
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

Big trend: software as a Web-based service

• Online banking, shopping, government, bill payment,
tax prep, customer relationship management, etc.

• Cloud computing

Applications hosted on Web servers

• Written in a mixture of PHP, Java, Perl, Python, C, ASP

Security is rarely the main concern

• Poorly written scripts with inadequate input validation

• Sensitive data stored in world-readable files

• Recent push from Visa and Mastercard to improve
security of data management (PCI standard)

Web Applications

slide 3

Runs on a Web server or application server

Takes input from remote users

Interacts with back-end databases and third
parties

Prepares and outputs results for users

• Dynamically generated HTML pages

• Content from many different sources, often
including users themselves

– Blogs, social networks, photo-sharing websites…

Typical Web Application Design

Dynamic Web Application

Browser

 Web
server

GET / HTTP/1.0

 HTTP/1.1 200 OK

index.php

Database
server

slide 4

PHP: Hypertext Preprocessor

Server scripting language with C-like syntax

Can intermingle static HTML and code

 <input value=<?php echo $myvalue; ?>>

Can embed variables in double-quote strings

 $user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

Form data in global arrays $_GET, $_POST, …

slide 5

SQL

Widely used database query language

Fetch a set of records

 SELECT * FROM Person WHERE Username=‘Vitaly’

Add data to the table
 INSERT INTO Key (Username, Key) VALUES (‘Vitaly’, 3611BBFF)

Modify data
 UPDATE Keys SET Key=FA33452D WHERE PersonID=5

Query syntax (mostly) independent of vendor

slide 6

Sample Code

 $selecteduser = $_GET['user'];

 $sql = "SELECT Username, Key FROM Key " .

 "WHERE Username='$selecteduser'";

 $rs = $db->executeQuery($sql);

What if ‘user’ is a malicious string that changes
the meaning of the query?

slide 7

SQL Injection: Basic Idea

Victim server

Victim SQL DB

Attacker

unintended
query

receive data from DB

1

2

3

slide 8

This is an input validation vulnerability

• Unsanitized user input in an SQL query to back-
end database changes the meaning of query

Specific case of command injection

Typical Login Prompt

slide 9

User Input Becomes Part of Query

Web

server

Web

browser

(Client)

DB

SELECT passwd

FROM USERS

WHERE uname

IS ‘$user’

slide 10

Enter

Username

and

Password

Enter

Username

and

Password

Normal Login

Web

server

Web

browser

(Client)

DB

SELECT passwd

FROM USERS

WHERE uname

IS ‘smith’

slide 11

Malicious User Input

slide 12

Enter

Username

and

Password

SQL Injection Attack

Web

server

Web

browser

(Client)

DB

SELECT passwd

FROM USERS

WHERE uname

IS ‘’; DROP TABLE

USERS; -- ’

slide 13

Eliminates all user
accounts

slide 14

Exploits of a Mom
http://xkcd.com/327/

slide 15

Authentication with Back-End DB

set UserFound=execute(

 “SELECT * FROM UserTable WHERE

 username=‘ ” & form(“user”) & “ ′ AND

 password= ‘ ” & form(“pwd”) & “ ′ ”);

 User supplies username and password, this SQL query
checks if user/password combination is in the database

If not UserFound.EOF

 Authentication correct

 else Fail

Only true if the result of SQL
query is not empty, i.e.,
user/pwd is in the database

slide 16

Using SQL Injection to Log In

User gives username ′ OR 1=1 --

Web server executes query

 set UserFound=execute(

 SELECT * FROM UserTable WHERE

 username=‘’ OR 1=1 -- …);

Now all records match the query, so the result is
not empty correct “authentication”!

Always true! Everything after -- is ignored!

slide 17

Another SQL Injection Example

To authenticate logins, server runs this SQL
command against the user database:

 SELECT * WHERE user=‘name’ AND pwd=‘passwd’

User enters ’ OR WHERE pwd LIKE ‘% as both
name and passwd

Server executes

 SELECT * WHERE user=‘’ OR WHERE pwd LIKE ‘%’

 AND pwd=‘’ OR WHERE pwd LIKE ‘%’

Logs in with the credentials of the first person in
the database (typically, administrator!)

[From “The Art of Intrusion”]

Wildcard matches any password

Pull Data From Other Databases

User gives username

 ’ AND 1=0
UNION SELECT cardholder, number,
exp_month, exp_year FROM creditcards

Results of two queries are combined

Empty table from the first query is displayed
together with the entire contents of the credit
card database

slide 18

More SQL Injection Attacks

Create new users

 ’; INSERT INTO USERS (‘uname’,‘passwd’,‘salt’)

 VALUES (‘hacker’,‘38a74f’, 3234);

Reset password

 ’; UPDATE USERS SET email=hcker@root.org
WHERE email=victim@yahoo.com

slide 19

Second-Order SQL Injection

Second-order SQL injection: data stored in
database is later used to conduct SQL injection

For example, user manages to set uname to
admin’ --

• This vulnerability could exist if string escaping is
applied inconsistently (e.g., strings not escaped)

• UPDATE USERS SET passwd=‘cracked’
WHERE uname=‘admin’ --’ why does this work?

Solution: treat all parameters as dangerous

slide 20

CardSystems Attack (June 2005)

CardSystems was a major credit card processing
company

Put out of business by a SQL injection attack

• Credit card numbers stored unencrypted

• Data on 263,000 accounts stolen

• 43 million identities exposed

slide 21

SQL Injection in the Real World

Oklahoma Department of Corrections divulges
thousands of social security numbers (2008)

• Sexual and Violent Offender Registry for Oklahoma

• Data repository lists both offenders and employees

“Anyone with a web browser and the knowledge
 from Chapter One of SQL for
 Dummies could have easily
 accessed – and possibly,
 changed – any data within
 the DOC's databases"

slide 22

http://www.ireport.com/docs/DOC-11831

Attack on Microsoft IIS (April 2008)

slide 23

Main Steps in April 2008 Attack

Use Google to find sites using a particular ASP
style vulnerable to SQL injection

Use SQL injection to modify the pages to include
a link to a Chinese site nihaorr1.com

• Do not visit that site – it serves JavaScript that exploits
vulnerabilities in IE, RealPlayer, QQ Instant Messenger

Attack used automatic tool; can be configured to
inject whatever you like into vulnerable sites

There is some evidence that hackers may get
paid for each victim’s visit to nihaorr1.com

slide 24

Part of the SQL Attack String

DECLARE @T varchar(255),@C varchar(255)

DECLARE Table_Cursor CURSOR
FOR select a.name,b.name from sysobjects a,syscolumns b where
a.id=b.id and a.xtype='u' and

(b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167)

OPEN Table_Cursor

FETCH NEXT FROM Table_Cursor INTO @T,@C
WHILE(@@FETCH_STATUS=0) BEGIN

 exec('update ['+@T+'] set
['+@C+']=rtrim(convert(varchar,['+@C+']))+'‘ ''')

FETCH NEXT FROM Table_Cursor INTO @T,@C

END CLOSE Table_Cursor
DEALLOCATE Table_Cursor;

DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST(
%20AS%20NVARCHAR(4000));EXEC(@S);--

slide 25

Preventing SQL Injection

Input validation

• Filter

– Apostrophes, semicolons, percent symbols, hyphens,
underscores, …

– Any character that has special meanings

• Check the data type (e.g., make sure it’s an integer)

Whitelisting

• Blacklisting “bad” characters doesn’t work

– Forget to filter out some characters

– Could prevent valid input (e.g., last name O’Brien)

• Allow only well-defined set of safe values

– Set implicitly defined through regular expressions
slide 26

Escaping Quotes

For valid string inputs use escape characters to
prevent the quote becoming part of the query

• Example: escape(o’connor) = o’’connor

• Convert ’ into \’

Only works for string inputs

Different databases have different rules for
escaping

slide 27

Prepared Statements

Metacharacters such as ’ in queries provide
distinction between data and control

In most injection attacks data are interpreted as
control – this changes the semantics of a query
or a command

Bind variables: ? placeholders guaranteed to be
data (not control)

Prepared statements allow creation of static
queries with bind variables → preserves the

structure of intended query

slide 28

Prepared Statement: Example

PreparedStatement ps =

 db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

 + "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery(); Bind variable
(data placeholder)

Query parsed without parameters

Bind variables are typed (int, string, …)

slide 29

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Builds SQL queries by properly escaping args

• Replaces ′ with \′

 SqlCommand cmd = new SqlCommand(
 “SELECT * FROM UserTable WHERE
 username = @User AND
 password = @Pwd”, dbConnection);

 cmd.Parameters.Add(“@User”, Request[“user”]);

 cmd.Parameters.Add(“@Pwd”, Request[“pwd”]);

 cmd.ExecuteReader();

Parameterized SQL in ASP.NET

slide 30

slide 31

G. Wassermann and Z. Su

Sound and Precise Analysis of

Web Applications for

Injection Vulnerabilities

(PLDI 2007)

slide 32

Wassermann-Su Approach

Focuses on SQL injection vulnerabilities

Soundness

• Tool is guaranteed to find all vulnerabilities

Precision

• Models semantics of sanitization functions

• Models the structure of the SQL query into which
untrusted user inputs are fed

slide 33

“Essence” of SQL Injection

Web app provides a template for the SQL query

Attack = any query in which user input changes
the intended structure of SQL query

Model strings as context-free grammars (CFG)

• Track non-terminals representing tainted input

Model string operations as language tranducers

• Example: str_replace(“ ’ ’ “, “ ’ “, $input)

A matches any char except “ ’ “

slide 34

Phase One: Grammar Production

Generate annotated CFG representing set of
all query strings that program can generate

Direct:

data directly from users

(e.g., GET parameters)

Indirect:

second-order tainted

data (means what?)

slide 35

String Analysis + Taint Analysis

Convert program into
 static single assignment
 form, then into CFG

• Reflects data dependencies

Model PHP filters as
 string transducers

• Some filters are more complex:

 preg_replace(“/a([0-9]*)b/”,

 “x\\1\\1y”, “a01ba3b”) produces “x0101yx33y”

Propagate taint annotations

slide 36

Phase Two: Checking Safety

Check whether the language represented by
CFG contains unsafe queries

• Is it syntactically contained in the language defined
by the application’s query template?

This non-terminal represents tainted input

For all sentences of the form 1 GETUID 2

derivable from query, GETUID is between quotes in

the position of an SQL string literal (means what?)

Safety check:
Does the language rooted in GETUID
contain unescaped quotes?

slide 37

Tainted Substrings as SQL Literals

Tainted substrings that cannot be syntactically
confined in any SQL query

• Any string with an odd # of unescaped quotes (why?)

Nonterminals that occur only in the syntactic
position of SQL string literals

• Can an unconfined string be derived from it?

Nonterminals that derive numeric literals only

Remaining nonterminals in literal position can
produce a non-numeric string outside quotes

• Probably an SQL injection vulnerability

• Test if it can derive DROP WHERE, --, etc.

slide 38

Taints in Non-Literal Positions

Remaining tainted nonterminals appear as non-
literals in SQL query generated by the application

• This is rare (why?)

All derivable strings should be proper SQL
statements

• Context-free language inclusion is undecidable

• Approximate by checking whether each derivable string
is also derivable from a nonterminal in the SQL grammar

– Variation on a standard algorithm

Evaluation

Testing on five real-world PHP applications

Discovered previously unknown vulnerabilities,
including non-trivial ones

• Vulnerability in e107 content management system:

 a field is read from a user-modifiable cookie, used in
a query in a different file

21% false positive rate

• What are the sources of false positives?

slide 40

Example of a False Positive

