CS 6431

Anonymity Networks and Censorship Resistance

Vitaly Shmatikov

Privacy on Public Networks

- Internet is designed as a public network
- Routing information is public
 - IP packet headers identify source and destination
 - Even a passive observer can easily figure out who is talking to whom
- Encryption does not hide identities
 - Encryption hides payload, but not routing headers
 - Even IP-level encryption (VPNs, tunnel-mode IPsec) reveals IP addresses of gateways

Chaum's Mix

Early proposal for anonymous email

• David Chaum. "Untraceable electronic mail, return addresses, and digital pseudonyms". Communications of the ACM, February 1981.

Public-key crypto + trusted re-mailer (Mix)

- Untrusted communication medium
- Public keys used as persistent pseudonyms
- Modern anonymity systems use Mix as the basic building block

Basic Mix Design

Mix Cascades and Mixnets

Messages are sent through a sequence of mixes

• Can also form an arbitrary network of mixes ("mixnet")

Some of the mixes may be controlled by attacker, but even a single good mix ensures anonymity

Pad and buffer traffic to foil correlation attacks

Disadvantages of Basic Mixnets

 Public-key encryption and decryption at each mix are computationally expensive

Basic mixnets have high latency

• Ok for email, but not for Web browsing

Challenge: low-latency anonymity network

- Use public-key crypto to establish a "circuit" with pairwise symmetric keys between hops
- Then use symmetric decryption and re-encryption to move data along the established circuits

Second-generation onion routing network

- http://tor.eff.org
- Specifically designed for low-latency anonymous Internet communications (e.g., Web browsing)
- Running since October 2003
- Hundreds of nodes on all continents
- Over 2,500,000 users
- "Easy-to-use" client
 - Freely available, can use it for anonymous browsing

Tor Circuit Setup (1)

Client proxy establishes a symmetric session key and circuit with Onion Router #1

Tor Circuit Setup (2)

- Client proxy extends the circuit by establishing a symmetric session key with Onion Router #2
 - Tunnel through Onion Router #1

Tor Circuit Setup (3)

- Client proxy extends the circuit by establishing a symmetric session key with Onion Router #3
 - Tunnel through Onion Routers #1 and #2

Using a Tor Circuit

 Client applications connect and communicate over the established Tor circuit

• Datagrams decrypted and re-encrypted at each link

Tor Management Issues

 Many TCP connections can be "multiplexed" over one anonymous circuit

Directory servers

- Lists of active onion routers, their locations, current public keys, etc.
- Control how new routers join the network
 - "Sybil attack": attacker creates a large number of routers
- Directory servers' keys ship with Tor code

Location Hidden Services

 Goal: deploy a server on the Internet that anyone can connect to without knowing where it is or who runs it

- Accessible from anywhere
- Resistant to censorship
- Can survive a full-blown DoS attack
- Resistant to physical attack
 - Can't find the physical server!

Deploying a Hidden Service

Using a Hidden Service

Wele messages(0) | orders(0) | account(80.00)

Shop by category: Drugs(1582) Cannabis(271) Dissociatives(33) Ecstasy(217) Opioids(106) Other(65) Prescription(274) Psychedelics(306) Stimulants(190) Apparel(37) Art(1) Books(300) Computer equipment(9) Digital goods(218) Drug paraphernalia(33) Electronics(13)

10 Grams high grade MDMA 80+% B61.17

Amphetamines sulfate / Speed freebase... **B28.59**

2g Jack Frost (weed) *420 SALE**** 88.54

SI

A

New

5 Grams of pure MDMA crystals **B42.04**

100 red Y tablets 111mg (lab tested)... B97.77

Michael Jackson Discography 1971-2009... 82.52

Silk Road Shutdown

自己的 建铁钢铁 化口油输出剂 化口消化的过去式和过去分词形式 经济贸易 化口油放大剂 化口消化的过去式和过去分词 化合金

Ross Ulbricht, alleged operator of the Silk Road Marketplace, arrested by the FBI on Oct 1, 2013

Silk Road Shutdown Theories

- A package of fake IDs from Canada traced to an apartment to San Francisco?
- A fake murder-for-hire arranged by DPR?
- A Stack Overflow question accidentally posted by Ulbricht under his real name?
 - "How can I connect to a Tor hidden service using curl in php?"
 - ... a few seconds later, changed username to "frosty"
 - ... oh, and the encryption key on the Silk Road server ends with the substring "frosty@frosty"
- Probably <u>not</u> weaknesses in Tor

How Was Silk Road Located?

FBI agent Tarbell's testimony:

- Agents examined the headers of IP packets as they interacted with the Silk Road's login screen, noticed an IP address not associated with any Tor nodes
- As they typed this address into the browser, Silk Road's CAPTCHA prompt appeared
- Address led to rented server in a data center in Iceland
- Common problem: misconfigured software does not send all traffic via Tor, leaks IP address
 - Is this really what happened with the Silk Road server?

Main (?) Tor Problem

Traffic correlation and confirmation

Traffic Confirmation Techniques

Congestion and denial-of-service attacks

- Attack a Tor relay, see if circuit slows down
- Throughput attacks
- Latency leaks
- Website fingerprinting

Tor Adversaries

[Johnson et al. "Users Get Routed". CCS 2013]

A realistic model of Tor adversaries needs to incorporate:

- Autonomous systems and Internet exchange points
- Evolution of Internet topology over time
- Traffic generated by typical applications over time

Using Tor Circuits

- 1. Clients begin all circuits with a selected guard
- 2. Relays define individual exit policies
- 3. Clients multiplex streams over a circuit

Using Tor Circuits

1. Clients begin all circuits with a selected guard

- 2. Relays define individual exit policies
- 3. Clients multiplex streams over a circuit
- 4. New circuits replace existing ones periodically

Node Adversaries

Link Adversaries

Adversary has fixed location, may control one or more autonomous systems or Internet exchange points (IXP)

Modeling User Behavior

Gcal/GDocs

Gmail/GChat

Facebook

Web search

BitTorrent

20-minute traces

One session at 9:00, 12:00, 15:00, and 18:00 Su-Sa

Repeated sessions 8:00-17:00, M-F Repeated sessions 0:00-6:00, Sa-Su

TorPS: The Tor Path Simulator

 Realistic client software model based on the current Tor

Reimplemented path selection in Python

Major path selection features:

- Bandwidth weighting
- Exit policies
- Guards and guard rotation
- Hibernation
- /16 and family conflicts

Node Adversary Success

Link Adversary Success

Fraction of compromised streams

Adversary controls one AS

"best" = most secure client AS, "worst" = least secure

Time to first compromised stream

Not a Theoretical Threat!

Sybil attack + traffic confirmation

- In 2014, two CMU CERT "researchers" added 115 fast relays to the Tor network
 - Accounted for about 6.4% of available guards
 - Because of Tor's guard selection algorithm, these relays became entry guards for a significant chunk of users over their five months of operation

The attackers then used these relays to stage a traffic confirmation attack

RELAY_EARLY Cell

Special control cell sent to the other end of the circuit (not just the next hop, like normal cell) Used to prevent building very long Tor paths

RELAY_EARLY Sent Backward

Any number of RELAY_EARLY cells can be sent backward along the circuit

No legitimate reason for this, just an oversight

Traffic Confirmation

Malicious exit node encodes the name of hidden service in the pattern of relay and padding cellsMalicious guard learns which hidden service the client is accessing

Fighting Internet Censorship

Key use of anonymity networks – circumventing Internet censorship

Using Tor for Circumvention

Let's Play Hide-and-Seek

Goal: Unobservability

Censors should not be able to identify circumvention traffic, clients, or servers through passive, active, or proactive techniques

Unobservability by Imitation

 "Parrot systems" imitate a popular protocol like Skype or HTTP

- SkypeMorph (CCS 2012)
- StegoTorus (CCS 2012)
- CensorSpoofer (CCS 2012)

What's, uh... What's wrong with it?

24446

'E's dead, that's what's wrong with it!

SkypeMorph

Incorrect Packet Headers

The start of message (SoM) header field is MISSING

- This is a <u>single-packet identifier</u> for SkypeMorph traffic
 - No need for sophisticated statistical traffic analysis

Missing Control Channels

SkypeMorph+

Let's imitate the missing parts!

Problem: hard to mimic dynamic behavior

• Active and proactive tests

Dropping UDP Packets

Other Tests

Test	Skype	SkypeMorph+
Flush Supernode cache	Serves as a SN	Rejects all Skype messages
Drop UDP packets	Burst of packets in TCP control	No reaction
Close TCP channel	Ends the UDP stream	No reaction
Delay TCP packets	Reacts depending on the type of message	No reaction
Close TCP connection to a SN	Initiates UDP probes	No reaction
Block the default TCP port	Connects to TCP ports 80 and 443	No reaction

No no! 'E's pining!

'E's not pinin'! 'E's expired and gone to meet 'is maker!

StegoTorus

Censorship region

StegoTorus Chopper

Dependencies between links

StegoTorus-HTTP

Does not look like any HTTP server! Most HTTP methods not supported!

HTTP request	Real HTTP server	StegoTorus's HTTP module
GET existing	Returns "200 OK" and sets Connection to keep-alive	Arbitrarily sets Connection to
- OLT CRISHING -	- Keturns 200 OK and sets connection to keep-allive	either keep-alive or Close
GET long request	Returns "404 Not Found" since URI does not exist	No response
GET non-existing	Returns "404 Not Found"	Returns "200 OK"
GET wrong protocol	Most servers produce an error message, e.g., "400 Bad Request"	Returns "200 OK"
HEAD existing	Returns the common HTTP headers	No response
OPTIONS common	Returns the supported methods in the Allow line	No response
DELETE existing	Most servers have this method not activated and produce an error message	No response
TEST method	Returns an error message, e.g., "405 Method Not Allowed" and sets Connection=Close	No response
Attack request	Returns an error message, e.g., "404 Not Found"	No response

Now that's what I call a dead parrot

ana

6

Unobservability by imitation is fundamentally flawed!

Imitating a Real System Is Hard

Not enough to mimic a "protocol," need to mimic a specific implementation with all its quirks

 A complex protocol in it entirety
 Inter-dependent sub-protocols with complex, dynamic behavior
 Bugs in specific versions of the software
 User behavior

Partial imitation is worse than no imitation

Bad imitation of Skype is easier to recognize than Tor

This is an ex-parrot! This parrot is no more This is a late parrot It's stone dead

12444