
CS 6431 - Security and Privacy Technologies
Fall 2014

Homework #1

Due: 7:30pm EDT, October 8, 2014

NO LATE SUBMISSIONS WILL BE ACCEPTED

YOUR NAME:

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade.
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Homework #1 (50 points)

Molvan̂ıa is a small, land-locked republic in Eastern Europe famous for its phishers, spam-
lords, botmasters—and computer security researchers. It also produces 83% of the world’s
b33tr00t. Most people get to Molvan̂ıa either by air or by accident, but in this homework,
we travel there virtually.

Problem 1

All Molvan̂ıan C compilers for x86 insert stack canaries into generated code to prevent
stack-smashing attacks. Nevertheless, Molvan̂ıan Cyber-Security Bureau mandates the use
of libsafe with all executables compiled from C.

libsafe is a wrapper around the C string library, intended to ensure that string oper-
ations cannot overwrite any control information stored on the stack (such as saved return
address, saved frame pointer, etc.). For example, the libsafe wrapper around strcpy adds
the following check before strcpy(src,dest) is executed:

|framePointer - dest| > strlen(src)

Problem 1a (4 points)

What additional protections are gained by using libsafe with canary-equipped executables?

Problem 1b (4 points)

Give a short snippet of C code that contains a single call to a libsafe-protected strcpy,
and yet is vulnerable to a memory corruption attack as a result of this call. Your attack
must also bypass compiler-inserted stack canaries.
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Problem 2

x68 is Molvan̂ıan homegrown chip architecture. Unlike on x86, the stack on x68 grows
upwards.

Problem 2a (3 points)

How does a stack overflow attack work on x68?

Problem 2b (3 points)

How would you implement StackGuard on x68? What would be the main differences from
x86?

Problem 2c (3 points)

How would you implement libsafe on x68? What would be the main differences from x86?
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Problem 3 (6 points)

Consider the following snippet of C code:

1 char ∗p1 = mal loc ( 9 0 ) ;
2 char ∗p2 = p1 + A;
3 char ∗p3 = p2 + B;
4 ∗p3 = ’\0 ’ ;

Suppose this code is protected from buffer overflows by “baggy bounds” checking with
16-byte slots. For each of the following values of A and B, indicate whether the checks will
abort the program and, if so, at which line of the above code.

• A = 95, B = -10

• A = -10, B = 95

• A = 130, B = -5

• A = -5, B = 130

• A = 140, B = -15

• A = 135, B = -5

Problem 4 (6 points)

Molvan̂ıan Cyber-Security Bureau requires that all C code be statically checked to verify
that it satisfies a certain set of rules. Each rule is expressed by a finite-state automaton with
a special ERROR state. As the checker scans the code, it keeps track of the current state
in the automaton. If a state labelled ERROR is ever reached, then the checker reports an
error in the code.

Draw finite-state automata representing the following security rules. If you believe the
rule cannot be expressed by a finite-state automaton, explain why.

• Immediately before each call to strcpy(dest,src), the program must check the length
of src by calling strlen(src).
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• Each temporary file used by the program must be created using mkstemp(), written,
and eventually closed.

• The return value of every call to malloc must be immediately checked to ensure that
it is not NULL.

Problem 5

Workstations based on DEC Alpha architecture are still widely used in Molvan̂ıa. In the
DEC Alpha assembly language, all instructions are 4-bytes wide and must start on an aligned
4-byte boundary. Here are some examples:

• br Ra, disp
An unconditional relative branch. This instruction stores the address of the next in-
struction in Ra and then skips disp instructions, where disp may be negative. For
example, br r13, -5 jumps back 5 instructions (this may happen in a loop, for ex-
ample).

• jmp Ra, (Rb)
Jump to register. Stores the address of the next instruction in Ra, then jumps and
starts executing code at address Rb.

• ldq Rv , disp (Ra)
Load. Takes the memory address contained in register Ra, adds disp to it, and loads
the value of the memory location at this address into register Rv .

• stq Rv , disp (Ra)
Store. Takes the memory address contained in register Ra, adds disp to it, and stores
the value of register Rv into the memory location at this address.
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• bis Ra, Rb, Rc
Compute bitwise OR of Ra and Rb and store it into Rc.

• and Ra, Rb, Rc
Compute bitwise AND of Ra and Rb and store it into Rc.

Problem 5a (3 points)

Fault isolation requires inserting special checking code before every unsafe instruction, i.e.,
an instruction that may potentially write or execute memory outside the fault domain. For
example, a store instruction stq Ra, 0(Rb) is unsafe if it cannot be statically checked that
the address contained in Rb is within the fault domain’s data segment.

In the following list, circle the instruction(s) which can be unsafe:

• br Ra, disp where disp falls within the fault domain’s code segment.

• jmp Ra, (Rb)

• ldq Rv , disp (Ra)

• bis Ra, Rb, Rc

Problem 5b (3 points)

Suppose that the unsafe store instructions are “sandboxed” as follows. We use dedicated
registers r20 and r21 to store, in the positions corresponding to the segment identifier part
of a memory address, all-zero bits and the segment ID bits, respectively. If the code contains
an unsafe store instruction stq r2, 0(r1), it is replaced by the following three instructions:

and r1, r20, r1

bis r1, r21, r1

stq r2, 0(r1)

How can you subvert the safety of the system that uses this sandboxing mechanism?

Problem 5c (3 points)

Suppose communication between fault domains is implemented as follows. For each fault
domain, the trusted execution environment inserts special “stubs” (little snippets of code)
into a special region of that domain’s code segment. Because the code of the stubs is trusted,
it may contain unsafe instructions. Furthermore, the stubs are the only part of the fault
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domain’s code segment that is allowed to have instructions branching outside of this code
segment.

When a trusted caller calls an untrusted function, it branches to the “entry” stub, which
copies arguments, saves registers that must be changed when switching fault domains, and
passes control to the untrusted code. When the untrusted code returns, it jumps directly to
the “return” stub in its code segment, which restores the context and returns to the caller.

How can you subvert the safety of the system that uses this cross-domain communication
mechanism?

Problem 5d (3 points)

How should you implement the “stubs” for cross-domain communication so that they cannot
be subverted? You may explain or draw a picture.

Problem 6 (3 points)

Sandboxing x86 (as opposed to RISC) code is difficult because variable-length x86 instruc-
tions are hard for the verifier to parse. In Molvan̂ıa, however, code is shipped as ASCII
assembly language source. The verifier modifies the source to ensure the following proper-
ties:

• Register %edx is only used to define the logical fault domain (i.e., for segment match-
ing).

• Every instruction that modifies memory. . .

– . . . is relative to the stack or frame pointer (with a small enough offset not to go
out of bounds), or

– . . . uses the %edx register for segment matching with the following code:
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mov DEST, %edx

bound %edx, domainrange

INST SRC, (%edx)

Here DEST is the memory location that is being written, domainrange is the
location of pointers to the beginning and end of the fault domain’s data segment,
the bound instruction traps if %edx is not within that range, and INST and SRC
can be any instruction and source that modify the memory pointed to by DEST.

The verifier allows relative branches to any byte within the fault domain’s code segment,
but control transfers outside the code segment use a jump table which transfers to trusted
code stubs not in the code segment.

Explain how, even with this scheme, malicious code could escape the sandbox and modify
other regions of a process’s address space.

Problem 7

Problem 7a (3 points)

What is the exact control-flow property that Native Client enforces? Is it weaker, stronger,
or the same as control-flow integrity?

Problem 7b (3 points)

In Native Client, “springboards” are snippets of trusted code which are located in the mem-
ory of the untrusted binary module. Their purpose is to enable control transfers from the
trusted runtime environment to untrusted code. Because the sprinboard code is trusted, it
may include privileged instructions which are not normally available to the untrusted code.

What prevents untrusted code from executing these instructions by passing control—via
either a jump, or sequential execution—to the springboard code located in its memory?

8


