
Exploiting the Heap

Vitaly Shmatikov

CS 6431

Memory allocation: malloc(size_t n)

• Allocates n bytes and returns a pointer to the
allocated memory; memory not cleared

• Also calloc(), realloc()

Memory deallocation: free(void * p)

• Frees the memory space pointed to by p, which must
have been returned by a previous call to malloc(),
calloc(), or realloc()

• If free(p) has already been called before, undefined
behavior occurs

• If p is NULL, no operation is performed

Dynamic Memory Management in C

slide 2

Memory Management Errors

Initialization errors

Failing to check return values

Writing to already freed memory

Freeing the same memory more than once

Improperly paired memory management
functions (example: malloc / delete)

Failure to distinguish scalars and arrays

Improper use of allocation functions

All result in exploitable vulnerabilities

slide 3

Doug Lea’s Memory Allocator

The GNU C library and most versions of Linux
are based on Doug Lea’s malloc (dlmalloc) as
the default native version of malloc

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

P

Size or last 4 bytes of prev.

Size

User data

Last 4 bytes of user data

P

Allocated chunk Free chunk

slide 4

Free Chunks in dlmalloc

Organized into circular double-linked lists (bins)

Each chunk on a free list contains forward and
back pointers to the next and previous chunks
in the list

• These pointers in a free chunk occupy the same eight
bytes of memory as user data in an allocated chunk

Chunk size is stored in the last four bytes of the
free chunk

• Enables adjacent free chunks to be consolidated to
avoid fragmentation of memory

slide 5

A List of Free Chunks in dlmalloc

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list

Back pointer to last chunk in list

head

element

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list

Back pointer to last chunk in list

Forward pointer to first chunk in list

Back pointer to last chunk in list

head

element

slide 6

Responding to Malloc

Best-fit method

• An area with m bytes is selected, where m is the
smallest available chunk of contiguous memory equal
to or larger than n (requested allocation)

First-fit method

• Returns the first chunk encountered containing n or
more bytes

Prevention of fragmentation

• Memory manager may allocate chunks that are larger
than the requested size if the space remaining is too
small to be useful

slide 7

The Unlink Macro

#define unlink(P, BK, FD) {

 FD = P->fd;

 BK = P->bk;

 FD->bk = BK;

 BK->fd = FD;

}

slide 8

Removes a chunk from a free list -when?

Hmm… memory copy…

Address of destination read
 from the free chunk

The value to write there also read
 from the free chunk

What if the allocator is confused

and this chunk has actually

been allocated…

… and user data written into it?

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

<-P

:

:

<-BK (2)

<-FD (1)

(4) BK->fd = FD;

(1) FD = P->fd;

(2) BK = P->bk;

(3) FD->bk = BK;

Before

Unlink

Results

of Unlink

(4)

(3)

Example of Unlink

slide 9

What if this area

contained user data?

Freeing the same chunk of memory twice,
without it being reallocated in between

Start with a simple case:
• The chunk to be freed is isolated in memory

• The bin (double-linked list) into which the chunk will be
placed is empty

Double-Free Vulnerabilities

slide 10

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

User data

:

P->

bin->

P

slide 11

Empty Bin and Allocated Chunk

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After First Call to free()

slide 12

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Second Call to free()

slide 13

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After malloc() Has Been Called

slide 14

After malloc, user data

will be written here

This chunk is

unlinked from

free list… how?

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Another malloc()

slide 15

After another malloc,

pointers will be read

from here as if it were

a free chunk (why?)

Same chunk will

be returned…

(why?)

One will be interpreted as address,

the other as value (why?)

slide 16

Use-After-Free in the Real World

MICROSOFT WARNS OF NEW IE ZERO DAY, EXPLOIT IN THE WILD

[ThreatPost, September 17, 2013]

The attacks are targeting IE 8 and 9 and there’s no patch for the vulnerability right
now… The vulnerability exists in the way that Internet Explorer accesses an object in
memory that has been deleted or has not been properly allocated. The vulnerability
may corrupt memory in a way that could allow an attacker to execute arbitrary code…

The exploit was attacking a Use After Free vulnerability in IE’s HTML rendering
engine (mshtml.dll) and was implemented entirely in Javascript (no dependencies on
Java, Flash etc), but did depend on a Microsoft Office DLL which was not compiled
with ASLR (Address Space Layout Randomization) enabled.

The purpose of this DLL in the context of this exploit is to bypass ASLR by providing
executable code at known addresses in memory, so that a hardcoded ROP (Return
Oriented Programming) chain can be used to mark the pages containing shellcode (in
the form of Javascript strings) as executable…

The most likely attack scenarios for this vulnerability are the typical link in an email or
drive-by download.

slide 17

Problem: Lack of Diversity

Classic memory exploits need to know the (virtual)
address to hijack control

• Address of attack code in the buffer

• Address of a standard kernel library routine

Same address is used on many machines

• Slammer infected 75,000 MS-SQL servers in 10 minutes
using identical code on every machine

Idea: introduce artificial diversity

• Make stack addresses, addresses of library routines, etc.
unpredictable and different from machine to machine

slide 18

ASLR

Address Space Layout Randomization

Randomly choose base address of stack, heap,
code segment, location of Global Offset Table

• Randomization can be done at compile- or link-time, or
by rewriting existing binaries

Randomly pad stack frames and malloc’ed areas

Other randomization methods: randomize system
call ids or even instruction set

slide 19

Base-Address Randomization

Only the base address is randomized

• Layouts of stack and library table remain the same

• Relative distances between memory objects are not
changed by base address randomization

To attack, it’s enough to guess the base shift

A 16-bit value can be guessed by brute force

• Try 215 (on average) overflows with different values for
addr of known library function – how long does it take?

– In “On the effectiveness of address-space randomization”
(CCS 2004), Shacham et al. used usleep() for attack (why?)

• If address is wrong, target will simply crash

ASLR in Windows

Vista and Server 2008

Stack randomization

• Find Nth hole of suitable size (N is a 5-bit random value),
then random word-aligned offset (9 bits of randomness)

Heap randomization: 5 bits

• Linear search for base + random 64K-aligned offset

EXE randomization: 8 bits

• Preferred base + random 64K-aligned offset

DLL randomization: 8 bits

• Random offset in DLL area; random loading order

slide 20

Example: ASLR in Vista

Booting Vista twice loads libraries into different locations:

ASLR is only applied to images for which

the dynamic-relocation flag is set

slide 21

Bypassing Windows ASLR

Implementation uses randomness improperly,
thus distribution of heap bases is biased

• Ollie Whitehouse, Black Hat 2007

• Makes guessing a valid heap address easier

When attacking browsers, may be able to insert
arbitrary objects into the victim’s heap

• Executable JavaScript code, plugins, Flash, Java
applets, ActiveX and .NET controls…

Heap spraying

• Stuff heap with multiple copies of attack code

slide 22

vtable

Function Pointers on the Heap

Compiler-generated function pointers
(e.g., virtual method table in C++ or JavaScript code)

Suppose vtable is on the heap next to a string object:

ptr

data

Object T FP1

FP2

FP3

vtable

method #1

method #2

method #3

p
tr

buf[256]

d
a
ta

object T
slide 23

Heap-Based Control Hijacking

Compiler-generated function pointers
(e.g., virtual method table in C++ code)

Suppose vtable is on the heap next to a string object:

ptr

data

Object T FP1

FP2

FP3

vtable

method #1

method #2

method #3

p
tr

buf[256]

d
a
ta

object T

vtable

slide 24

shell
code

Problem?

 <SCRIPT language="text/javascript">

 shellcode = unescape("%u4343%u4343%...");

 overflow-string = unescape(“%u2332%u4276%...”);

 cause-overflow(overflow-string); // overflow buf[]

 </SCRIPT?

p
tr

buf[256]

d
a
ta

object T

vtable

slide 25

shell
code

Where will the browser place

the shellcode on the heap???

slide 26

Force JavaScript JiT (“just-in-time” compiler) to
fill heap with executable shellcode, then point
SFP or vtable ptr anywhere in the spray area

Heap Spraying
h
e
a
p

NOP slide shellcode

execute enabled execute enabled

execute enabled execute enabled

execute enabled execute enabled

 var nop = unescape(“%u9090%u9090”)

 while (nop.length < 0x100000) nop += nop

 var shellcode = unescape("%u4343%u4343%...");

 var x = new Array ()

 for (i=0; i<1000; i++) {

 x[i] = nop + shellcode;

 }

Pointing a function pointer anywhere in the heap will
cause shellcode to execute

JavaScript Heap Spraying

slide 27

Use a sequence of JavaScript allocations and free’s
to make the heap look like this:

Allocate vulnerable buffer in JavaScript and
 cause overflow

slide 28

Placing Vulnerable Buffer
[Safari PCRE exploit, 2008]

object O

free blocks

heap

slide 29

Aurora Attacks

2009 attacks of Chinese origin on Google and
several other high-tech companies

• State Department cables published on WikiLeaks claim
the attacks were directed by the Chinese Politburo

Phishing emails exploit a use-after-free
vulnerability in IE 6 to install Hydraq malware

• Compromised machines establish SSL-like backdoor
connections to C&C servers

Goal: gain access to software management
systems and steal source code

slide 30

It All Starts With an Email…

A targeted, spear-phishing email is sent to
sysadmins, developers, etc. within the company

Victims are tricked into visiting a page hosting this
Javascript:

It decrypts and executes the actual exploit

slide 31

Aurora Exploit (1)
http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

Decrypts into this code…

This code sprays the heap with
0x0D0C bytes + shellcode

slide 32

Aurora Exploit (2)
http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

3. Deletes the image

2. Creates an image object and
calls this code when image is loaded

1. Sets up an array of
two hundred “COMMENT” objects

4. Sets up a timer to
call this code every 50 milliseconds

slide 33

Aurora Exploit (3)
http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

Overwrites memory that belonged to
the deleted image object with 0x0C0D

Accesses the deleted image

Allocated memory has a reference counter

(how many pointers are pointing to this object?)

A bug in IE6 JavaScript reference counter allows

code to dereference a deleted object

Aurora Exploit (4)

When accessing this image object, IE 6
executes the following code:

MOV EAX,DWORD PTR DS:[ECX]

CALL DWORD PTR DS:[EAX+34]

This code calls the function whose address is
stored in the object… Ok if it’s a valid object!

But object has been deleted and its memory has
been overwritten with 0x0C0D0C0D… which
happens to be a valid address in the heap spray
area  control is passed to shellcode

slide 34

http://www.symantec.com/connect/blogs/trojanhydraq-incident-analysis-aurora-0-day-exploit

Aurora Tricks

0x0C0D does double duty as a NOP-like instruction
and as an address

• 0x0C0D is binary for OR AL, 0d – effectively a NOP – so
an area filled with 0x0C0D acts as a NOP sled

– AL is the lower byte of the EAX register

• When 0x0C0D0C0D is read from memory by IE6, it is
interpreted as an address… which points into the heap
spray area, likely to an 0x0C0D instruction

Bypasses DEP (Data Execution Prevention) – how?

Full exploit code:

http://wepawet.iseclab.org/view.php?hash=1aea206aa64ebeabb07237f1e2230d0f&type=js

slide 35

Information Leaks Break ASLR

Pointer to a static variable reveals DLL’s
location… for all processes on the system!

Pointer to a frame object betrays the entire stack

Fermin Serna’s talk at Black Hat 2012

• Massaging the heap / heap feng shui to produce
predictable heap layouts

• Tricking existing code into writing addresses into
attacker-readable memory

– Exploiting garbage collection heuristics and use-after-free

• Example: very cool leak via Flash BitMap histogram
(CVE-2012-0769)

slide 36

Interpreter Exploitation

So you discovered way to overwrite a function
pointer somewhere in a modern browser…

K00l! L33T! But…

• Address space is randomized – where to point?

• DEP – can’t execute data on the heap!

Remember ActionScript?

• JavaScript-like bytecode in Flash files

Just-in-time (JiT) compiler will allocate writable
memory and write executable x86 code into it

• But how to get ActionScript bytecode to compile into
shellcode?

slide 37

[D. Blazakis, WOOT 2010]

Constants in x86 Binary
B8

D9

D0

54

3C

var y = (

 0x3c54d0d9 ^

 0x3c909058 ^

 0x3c59f46a ^

 0x3c90c801 ^

 0x3c9030d9

 …

slide 38

MOV EAX, 3C54D0D9

XOR EAX, 3C909058

XOR EAX, 3C59F46A

XOR EAX, 3C90C801

XOR EAX, 3C9030D9

35

58

90

90

3C

35

6A

F4

59

3C

35

01

C8

90

3C

35

D9

30

…

compiles
into

Unintended Instructions Strike Again
B8

D9

D0

54

3C

slide 39

MOV EAX, 3C54D0D9

XOR EAX, 3C909058

XOR EAX, 3C59F46A

XOR EAX, 3C90C801

XOR EAX, 3C9030D9

35

58

90

90

3C

35

6A

F4

59

3C

35

01

C8

90

3C

35

D9

30

…

Suppose execution
starts here instead FNOP

PUSH ESP

CMP AL, 35

CMP AL, 35

CMP AL, 35

CMP AL, 35

POP EAX
NOP
NOP

PUSH -0C

POP ECX

ADD EAX, ECX

NOP

FSTENV DS:[EAX]

This shellcode implements

a standard trick for

learning its own location

in address space, ie, EIP value:

save the address of the current

instruction (normally used for

floating point exceptions),

then read it

Making XORs Disappear

…

3C

slide 40

35

… XOR opcode

First byte of
attacker-controlled
constant

A “no-op” instruction
CMP AL, …

… that takes one operand

slide 41

Next Stage

See paper for details of heap spraying to figure
out where JIT put generated code

• Exploits behavior of Flash VM heap implementation

JIT code contains function pointers

Initial shellcode uses these function pointers to
find the VirtualProtect call in the Flash VM …

… then uses VirtualProtect to mark a memory
region as executable

… then copies the actual payload into this region
and jumps to it… Done?

slide 42

Inferring Addresses

To trigger the exploit in the first place, need to
know the address to jump to!

To infer address of a given object, exploit the
implementation of ActionScript hash tables

• ActionScript “dictionary” = hash table of key/value pairs

• When the key is a pointer to an object, it is treated as
an integer when inserting it into dictionary

Idea #1: fill a table with integer keys, insert
 the pointer, see which integers are next to it

• Problem: collisions! Insertion place ≠ hash(address)

2

4

6

address
8

10

slide 43

Integer Sieve

Two tables: one filled with even integers, the
other with odd integers… insert pointer into both

1

3

5

7

9

Hash(address) Hash(address)

Collision will happen in
exactly one of the tables (why?)

In the table with collision, ActionScript
uses quadratic probe (why?)
to find next place to try inserting

This insertion will not collide (why?)

Search the table to find the pointer –
integers before and after will give interval for address value

slide 44

Unintended Instructions Redux

English shellcode - Mason et al. (CCS 2009)

• Convert any shellcode into an English-looking text

Encoded payload

Decoder uses only a subset of x86 instructions

• Those whose binary representation corresponds to
English ASCII characters

– Example: popa - “a”

 push %eax - “P”

Additional processing and padding to make
combinations of characters look like English text

slide 45

English Shellcode: Example
[Mason et al., CCS 2009]

In-Place Code Randomization

Instruction reordering

Instruction substitution

Register re-allocation

slide 46

MOV EAX, &p1

MOV EBX, &p2

MOV EBX, &p2

MOV EAX, &p1

[Pappas et al., Oakland 2012]

MOV EBX, $0 XOR EBX, EBX

MOV EAX, &p

CALL *EAX

MOV EBX, &p

CALL *EBX

Instruction Location Randomization

slide 47

[Hiser et al., Oakland 2012]

Every instruction is in a

random location and

has an explicit successor

ROP solved?

Just-in-Time Code Reuse (1)

slide 48

[Snow et al., Oakland 2013]

Find one code pointer

(using any disclosure vulnerability)

The entire page must be code…

Analyze the instructions to find

jumps and calls to other code pages…

Map out a big portion of

the application’s code pages

Just-in-Time Code Reuse (2)

slide 49

[Snow et al., Oakland 2013]

Use typical opcode sequences to

find calls to LoadLibrary() and

GetProcAddr()…

These can be used to invoke any

library function by supplying the

right arguments - don’t need to

discover the function’s address!

Just-in-Time Code Reuse (3)

slide 50

[Snow et al., Oakland 2013]

Collect gadgets in runtime by

analyzing the discovered code pages

(dynamic version of Shacham’s

“Galileo” algorithm)

Compile on the fly into shellcode

