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Big trend: software as a Web-based service 

• Online banking, shopping, government, bill payment, 
tax prep, customer relationship management, etc. 

• Cloud computing 

Applications hosted on Web servers 

• Written in a mixture of PHP, Java, Perl, Python, C, ASP 

Security is rarely the main concern 

• Poorly written scripts with inadequate input validation 

• Sensitive data stored in world-readable files 

• Recent push from Visa and Mastercard to improve 
security of data management (PCI standard) 

Web Applications 
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Runs on a Web server or application server 

Takes input from remote users 

Interacts with back-end databases and third 
parties 

Prepares and outputs results for users 

• Dynamically generated HTML pages 

• Content from many different sources, often 
including users themselves 

– Blogs, social networks, photo-sharing websites… 

Typical Web Application Design 
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PHP: Hypertext Preprocessor  

Server scripting language with C-like syntax 

Can intermingle static HTML and code 

  <input value=<?php echo $myvalue; ?>> 

Can embed variables in double-quote strings 

  $user = “world”; echo “Hello $user!”; 

or $user = “world”; echo “Hello” . $user . “!”; 

Form data in global arrays $_GET, $_POST, … 
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SQL 

Widely used database query language 

Fetch a set of records 

 SELECT * FROM Person WHERE Username=‘Vitaly’ 

Add data to the table 
 INSERT INTO Key (Username, Key) VALUES (‘Vitaly’, 3611BBFF) 

Modify data 
 UPDATE Keys SET Key=FA33452D WHERE PersonID=5 

Query syntax (mostly) independent of vendor 
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Sample Code 

   

  $selecteduser = $_GET['user'];  

  $sql = "SELECT Username, Key FROM Key " .  

            "WHERE Username='$selecteduser'"; 

  $rs = $db->executeQuery($sql);  

 

What if  ‘user’ is a malicious string that changes 
the meaning of the query? 
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SQL Injection: Basic Idea 
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This is an input validation vulnerability 

• Unsanitized user input in an SQL query to back-
end database changes the meaning of query 

Specific case of command injection 
 



 

Typical Login Prompt 
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User Input Becomes Part of Query  
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Malicious User Input 
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Eliminates all user 
accounts 
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Exploits of a Mom 
http://xkcd.com/327/ 
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Authentication with Back-End DB 

set UserFound=execute( 

        “SELECT * FROM UserTable WHERE 

        username=‘ ”  &  form(“user”)  & “ ′ AND    

        password= ‘ ”  &  form(“pwd”)  & “ ′ ” ); 

   User supplies username and password, this SQL query 
checks if user/password combination is in the database 

 

If not UserFound.EOF 

       Authentication correct 

   else Fail 

 

Only true if the result of SQL 
query is not empty, i.e., 
user/pwd is in the database 
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Using SQL Injection to Log In 

User gives username ′ OR 1=1 -- 

Web server executes query 

   set UserFound=execute( 

        SELECT * FROM UserTable WHERE 

        username=‘’ OR 1=1 -- … ); 

 

Now all records match the query, so the result is 
not empty  correct “authentication”! 

Always true! Everything after -- is ignored! 
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Another SQL Injection Example 

To authenticate logins, server runs this SQL 
command against the user database: 

        SELECT * WHERE user=‘name’ AND pwd=‘passwd’ 

User enters ’ OR WHERE pwd LIKE ‘% as both 
name and passwd 

Server executes 

       SELECT * WHERE user=‘’ OR WHERE pwd LIKE ‘%’  

       AND pwd=‘’ OR WHERE pwd LIKE ‘%’ 

Logs in with the credentials of the first person in 
the database (typically, administrator!)  

[From “The Art of Intrusion”] 

Wildcard matches any password 



 

Pull Data From Other Databases 

User gives username 

   ’ AND 1=0 
UNION SELECT cardholder, number, 
exp_month, exp_year FROM creditcards 

Results of two queries are combined 

Empty table from the first query is displayed 
together with the entire contents of the credit 
card database 
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More SQL Injection Attacks 

Create new users 

  ’; INSERT INTO USERS (‘uname’,‘passwd’,‘salt’) 

   VALUES (‘hacker’,‘38a74f’, 3234); 

 

Reset password 

 ’; UPDATE USERS SET email=hcker@root.org 
WHERE email=victim@yahoo.com 
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Second-Order SQL Injection 

Second-order SQL injection: data stored in 
database is later used to conduct SQL injection 

For example, user manages to set uname to 
admin’ -- 

• This vulnerability could exist if string escaping is 
applied inconsistently (e.g., strings not escaped) 

• UPDATE USERS SET passwd=‘cracked’  
WHERE uname=‘admin’ --’        why does this work? 

Solution: treat all parameters as dangerous 
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CardSystems Attack (June 2005) 

CardSystems was a major credit card processing 
company 

Put out of business by a SQL injection attack 

• Credit card numbers stored unencrypted 

• Data on 263,000 accounts stolen 

• 43 million identities exposed 
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SQL Injection in the Real World 

Oklahoma Department of Corrections divulges 
thousands of social security numbers (2008) 

• Sexual and Violent Offender Registry for Oklahoma 

• Data repository lists both offenders and employees 

“Anyone with a web browser and the knowledge  
    from Chapter One of SQL for 
    Dummies could have easily 
    accessed – and possibly,  
    changed – any data within  
    the DOC's databases" 
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http://www.ireport.com/docs/DOC-11831 



 

Attack on Microsoft IIS (April 2008) 
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Main Steps in April 2008 Attack 

Use Google to find sites using a particular ASP 
style vulnerable to SQL injection 

Use SQL injection to modify the pages to include 
a link to a Chinese site nihaorr1.com  

• Do not visit that site – it serves JavaScript that exploits 
vulnerabilities in IE, RealPlayer, QQ Instant Messenger 

Attack used automatic tool; can be configured to 
inject whatever you like into vulnerable sites   

There is some evidence that hackers may get 
paid for each victim’s visit to nihaorr1.com  
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Part of the SQL Attack String 

DECLARE @T varchar(255),@C varchar(255)  

DECLARE Table_Cursor  CURSOR 
FOR select a.name,b.name from sysobjects a,syscolumns b where 
a.id=b.id and a.xtype='u' and  

(b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167)  

OPEN Table_Cursor  

FETCH NEXT FROM  Table_Cursor INTO @T,@C 
WHILE(@@FETCH_STATUS=0) BEGIN  

 exec('update ['+@T+'] set 
['+@C+']=rtrim(convert(varchar,['+@C+']))+'‘ ''') 

FETCH NEXT FROM  Table_Cursor INTO @T,@C  

END CLOSE Table_Cursor 
DEALLOCATE Table_Cursor; 

DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST( 
%20AS%20NVARCHAR(4000));EXEC(@S);-- 
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Preventing SQL Injection 

Input validation 

• Filter 

– Apostrophes, semicolons, percent symbols, hyphens, 
underscores, … 

– Any character that has special meanings 

• Check the data type (e.g., make sure it’s an integer) 

Whitelisting 

• Blacklisting “bad” characters doesn’t work 

– Forget to filter out some characters 

– Could prevent valid input (e.g., last name O’Brien) 

• Allow only well-defined set of safe values 

– Set implicitly defined through regular expressions 
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Escaping Quotes 

For valid string inputs use escape characters to 
prevent the quote becoming part of the query 

• Example: escape(o’connor) = o’’connor 

• Convert  ’  into  \’ 

Only works for string inputs 

Different databases have different rules for 
escaping 
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Prepared Statements 

Metacharacters such as ’ in queries provide 
distinction between data and control 

In most injection attacks data are interpreted as 
control – this changes the semantics of a query 
or a command 

Bind variables: ? placeholders guaranteed to be 
data (not control) 

Prepared statements allow creation of static 
queries with bind variables → preserves the 

structure of intended query 
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Prepared Statement: Example 

PreparedStatement ps = 

     db.prepareStatement("SELECT pizza, toppings, quantity, order_day " 

                        + "FROM orders WHERE userid=? AND order_month=?"); 

ps.setInt(1, session.getCurrentUserId()); 

ps.setInt(2, Integer.parseInt(request.getParamenter("month"))); 

ResultSet res = ps.executeQuery(); Bind variable 
(data placeholder) 

 
 

 

Query parsed without parameters 

Bind variables are typed (int, string, …)  
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http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html 



 

Builds SQL queries by properly escaping args 

• Replaces  ′  with   \′ 

  

   SqlCommand cmd = new SqlCommand(  
 “SELECT * FROM UserTable WHERE   
 username = @User AND  
 password = @Pwd”, dbConnection);  

 cmd.Parameters.Add(“@User”, Request[“user”] );  

 cmd.Parameters.Add(“@Pwd”, Request[“pwd”] );  

 cmd.ExecuteReader();  

Parameterized SQL in ASP.NET 
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G. Wassermann and Z. Su 
 

Sound and Precise Analysis of 

Web Applications for 

Injection Vulnerabilities 
 

(PLDI 2007) 
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Wassermann-Su Approach 

Focuses on SQL injection vulnerabilities 

Soundness 

• Tool is guaranteed to find all vulnerabilities 

Precision 

• Models semantics of sanitization functions 

• Models the structure of the SQL query into which 
untrusted user inputs are fed 
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“Essence” of SQL Injection 

Web app provides a template for the SQL query 

Attack = any query in which user input changes 
the intended structure of SQL query 

Model strings as context-free grammars (CFG) 

• Track non-terminals representing tainted input 

Model string operations as language tranducers 

• Example: str_replace(“ ’ ’ “, “ ’ “, $input) 

A matches any char except “ ’ “ 
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Phase One: Grammar Production 

Generate annotated CFG representing set of 
all query strings that program can generate  

 

Direct: 

data directly from users 

(e.g., GET parameters) 

Indirect: 

second-order tainted 

data (means what?) 
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String Analysis + Taint Analysis 

Convert program into 
   static single assignment 
   form, then into CFG 

• Reflects data dependencies 

Model PHP filters as 
   string transducers 

• Some filters are more complex: 

   preg_replace(“/a([0-9]*)b/”, 

   “x\\1\\1y”, “a01ba3b”) produces “x0101yx33y” 

Propagate taint annotations 
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Phase Two: Checking Safety 

Check whether the language represented by 
CFG contains unsafe queries 

• Is it syntactically contained in the language defined 
by the application’s query template? 

This non-terminal represents tainted input 

For all sentences of the form 1 GETUID 2  

derivable from query, GETUID is between quotes in 

the position of an SQL string literal (means what?) 

Safety check: 
Does the language rooted in GETUID 
contain unescaped quotes? 



 

slide 37 

Tainted Substrings as SQL Literals 

Tainted substrings that cannot be syntactically 
confined in any SQL query 

• Any string with an odd # of unescaped quotes (why?) 

Nonterminals that occur only in the syntactic 
position of SQL string literals 

• Can an unconfined string be derived from it? 

Nonterminals that derive numeric literals only 

Remaining nonterminals in literal position can 
produce a non-numeric string outside quotes 

• Probably an SQL injection vulnerability 

• Test if it can derive DROP WHERE, --, etc. 
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Taints in Non-Literal Positions 

Remaining tainted nonterminals appear as non-
literals in SQL query generated by the application 

• This is rare (why?) 

All derivable strings should be proper SQL 
statements 

• Context-free language inclusion is undecidable 

• Approximate by checking whether each derivable string 
is also derivable from a nonterminal in the SQL grammar 

– Variation on a standard algorithm 



 

Evaluation 

Testing on five real-world PHP applications 

Discovered previously unknown vulnerabilities, 
including non-trivial ones 

• Vulnerability in e107 content management system: 

   a field is read from a user-modifiable cookie, used in  
a query in a different file 

21% false positive rate 

• What are the sources of false positives? 
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Example of a False Positive 

 


