great, and we encourage those interested
in such problems to consider this area.”

slide 3

Needham-Schroeder Protocols

Many simple attacks against protocols have
been discovered over the years

• Even carefully designed, widely deployed protocols
...often years after the protocol has been deployed

– Examples: SSL, SSH, 802.11b, GSM

• Simple = attacks do not involve breaking crypto!

Why is the problem difficult?

• Concurrency + distributed participants + (often
incorrect) use of cryptography

• Active attackers in full control of communications

• Implicit assumptions and goals behind protocols

slide 4

Things Goes Wrong

M. Abadi and R. Needham

Prudent Engineering Practice for

Cryptographic Protocols

(Oakland 1994)

Design Principles (1)

1. Every message should say what it means

2. The conditions for a message to be acted on
should be clearly set out

3. Mention the principal’s name explicitly in the
message if it is essential to the meaning

4. Be clear as to why encryption is being done

5. Don’t assume a principal knows the content of
encrypted material that is signed by that
principal

slide 6

Design Principles (2)

6. Be clear on what properties you are assuming
about nonces

7. Predictable quantities used for challenge-
response should be protected from replay

8. Timestamps must take into account local clock
variation and clock maintenance mechanisms

9. A key may have been used recently, yet be old

slide 7

Design Principles (3)

10. If an encoding is used to present the meaning
of a message, then it should be possible to tell
which encoding is being used

11. The protocol designer should know which trust
relations his protocol depends on

slide 8

slide 9

NS Symmetric-Key Protocol

Alice Bob

{Kc, A}Kb

Goal: A and B establish a fresh, shared, secret
key Kc with the help of a trusted key server

Trusted key server

A, B, NonceA

{ NonceA, B, Kc, {Kc, A}Kb }Ka Ka
Kb

 Ka, Kb

{NonceB}Kc

{NonceB-1}Kc

Denning-Sacco Attack

Attacker recorded an old session and
compromised session key Kx used in that session

B now believes he shares a fresh secret Kx with A

Moral: use timestamps to detect replay of old
messages

slide 10

Bob

{Kx, A}Kb

{NonceB}Kx

{NonceB-1}Kx

G. Lowe

Breaking and Fixing the

Needham-Schroeder Public-Key Protocol

using FDR

(TACAS 1996)

 A B

A’s identity Fresh random number
generated by A

B’s reasoning:
 The only way to learn NonceB is
 to decrypt the second message
 Only A can decrypt second message
 Therefore, A is on the other end

A is authenticated!

Kb

{ NonceB}

Ka

{ NonceA, NonceB }

Kb

{ A, NonceA } Encrypted with B’s public key

slide 12

A’s reasoning:
 The only person who could know NonceA
 is the person who decrypted the first message
 Only B can decrypt message encrypted with Kb
 Therefore, B is on the other end of the line

B is authenticated!

NS Public-Key Protocol

What Does This Protocol Achieve?

 A B

Kb

{ NonceB }

Ka

{ NonceA, NonceB }

Kb

{ A, NonceA }

Protocol aims to provide both authentication and secrecy

After this exchange, only A and B know NonceA and
NonceB they can be used to derive a shared key

slide 13

B can’t decrypt this message,
but he can replay it

 A B

{ A, Na }

Kc

C

{ A, Na } Kb

{ Na, Nc }
Ka

{ Na, Nc } Ka

{ Nc } Kb

Evil participant B tricks
honest A into revealing
C’s nonce Nc

C is convinced that he is talking to A!

Evil B pretends
that he is A

Lowe’s Attack on NSPK

slide 14

 A B

{ A, Na }

Kc

C

{ A, Na } Kb

{ Na, Nc } Ka

{ Na, Nc } Ka

Abadi-Needham Principle #1

slide 15

Every message should say what it means

Who sent this message?

 A B

Kb

{ NonceB}

Ka

{ NonceA, B, NonceB }

Kb

{ A, NonceA }

slide 16

Does this solve the problem? How?

Lowe’s Fix to NSPK

Lessons of Lowe’s Attack

Attacker is a legitimate protocol participant!

Exploits participants’ reasoning to fool them

• A is correct that B must have decrypted {A,Na}Kb
message, but this does not mean that the {Na,Nb}Ka
message came from B

• The attack does not rely on breaking cryptography!

It is important to realize limitations of protocols

• The attack requires that A willingly talk to adversary

• In the original setting, each workstation is assumed to
be well-behaved, and the protocol is correct!

Discover attacks like this automatically?
slide 17

Analyzing Security Protocols

Model protocol

Model adversary

Formally state security properties

See if properties preserved under attack

Result: under given assumptions about the
system, no attack of a certain form will destroy
specified properties

• There is no “absolute” security

slide 18

Crypto Protocol Analysis

Formal Models Computational Models

Modal Logics Model Checking Game Theory

Dolev-Yao

(perfect cryptography)

Random oracle

Probabilistic process calculi

Probabilistic I/O automata

…

Finite-state

Checking

Process Calculi
…

Symbolic Analysis

Applied pi calculus BAN logic

Finite processes,

infinite attacker

Finite processes,

finite attacker

Analysis Techniques

slide 19

Dolev-Yao Model (1983)

Abstract, idealized model of cryptography

• Treat cryptographic operations as abstract data types

– Symmetric-key decryption: decrypt({M}K,K) = M

– Public-key decryption: decrypt({M}PubKey(A), PrivKey(A)) = M

Attacker is a nondeterministic process

• Can intercept any message, decompose into parts

• Decrypt if and only if it knows the correct key

• Create new message from data it has observed

Attacker cannot perform computational analysis

• Cannot analyze actual cryptographic scheme used

• Cannot perform statistical tests, timing attacks…
slide 20

Finite-State Analysis

Describe protocol as a finite-state system

• State variables with initial values

• Transition rules

• Communication by shared variables

• Scalable: choose system size parameters

Specify correctness condition

Find violations by automatic exhaustive state
enumeration

• Many tools available: FDR, Mur, …

slide 21

Rules for Protocol Participants

Messages = abstract terms

Participants = finite-state automata operating
on terms

IF

 net[i].dest = B &

 net[i].encKey = B.myPubKey

THEN

 msg.nonce1:= B.myNonce;

 msg.nonce2:= net[i].nonce;

 msg.encKey:= B.keys[net[i].snd];

 net[i+1]:= msg

AB {A,NA}pk(B)

BA {NB,NA}pk(A)

slide 22

Rules for Dolev-Yao Attacker

Read and write on the network

• Full control over all messages exchanged by honest
parties (but cannot break cryptography)

Analyze messages

• Decrypt if and only if correct key is known

• Break into smaller pieces

Construct messages

• Concatenate known fragments

• Encrypt with known keys

slide 23

Correctness Conditions

Specified as predicates over system variables

Secrecy

 ! setInclusion(B.myNonce, Attacker.KnownNonces) &

 ! setInclusion(A.myNonce, Attacker.KnownNonces)

 Authentication

 A (B.state=DONE) & (B.talkingTo=A) ->

 A.talkingTo=B

slide 24

Protocol State Space

...

...

 Participant + attacker rules
define a state transition graph

 Every possible execution of the
protocol is a path in the graph

 Exhaustively enumerate all
nodes of the graph, verify
whether correctness conditions
hold in every node

 If not, the path to the violating
node describes the attack

Correctness

condition violated

slide 25

Restrictions on the Model

Two sources of infinite behavior

• Multiple protocol runs, multiple participant roles

• Message space or data space may be infinite

Finite approximation

• Assume finite number of participants

– Example: 2 clients, 2 servers

• Assume finite message space

– Represent random numbers by r1, r2, r3, …

– Do not allow encrypt(encrypt(encrypt(…)))

This is restriction is not necessary

(symbolic analysis!)

This restriction is necessary

for decidability

slide 26

Tradeoffs

Finite models are abstract and greatly simplified

• Components modeled as finite-state machines

• Cryptographic functions modeled as abstract data types

• Security property stated as unreachability of “bad” state

They are tractable…

• Lots of verification methods, many automated

 …but not necessarily sound

• Proofs in the abstract model are subject to simplifying
assumptions which ignore some of attacker’s capabilities

 Attack in the finite model implies actual attack

slide 27

