
Detecting and Preventing

Memory Attacks

Vitaly Shmatikov

CS 6431

slide 2

Intrusion Detection Techniques

Misuse detection

• Use attack “signatures” - need a model of the attack

• Must know in advance what attacker will do (how?)

• Can only detect known attacks

Anomaly detection

• Using a model of normal system behavior, try to
detect deviations and abnormalities

• Can potentially detect unknown attacks

Which is harder to do?

slide 3

Level of Monitoring

Which types of events to monitor?

• OS system calls

• Command line

• Network data (e.g., from routers and firewalls)

• Keystrokes

• File and device accesses

• Memory accesses

Auditing / monitoring should be scalable

slide 4

System Call Interposition

Observation: all sensitive system resources are
accessed via OS system call interface

• Files, sockets, etc.

Idea: monitor all system calls and block those
that violate security policy

• Inline reference monitors

• Language-level

– Example: Java runtime environment inspects the stack of the
function attempting to access a sensitive resource to check
whether it is permitted to do so

• Common OS-level approach: system call wrapper

– Want to do this without modifying OS kernel (why?)

slide 5

Janus
[Berkeley project, 1996]

slide 6

Policy Design

Designing a good system call policy is not easy

When should a system call be permitted and
when should it be denied?

Example: ghostscript

• Needs to open X windows

• Needs to make X windows calls

• But what if ghostscript reads characters you type in
another X window?

slide 8

Traps and Pitfalls

Incorrectly mirroring OS state

Overlooking indirect paths to resources

• Inter-process sockets, core dumps

Race conditions (TOCTTOU)

• Symbolic links, relative paths, shared thread meta-data

Unintended consequences of denying OS calls

• Process dropped privileges using setuid but didn’t check
value returned by setuid… and monitor denied the call

Bugs in reference monitors and safety checks

• What if runtime environment has a buffer overflow?

[Garfinkel. “Traps and Pitfalls:

Practical Problems in System Call

Interposition Based Security Tools”.

NDSS 2003]

slide 9

Incorrectly Mirroring OS State

Policy: “process can bind TCP sockets on port 80,

 but cannot bind UDP sockets”

X = socket(UDP, …) Monitor: “X is a UDP socket”

Y = socket(TCP, …) Monitor: “Y is a TCP socket”

close(Y)

dup2(X,Y) Monitor’s state now inconsistent with OS

bind(Y, …) Monitor: “Y is a TCP socket, Ok to bind”

 Oops!

[Garfinkel]

slide 10

TOCTTOU in Syscall Interposition

User-level program makes a system call

• Direct arguments in stack variables or registers

• Indirect arguments are passed as pointers

Wrapper enforces some security policy

• Arguments are copied into kernel memory and analyzed
and/or substituted by the syscall wrapper

What if arguments change right here?

If permitted by the wrapper, the call proceeds

• Arguments are copied into kernel memory

• Kernel executes the call

slide 11

Exploiting TOCTTOU Conditions

Forced wait on disk I/O

• Example: rename()

– Attacker causes the target path of rename() to page out to disk

– Kernel copies in the source path, then waits for target path

– Concurrent attack process replaces the source path

– Postcondition checker sees the replaced source path

Voluntary thread sleeps

• Example: TCP connect()

– Kernel copies in the arguments

– Thread calling connect() waits for a TCP ACK

– Concurrent attack process replaces the arguments

[Watson. “Exploiting Concurrency

Vulnerabilities in System Call Wrappers”.

WOOT 2007]

slide 12

TOCTTOU via a Page Fault
[Watson]

slide 13

TOCTTOU on Sysjail
[Watson]

slide 14

Mitigating TOCTTOU

Make pages with syscall arguments read-only

• Tricky implementation issues

• Prevents concurrent access to data on the same page

Avoid shared memory between user process,
syscall wrapper and the kernel

• Argument caches used by both wrapper and kernel

• Message passing instead of argument copying (why
does this help?)

Atomicity using system transactions

Integrate security checks into the kernel?

slide 15

Interposition + Static Analysis

1. Analyze the program to determine its expected
system call behavior

2. Monitor actual behavior

3. Flag an intrusion if there is a deviation from the
expected behavior

• System call trace of the application is constrained to
be consistent with the source or binary code

• Main advantage: a conservative model of expected
behavior will have zero false positives

slide 16

Trivial “Bag-O’Calls” Model

Determine the set S of all system calls that an
application can potentially make

• Lose all information about relative call order

At runtime, check for each call whether it
belongs to this set

Problem: large number of false negatives

• Attacker can use any system call from S

Problem: |S| very big for large applications

slide 17

Callgraph Model

Build a control-flow graph of the application by
static analysis of its source or binary code

Result: non-deterministic finite-state automaton
(NFA) over the set of system calls
• Each vertex executes at most one system call

• Edges are system calls or empty transitions

• Implicit transition to special “Wrong” state for all
system calls other than the ones in original code;
all other states are accepting

System call automaton is conservative

• Zero false positives!

[Wagner and Dean. “Intrusion Detection

via Static Analysis”. Oakland 2001]

slide 18

NFA Example

• Monitoring is O(|V|) per system call

• Problem: attacker can exploit impossible paths

– The model has no information about stack state!

[Wagner and Dean]

slide 19

write

log

exec

myexec

log

setuid

mysetuid

log

void

myexec (char *src)

{

 log(“Execing”, 7);

 exec(“/bin/ls”);

}

void

mysetuid (uid_t uid)

{

 setuid(uid);

 log(“Set UID”, 7);

}

void

log (char *msg,

 int len)

{

 write(fd, msg, len);

}

Another NFA Example

[Giffin]

slide 20

NFA Permits Impossible Paths

e

e e

e

write

log

exec

myexec

log

setuid

mysetuid

log

Impossible execution path

is permitted by NFA!

slide 21

NFA: Modeling Tradeoffs

A good model should be…

• Accurate: closely models expected execution

• Fast: runtime verification is cheap

NFA Fast

Slow

Accurate Inaccurate

slide 22

Abstract Stack Model

NFA is not precise, loses stack information

Alternative: model application as a context-free
language over the set of system calls

• Build a non-deterministic pushdown automaton (PDA)

• Each symbol on the PDA stack corresponds to single
stack frame in the actual call stack

• All valid call sequences accepted by PDA; enter
“Wrong” state when an impossible call is made

slide 23

e

e
push A

pop A

e

e
pop B

push B

write

log

exec

myexec

log

setuid

mysetuid

log

PDA Example
[Giffin]

slide 24

Another PDA Example
[Wagner and Dean]

slide 25

PDA: Modeling Tradeoffs

Non-deterministic PDA has high cost

• Forward reachability algorithm is cubic in
automaton size

• Unusable for online checking

NFA Fast

Slow

Accurate Inaccurate

PDA

slide 26

Dyck Model

Idea: make stack updates (i.e., function calls and
returns) explicit symbols in the alphabet

• Result: stack-deterministic PDA

At each moment, the monitor knows where the
monitored application is in its call stack

• Only one valid stack configuration at any given time

How does the monitor learn about function calls?

• Use binary rewriting to instrument the code to issue
special “null” system calls to notify the monitor

– Potential high cost of introducing many new system calls

• Can’t rely on instrumentation if application is corrupted

[Giffin et al. “Efficient Context-Sensitive

Intrusion Detection”. NDSS 2004]

slide 27

Example of Dyck Model

A

A

B

 B

write

log

exec

myexec

setuid

mysetuid

Runtime monitor now
“sees” these transitions

[Giffin]

slide 28

System Call Processing Complexity

 n is state count

 m is transition count

Model
Time & Space
Complexity

NFA O(n)

PDA O(nm2)

Dyck O(n)

[Giffin]

slide 29

Runtime Bounds Checking

Referent object = buffer to which pointer points

• Actual size is available at runtime!

1. Modified pointer representation

• Pointer keeps information about its referent object

• Incompatible with external code, libraries, etc.

2. Special table maps pointers to referent objects

• Check referent object on every dereference

• What if a pointer is modified by external code?

3. Keep track of address range of each object

• For every pointer arithmetic operation, check that the
result points to the same referent object

slide 30

Jones-Kelly

Pad each object by 1 byte

• C permits a pointer to point to the byte right after an
allocated memory object

Maintain a runtime tree of allocated objects

Backwards-compatible pointer representation

Replace all out-of-bounds addresses with special
ILLEGAL value (if dereferenced, program crashes)

Problem: what if a pointer to an out-of-bounds
address is used to compute an in-bounds address

• Result: false alarm

[Jones and Kelly. “Backwards-Compatible Bounds

Checking for Arrays and Pointers in C Programs”.

Automated and Algorithmic Debugging 1997]

slide 31

Example of a False Alarm

{

 char *p, *q, *r, *s;

 p = malloc(4);

 q = p+1;

 s = p+5;

 r = s-3;

}

referent object (4 bytes)

out of bounds!

S is set to
ILLEGAL

Program will crash if
r is ever dereferenced

Note: this code works even though

it’s technically illegal in standard C

slide 32

Ruwase-Lam

Instead of ILLEGAL, make each out-of-bounds
pointer point to a special OOB object

• Stores the original out-of-bounds value

• Stores a pointer to the original referent object

Pointer arithmetic on out-of-bounds pointers

• Simply use the actual value stored in the OOB object

If a pointer is dereferenced, check if it points to
an actual object. If not, halt the program!

[Ruwase and Lam. “A Practical Dynamic

Buffer Overflow Detector”. NDSS 2004]

slide 33

Example of an OOB Object

{

 char *p, *q, *r, *s;

 p = malloc(4);

 q = p+1;

 s = p+5;

 r = s-3;

}

referent object (4 bytes)

Value of r is
in bounds

Note: this code works even though

it’s technically illegal in standard C

OOB object

slide 34

Performance Issues

Checking the referent object table on every
pointer arithmetic operation is very expensive

Jones-Kelly: 5x-6x slowdown

• Tree of allocated objects grows very big

Ruwase-Lam: 11x-12x slowdown if enforcing
bounds on all objects, up to 2x if only strings

Unusable in production code!

slide 35

Dhurjati-Adve

Split memory into disjoint pools

• Use aliasing information

• Target pool for each pointer known at compile-time

• Can check if allocation contains a single element (why
does this help?)

Separate tree of allocated objects for each pool

• Smaller tree much faster lookup; also caching

Instead of returning a pointer to an OOB, return
an address from the kernel address space

• Separate table maps this address to the OOB

• Don’t need checks on every dereference (why?)

[Dhurjati and Adve. “Backwards-compatible

Array Bounds Checking for C with

Very Low Overhead”. ICSE 2006]

q = OOB(p+20,p)

Put OOB(p+20,p) into a map
p = malloc(10 * sizeof(int));

q = p + 20;

r = q – 15;

*r = … ; //no bounds overflow

*q = … ; // overflow

r = p + 5

Check if q is out of bounds:

Runtime error

Check if r is out of bounds

OOB Pointers: Ruwase-Lam

slide 36

Check on every dereference

q = 0xCCCCCCCC

Put (0xCCCCCCCC, OOB(p+20,p))

 into a map

p = malloc(10 * sizeof(int));

q = p + 20;

r = q – 15;

*r = … ; //no bounds overflow

*q = … ; // overflow

r = p + 5

No software check necessary!

Runtime error

No software check necessary!

OOB Pointers: Dhurjati-Adve

slide 37

slide 38

Baggy Bounds

Allocators pad objects to align pointers

Insight: to prevent “bad” out-of-bounds memory
accesses, it is enough to check allocation bounds,
not the precise object bounds

• What is a “bad” out-of-bounds access?

Object

Padding

Next object

Out-of-bounds access to padding is harmless

(is this true?)

[Akritidis et al. “Baggy Bounds Checking”.

USENIX Security 2009]

slide 39

Very Efficient Bounds Representation

Storing the pointer to the object and its size
requires at least 8 bytes per object

Instead, use a custom allocator to pad and align
objects to powers of 2 then it’s enough to
store log of object’s size in the bounds table

e= log2(alloc_size) … this takes 1 byte per object and

can be used to compute its size and base pointer:

alloc_size = 1 << e

base = p & ~(alloc_size-1)

[Akritidis et al.]

slide 40

Very Efficient Bounds Table

Partition memory into slots and align allocated
objects to slot boundaries

• Thus each slot can belong to at most 1 object

Bounds table = contiguous array of 1-byte
entries (an entry per each slot)

Given an address p, finding its entry takes a
single memory lookup

• p>>log2(slot_size) + constant table base = address
of the corresponding entry in the bounds table

• No need for tree traversal!

[Akritidis et al.]

slide 41

Very Efficient Bounds Checking

Given a pointer arithmetic operation …

p’ = p + i

… perform a very efficient check

(pˆp’)>>BoundsTable[p>>log2(slot_size)] == 0

This checks whether p and p’ have the same
prefix with only log(alloc_size) least significant
bytes modified

• No need to check against lower and upper bounds!

[Akritidis et al.]

slide 42

Handling Out-of-Bounds Pointers

Use a variant of Dhurjati-Adve technique to
prevent OOB pointers from being dereferenced

• Restrict the program to lower half of address space,
set the most significant bit of OOB pointers to 1, thus
all OOB look as if they point into kernel space

Find the original referent object by checking
whether the OOB pointer is in the top or bottom
half of a slot (how does this work?)

• Only works within slot_size/2 of the original object

• On 64-bit architectures, can do better by using
“spare” bits to tag each pointer with its bounds info

[Akritidis et al.]

slide 43

Baggy Bounds Check on x86

mov eax, buf

shr eax, 4

mov al, byte ptr [TABLE+eax]

char *p = buf[i];

mov ebx, buf

xor ebx, p

shr ebx, al

jz ok

 p = slowPath(buf, p)

ok:

[Akritidis et al.]

Look up log(object size)

Assuming 16-byte slots

Check if p and buf differ in at most

log(object size) least significant bytes

If buf is out of bounds,

recover the referent object,

remove OOB mark

Unsafe pointer operation

slide 44

Reference Monitor

Observes execution of the program/process

• At what level? Possibilities: hardware, OS, network

Halts or confines execution if the program is about
to violate the security policy

• What’s a “security policy”?

• Which system events are relevant to the policy?

– Instructions, memory accesses, system calls, network packets…

Cannot be circumvented by the monitored process

slide 45

Enforceable Security Policies

Reference monitors can only enforce
 safety policies

• Execution of a process is a sequence of states

• Safety policy is a predicate on a prefix of the sequence

– Policy must depend only on the past of a particular execution;
once it becomes false, it’s always false

Not policies that require knowledge of the future

• “If this server accepts a SYN packet, it will eventually
send a response”

Not policies that deal with all possible executions

• “This program should never reveal a secret”

[Schneider 1998]

Reference Monitor Implementation

– Policies can depend on application semantics

– Enforcement doesn’t require context switches in the kernel

– Lower performance overhead

Program

RM

Kernel

RM

Program

Kernel

Program

Kernel

RM

Kernelized Wrapper Modified program

Integrate reference monitor into
program code during compilation

or via binary rewriting

slide 46

slide 47

What Makes a Process Safe?

Memory safety: all memory accesses are “correct”

• Respect array bounds, don’t stomp on another process’s
memory, don’t execute data as if it were code

Control-flow safety: all control transfers are
envisioned by the original program

• No arbitrary jumps, no calls to library routines that the
original program did not call

Type safety: all function calls and operations have
arguments of correct type

slide 48

OS as a Reference Monitor

Collection of running processes and files

• Processes are associated with users

• Files have access control lists (ACLs) saying which
users can read/write/execute them

OS enforces a variety of safety policies

• File accesses are checked against file’s ACL

• Process cannot write into memory of another process

• Some operations require superuser privileges

– But may need to switch back and forth (e.g., setuid in Unix)

• Enforce CPU sharing, disk quotas, etc.

Same policy for all processes of the same user

slide 49

Hardware Mechanisms: TLB

TLB: Translation Lookaside Buffer

• Maps virtual to physical addresses

• Located next to the cache

• Only supervisor process can manipulate TLB

– But if OS is compromised, malicious code can abuse TLB to
make itself invisible in virtual memory (Shadow Walker)

TLB miss raises a page fault exception

• Control is transferred to OS (in supervisor mode)

• OS brings the missing page to the memory

This is an expensive context switch

slide 50

Time

calls f=fopen(“foo”)

User Process

library executes “break”

Kernel

trap

saves context, flushes TLB, etc.

checks UID against ACL, sets up IO
buffers & file context, pushes ptr to
context on user’s stack, etc.

restores context, clears supervisor bit
 calls fread(f,n,&buf)

library executes “break”
 saves context, flushes TLB, etc.

checks f is a valid file context, does
disk access into local buffer, copies
results into user’s buffer, etc.

restores context, clears supervisor bit

Steps in a System Call
[Morrisett]

slide 51

Modern Hardware Meets Security

Modern hardware: large number of registers, big
memory pages

Isolation each process should live in its own
hardware address space

… but the performance cost of inter-process
communication is increasing

• Context switches are very expensive

• Trapping into OS kernel requires flushing TLB and
cache, computing jump destination, copying memory

Conflict: isolation vs. cheap communication

slide 52

Software Fault Isolation (SFI)

Processes live in the same hardware address
space; software reference monitor isolates them

• Each process is assigned a logical “fault domain”

• Check all memory references and jumps to ensure they
don’t leave process’s domain

Tradeoff: checking vs. communication

• Pay the cost of executing checks for each memory
write and control transfer to save the cost of context
switching when trapping into the kernel

[Wahbe et al. SOSP 1993]

slide 53

Fault Domains

Process’s code and data in one memory segment

• Identified by a unique pattern of upper bits

• Code is separate from data (heap, stack, etc.)

• Think of a fault domain as a “sandbox”

Binary modified so that it cannot escape domain

• Addresses are masked so that all memory writes are to
addresses within the segment

– Coarse-grained memory safety (vs. array bounds checking)

• Code is inserted before each jump to ensure that the
destination is within the segment

Does this help much against buffer overflows?

slide 54

Verifying Jumps and Stores

If target address can be determined statically,
mask it with the segment’s upper bits

• Crash, but won’t stomp on another process’s memory

If address unknown until runtime, insert checking
code before the instruction

Ensure that code can’t jump around the checks

• Target address held in a dedicated register

• Its value is changed only by inserted code, atomically,
and only with a value from the data segment

slide 55

Simple SFI Example

Fault domain = from 0x1200 to 0x12FF

Original code: write x

Naïve SFI: x := x & 00FF

 x := x | 1200

 write x

Better SFI: tmp := x & 00FF

 tmp := tmp | 1200

 write tmp

convert x into an address that
lies within the fault domain

What if the code jumps right here?
 …

slide 56

Inline Reference Monitor

Generalize SFI to more general safety policies
than just memory safety

• Policy specified in some formal language

• Policy deals with application-level concepts: access to
system resources, network events, etc.

– “No process should send to the network after reading a file”,
“No process should open more than 3 windows”, …

Policy checks are integrated into the binary code

• Via binary rewriting or when compiling

Inserted checks should be uncircumventable

• Rely on SFI for basic memory safety

slide 57

Main idea: pre-determine control flow graph
(CFG) of an application

• Static analysis of source code

• Static binary analysis CFI

• Execution profiling

• Explicit specification of security policy

Execution must follow the pre-determined
control flow graph

CFI: Control-Flow Integrity
[Abadi et al. “Control-Flow Integrity”. CCS 2005]

slide 58

Use binary rewriting to instrument code with
runtime checks (similar to SFI)

Inserted checks ensure that the execution always
stays within the statically determined CFG

• Whenever an instruction transfers control, destination
must be valid according to the CFG

Goal: prevent injection of arbitrary code and
invalid control transfers (e.g., return-to-libc)

• Secure even if the attacker has complete control over
the thread’s address space

CFI: Binary Instrumentation

slide 59

CFG Example

slide 60

For each control transfer, determine statically its
possible destination(s)

Insert a unique bit pattern at every destination

• Two destinations are equivalent if CFG contains
edges to each from the same source

– This is imprecise (why?)

• Use same bit pattern for equivalent destinations

Insert binary code that at runtime will check
whether the bit pattern of the target instruction
matches the pattern of possible destinations

CFI: Control Flow Enforcement

slide 61

CFI: Example of Instrumentation

Original code

Instrumented code

Abuse an x86 assembly instruction to

insert “12345678” tag into the binary

Jump to the destination only if

the tag is equal to “12345678”

slide 62

Unique IDs

• Bit patterns chosen as destination IDs must not appear
anywhere else in the code memory except ID checks

Non-writable code

• Program should not modify code memory at runtime

– What about run-time code generation and self-modification?

Non-executable data

• Program should not execute data as if it were code

Enforcement: hardware support + prohibit system
calls that change protection state + verification at
load-time

CFI: Preventing Circumvention

slide 63

Suppose a call from A goes to C, and a call from B
goes to either C, or D (when can this happen?)

• CFI will use the same tag for C and D, but this allows
an “invalid” call from A to D

• Possible solution: duplicate code or inline

• Possible solution: multiple tags

Function F is called first from A, then from B;
what’s a valid destination for its return?

• CFI will use the same tag for both call sites, but this
allows F to return to B after being called from A

• Solution: shadow call stack

Improving CFI Precision

slide 64

CFI: Security Guarantees

Effective against attacks based on illegitimate
control-flow transfer

• Stack-based buffer overflow, return-to-libc exploits,
pointer subterfuge

Does not protect against attacks that do not
violate the program’s original CFG

• Incorrect arguments to system calls

• Substitution of file names

• Other data-only attacks

slide 65

Possible Execution of Memory
[Erlingsson]

slide 66

WIT: Write Integrity Testing

Combines static analysis …

• For each memory write, compute the set of memory
locations that may be the destination of the write

• For each indirect control transfer, compute the set of
addresses that may be the destination of the transfer

• “Color table” assigns matching colors to instruction
(write or jump) and all statically valid destinations

– Is this sound? Complete?

… with dynamic enforcement

• Code is instrumented with runtime checks to verify
that destination of write or jump has the right color

[Akritidis et al. “Preventing

Memory Error Exploits with WIT”.

Oakland 2008]

slide 67

WIT: Write Safety Analysis

Start with off-the-shelf “points-to” analysis

• Gives a conservative set of possible values for each ptr

A memory write instruction is “safe” if…

• It has no explicit destination operand, or destination
operand is a temporary, local or global variable

– Such instructions either modify registers, or a constant number
of bytes starting at a constant offset from the frame pointer or
the data segment (example?)

• … or writes through a pointer that is always in bounds

– How do we know statically that a pointer is always in bounds?

Safe instructions require no runtime checks

Can also infer safe destinations (how?)

slide 68

WIT: Runtime Checks

Statically, assign a distinct color to each unsafe
write instruction and all of its possible destinations

• What if some destination can be written by two
different instructions? Any security implications?

Add a runtime check that destination color
matches the statically assigned color

• What attack is this intended to prevent?

Same for indirect (computed) control transfers

• Except for indirect jumps to library functions (done
through pointers which are protected by write safety)

• How is this different from CFI? Hint: think RET address

slide 69

WIT: Additional Protections

Change layout of stack frames to segregate safe
and unsafe local variables

Surround unsafe objects by guards/canaries

• What attack is this intended to prevent? How?

Wrappers for malloc()/calloc() and free()

• malloc() assigns color to newly allocated memory

• free() is complicated

– Has the same, statically computed color as the freed object

– At runtime, treated as an unsafe write to this object

– Reset color of object to 0 (what attack does this prevent?)

– Several other subtle details and checks

slide 70

WIT: Handling Libraries

Basic WIT doesn’t work for libraries (why?)

Instead, assign the same, standard color to all
unsafe objects allocated by library functions and
surround them by guards

• Different from the colors of safe objects and guards

• What attack does this not prevent?

Wrappers for memory copying functions

• For example, memcpy() and strcpy()

• Receive color of the destination as an extra argument,
check at runtime that it matches static color

slide 71

Native Client

Goal: download an x86 binary and run it “safely”

• Much better performance than JavaScript, Java, etc.

ActiveX: verify signature, then unrestricted

• Critically depends on user’s understanding of trust

.NET controls: IL bytecode + verification

Native Client: sandbox for untrusted x86 code

• Restricted subset of x86 assembly

• SFI-like sandbox ensures memory safety

• Restricted system interface

• (Close to) native performance

[Yee et al. “Native Client”. Oakland 2009]

slide 72

NaCl Sandbox

Code is restricted to a subset of x86 assembly

• Enables reliable disassembly and efficient validation

• No unsafe instructions

– syscall, int, ret, memory-dependent jmp and call, privileged
instructions, modifications of segment state …

No loads or stores outside dedicated segment

• Address space constrained to 0 mod 32 segment

• Similar to SFI

Control-flow integrity

slide 73

Constraints for NaCl Binaries

slide 74

Control-Flow Integrity in NaCl

For each direct branch, statically compute target
and verify that it’s a valid instruction

• Must be reachable by fall-through disassembly

Indirect branches must be encoded as

 and %eax, 0xffffffe0

 jmp *%eax

• Guarantees that target is 32-byte aligned

• Works because of restriction to the zero-based segment

• Very efficient enforcement of control-flow integrity

No RET

• Sandboxing sequence, then indirect jump

slide 75

Interacting with Host Machine

Trusted runtime environment for thread creation,
memory management, other system services

Untrusted trusted control transfer: trampolines

• Start at 0 mod 32 addresses (why?) in the first 64K of
the NaCl module address space

– First 4K are read- and write-protected (why?)

• Reset registers, restore thread stack (outside module’s
address space), invoke trusted service handlers

Trusted untrusted control transfer: springboard

• Start at non-0 mod 32 addresses (why?)

• Can jump to any untrusted address, start threads

slide 76

Other Aspects of NaCl Sandbox

No hardware exceptions or external interrupts

• Because segment register is used for isolation, stack
appears invalid to the OS no way to handle

No network access via OS, only via JavaScript in
browser

• No system calls such as connect() and accept()

• JavaScript networking is subject to same-origin policy

IMC: inter-module communication service

• Special IPC socket-like abstraction

• Accessible from JavaScript via DOM object, can be
passed around and used to establish shared memory

