
Anonymity Networks and

Censorship Resistance

Vitaly Shmatikov

CS 6431

Privacy on Public Networks

Internet is designed as a public network

Routing information is public

• IP packet headers identify source and destination

• Even a passive observer can easily figure out who is
talking to whom

Encryption does not hide identities

• Encryption hides payload, but not routing headers

• Even IP-level encryption (VPNs, tunnel-mode IPsec)
reveals IP addresses of gateways

slide 2

Chaum’s Mix

Early proposal for anonymous email

• David Chaum. “Untraceable electronic mail, return
addresses, and digital pseudonyms”. Communications
of the ACM, February 1981.

Public-key crypto + trusted re-mailer (Mix)

• Untrusted communication medium

• Public keys used as persistent pseudonyms

Modern anonymity systems use Mix as the basic
building block

slide 3

slide 4

Basic Mix Design

A

C

D

E

B

Mix

{r1,{r0,M}pk(B),B}pk(mix)

{r0,M}pk(B),B

{r2,{r3,M’}pk(E),E}pk(mix)

{r4,{r5,M’’}pk(B),B}pk(mix)

{r5,M’’}pk(B),B

{r3,M’}pk(E),E

Adversary knows all senders and

all receivers, but cannot link a sent

message with a received message

slide 5

Mix Cascades and Mixnets

Messages are sent through a sequence of mixes

• Can also form an arbitrary network of mixes (“mixnet”)

Some of the mixes may be controlled by attacker,
but even a single good mix ensures anonymity

Pad and buffer traffic to foil correlation attacks

Disadvantages of Basic Mixnets

Public-key encryption and decryption at each
mix are computationally expensive

Basic mixnets have high latency

• Ok for email, but not for Web browsing

Challenge: low-latency anonymity network

• Use public-key crypto to establish a “circuit” with
pairwise symmetric keys between hops

• Then use symmetric decryption and re-encryption to
move data along the established circuits

slide 6

slide 7

Second-generation onion routing network

• http://tor.eff.org

• Specifically designed for low-latency anonymous
Internet communications (e.g., Web browsing)

• Running since October 2003

Hundreds of nodes on all continents

Over 2,500,000 users

“Easy-to-use” client

• Freely available, can use it for anonymous browsing

slide 8

Tor Circuit Setup (1)

Client proxy establishes a symmetric session key
and circuit with Onion Router #1

slide 9

Tor Circuit Setup (2)

Client proxy extends the circuit by establishing a
symmetric session key with Onion Router #2

• Tunnel through Onion Router #1

slide 10

Tor Circuit Setup (3)

Client proxy extends the circuit by establishing a
symmetric session key with Onion Router #3

• Tunnel through Onion Routers #1 and #2

slide 11

Using a Tor Circuit

Client applications connect and communicate over
the established Tor circuit

• Datagrams decrypted and re-encrypted at each link

slide 12

Tor Management Issues

Many TCP connections can be “multiplexed” over
one anonymous circuit

Directory servers

• Lists of active onion routers, their locations, current
public keys, etc.

• Control how new routers join the network

– “Sybil attack”: attacker creates a large number of routers

• Directory servers’ keys ship with Tor code

Location Hidden Services

Goal: deploy a server on the Internet that
anyone can connect to without knowing where
it is or who runs it

Accessible from anywhere

Resistant to censorship

Can survive a full-blown DoS attack

Resistant to physical attack

• Can’t find the physical server!

slide 13

slide 14

Server creates circuits

to “introduction points”

Server gives intro points’

descriptors and addresses

to service lookup directory

Client obtains service

descriptor and intro point

address from directory

Deploying a Hidden Service

slide 15

Using a Hidden Service

Client creates a circuit

to a “rendezvous point”

Client sends address of the

rendezvous point and any

authorization, if needed, to

server through intro point

If server chooses to talk to client,

connect to rendezvous point

Rendezvous point

splices the circuits

from client & server

slide 16

slide 17

Silk Road Shutdown

Ross Ulbricht, alleged operator of the Silk Road
Marketplace, arrested by the FBI on Oct 1, 2013

= ?

slide 18

Silk Road Shutdown Theories

A package of fake IDs from Canada traced to an
apartment to San Francisco?

A fake murder-for-hire arranged by DPR?

A Stack Overflow question accidentally posted by
Ulbricht under his real name?

• “How can I connect to a Tor hidden service using curl
in php?”

• … a few seconds later, changed username to “frosty”

• … oh, and the encryption key on the Silk Road server
ends with the substring "frosty@frosty"

Probably not weaknesses in Tor

slide 19

How Was Silk Road Located?

FBI agent Tarbell’s testimony:

• Agents examined the headers of IP packets as they
interacted with the Silk Road’s login screen, noticed an
IP address not associated with any Tor nodes

• As they typed this address into the browser, Silk
Road’s CAPTCHA prompt appeared

• Address led to rented server in a data center in Iceland

Common problem: misconfigured software does
not send all traffic via Tor, leaks IP address

• Is this really what happened with the Silk Road server?

slide 20

Main (?) Tor Problem

Traffic correlation and confirmation

Traffic Confirmation Techniques

Congestion and denial-of-service attacks

• Attack a Tor relay, see if circuit slows down

Throughput attacks

Latency leaks

Website fingerprinting

slide 21

Tor Adversaries

A realistic model of Tor adversaries needs to
incorporate:

Autonomous systems and Internet exchange
points

Evolution of Internet topology over time

Traffic generated by typical applications over time

slide 22

[Johnson et al. “Users Get Routed”.

CCS 2013]

slide 23

Using Tor Circuits

1. Clients begin all circuits with a selected guard

2. Relays define individual exit policies

3. Clients multiplex streams over a circuit

slide 24

Using Tor Circuits

1. Clients begin all circuits with a selected guard

2. Relays define individual exit policies

3. Clients multiplex streams over a circuit

4. New circuits replace existing ones periodically

slide 25

Node Adversaries

slide 26

Link Adversaries

AS1 AS2 AS3 AS4 AS5

AS6

AS8

AS7
AS6

Adversary has fixed location, may control one or more

autonomous systems or Internet exchange points (IXP)

Some ASes and IXPs
handle much more
traffic than others!

slide 27

Modeling User Behavior

20-minute traces

Gmail/GChat

Gcal/GDocs

Facebook

Web search

IRC

BitTorrent

Typical

Session schedule

One session at
9:00, 12:00, 15:00, and
18:00
Su-Sa

Repeated sessions
8:00-17:00, M-F

Repeated sessions
0:00-6:00, Sa-Su

TorPS: The Tor Path Simulator

Realistic client software model based on the
current Tor

Reimplemented path selection in Python

Major path selection features:

• Bandwidth weighting

• Exit policies

• Guards and guard rotation

• Hibernation

• /16 and family conflicts

slide 28

Node Adversary Success

Time to first

compromised stream

Fraction of

compromised streams

Adversary with total

100 MiB/s bandwidth

(83.3 guard, 16.7 exit)

slide 29

Link Adversary Success

Time to first

compromised stream

Fraction of

compromised streams

Adversary controls one AS

“best” = most secure client AS,
“worst” = least secure

slide 30

Not a Theoretical Threat!

Sybil attack + traffic confirmation

In 2014, two CMU CERT “researchers” added
115 fast relays to the Tor network

• Accounted for about 6.4% of available guards

• Because of Tor’s guard selection algorithm, these
relays became entry guards for a significant chunk of
users over their five months of operation

The attackers then used these relays to stage a
traffic confirmation attack

slide 31

slide 32

RELAY_EARLY Cell

Special control cell sent to the other end of the
circuit (not just the next hop, like normal cell)

Used to prevent building very long Tor paths

slide 33

RELAY_EARLY Sent Backward

Any number of RELAY_EARLY cells can be sent
backward along the circuit

No legitimate reason for this, just an oversight

slide 34

Traffic Confirmation

Malicious exit node encodes the name of hidden
service in the pattern of relay and padding cells

Malicious guard learns which hidden service the client
is accessing

Hidden service
descriptor Wants to access

a hidden service

Fighting Internet Censorship

Key use of anonymity networks – circumventing
Internet censorship

slide 35

The Non-Democratic

Republic of Repressistan

Blocked

destination

Tor network

Tor bridge

“Classic” Tor may not
be effective anymore!

Gateway

Active probes

Easily recognizable

at the network level

Deep packet inspection

(DPI)

Using Tor for Circumvention

slide 36

slide 37

The Non-Democratic

Republic of Repressistan

Let’s Play Hide-and-Seek

For example, make this
look like a Skype
connection

Goal: Unobservability

Censors should not be able to
identify circumvention traffic,
clients, or servers through passive,
active, or proactive techniques

slide 38

Unobservability by Imitation

“Parrot systems” imitate a popular protocol like
Skype or HTTP

• SkypeMorph (CCS 2012)

• StegoTorus (CCS 2012)

• CensorSpoofer (CCS 2012)

slide 39

'E's dead, that's
what's wrong with it!

What's, uh...

What's wrong with it?

slide 40

Censorship region The Internet

A Tor node SkypeMorph

bridge

Traffic shaping

SkypeMorph

client

slide 41

SkypeMorph

Incorrect Packet Headers

The start of message (SoM) header field is
MISSING

This is a single-packet identifier for SkypeMorph
traffic

• No need for sophisticated statistical traffic analysis

slide 42

A Tor node SkypeMorph

bridge

TCP control

SkypeMorph

client

Censorship region The Internet

slide 43

Missing Control Channels

No, no.....No,

'e's stunned!

slide 44

SkypeMorph+

Let’s imitate the missing parts!

 Problem: hard to mimic dynamic behavior

• Active and proactive tests

slide 45

Dropping UDP Packets

slide 46

Test Skype SkypeMorph+

Flush Supernode
cache

Serves as a SN Rejects all Skype
messages

Drop UDP packets Burst of packets in
TCP control

No reaction

Close TCP channel Ends the UDP stream No reaction

Delay TCP packets Reacts depending on
the type of message

No reaction

Close TCP connection
to a SN

Initiates UDP probes No reaction

Block the default TCP
port

Connects to TCP ports
80 and 443

No reaction

slide 47

Other Tests

'E's not pinin'!

'E's expired and gone
to meet 'is maker!

No no!

'E's pining!

slide 48

StegoTorus

client
A Tor node StegoTorus

bridge

HTTP

HTTP

Skype

Ventrilo

Censorship region The Internet

StegoTorus

slide 49

HTTP

StegoTorus Chopper

Dependencies between links

slide 50

StegoTorus-HTTP

Does not look like any HTTP server!

Most HTTP methods not supported!

slide 51

Now that's what

I call a dead parrot

slide 52

Lesson #1

Unobservability by imitation is

fundamentally flawed!

slide 53

A complex protocol in it entirety

Inter-dependent sub-protocols with

 complex, dynamic behavior

Bugs in specific versions of the software

User behavior

Not enough to mimic a "protocol," need to mimic

a specific implementation with all its quirks

slide 54

Imitating a Real System Is Hard

Lesson #2

Partial imitation is worse

than no imitation

slide 55

Bad imitation of Skype is easier to
recognize than Tor

slide 56

