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Intrusion Detection Techniques 

 

Misuse detection 

• Use attack “signatures” - need a model of the attack 

• Must know in advance what attacker will do (how?) 

• Can only detect known attacks 

Anomaly detection 

• Using a model of normal system behavior, try to 
detect deviations and abnormalities 

• Can potentially detect unknown attacks 

Which is harder to do? 
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Level of Monitoring 

Which types of events to monitor? 

• OS system calls 

• Command line 

• Network data (e.g., from routers and firewalls) 

• Keystrokes 

• File and device accesses 

• Memory accesses 

Auditing / monitoring should be scalable 
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System Call Interposition 

Observation: all sensitive system resources are 
accessed via OS system call interface 

• Files, sockets, etc. 

Idea: monitor all system calls and block those 
that violate security policy 

• Inline reference monitors 

• Language-level 

– Example: Java runtime environment inspects the stack of the 
function attempting to access a sensitive resource to check 
whether it is permitted to do so 

• Common OS-level approach: system call wrapper 

– Want to do this without modifying OS kernel (why?) 
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Janus             
[Berkeley project, 1996] 
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Policy Design 

Designing a good system call policy is not easy 

When should a system call be permitted and 
when should it be denied? 

Example: ghostscript 

• Needs to open X windows 

• Needs to make X windows calls 

• But what if ghostscript reads characters you type in 
another X window? 
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Traps and Pitfalls 

Incorrectly mirroring OS state 

Overlooking indirect paths to resources 

• Inter-process sockets, core dumps 

Race conditions (TOCTTOU) 

• Symbolic links, relative paths, shared thread meta-data 

Unintended consequences of denying OS calls 

• Process dropped privileges using setuid but didn’t check 
value returned by setuid… and monitor denied the call 

Bugs in reference monitors and safety checks 

• What if runtime environment has a buffer overflow? 

[Garfinkel. “Traps and Pitfalls:  

Practical Problems in System Call  

Interposition Based Security Tools”.  

NDSS 2003] 
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Incorrectly Mirroring OS State 

Policy: “process can bind TCP sockets on port 80,  

            but cannot bind UDP sockets” 

 
X = socket(UDP, …) Monitor: “X is a UDP socket” 

Y = socket(TCP, …) Monitor: “Y is a TCP socket” 

close(Y) 

dup2(X,Y)  Monitor’s state now inconsistent with OS 

bind(Y, …)  Monitor: “Y is a TCP socket, Ok to bind” 

    Oops! 

[Garfinkel] 
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TOCTTOU in Syscall Interposition 

User-level program makes a system call 

• Direct arguments in stack variables or registers 

• Indirect arguments are passed as pointers 

Wrapper enforces some security policy 

• Arguments are copied into kernel memory and analyzed 
and/or substituted by the syscall wrapper 

What if arguments change right here? 

If permitted by the wrapper, the call proceeds 

• Arguments are copied into kernel memory 

• Kernel executes the call 
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Exploiting TOCTTOU Conditions 

Forced wait on disk I/O 

• Example: rename() 

– Attacker causes the target path of rename() to page out to disk 

– Kernel copies in the source path, then waits for target path 

– Concurrent attack process replaces the source path 

– Postcondition checker sees the replaced source path 

Voluntary thread sleeps 

• Example: TCP connect() 

– Kernel copies in the arguments 

– Thread calling connect() waits for a TCP ACK 

– Concurrent attack process replaces the arguments 

 

[Watson. “Exploiting Concurrency 

Vulnerabilities in System Call Wrappers”.  

WOOT 2007] 
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TOCTTOU via a Page Fault 
[Watson] 
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TOCTTOU on Sysjail 
[Watson] 
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Mitigating TOCTTOU 

Make pages with syscall arguments read-only 

• Tricky implementation issues 

• Prevents concurrent access to data on the same page 

Avoid shared memory between user process, 
syscall wrapper and the kernel 

• Argument caches used by both wrapper and kernel 

• Message passing instead of argument copying (why 
does this help?) 

Atomicity using system transactions 

Integrate security checks into the kernel? 
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Interposition + Static Analysis 

1. Analyze the program to determine its expected 
system call behavior 

2. Monitor actual behavior 

3. Flag an intrusion if there is a deviation from the 
expected behavior 

• System call trace of the application is constrained to 
be consistent with the source or binary code 

• Main advantage: a conservative model of expected 
behavior will have zero false positives 
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Trivial “Bag-O’Calls” Model 

Determine the set S of all system calls that an 
application can potentially make 

• Lose all information about relative call order 

At runtime, check for each call whether it 
belongs to this set 

Problem: large number of false negatives 

• Attacker can use any system call from S 

Problem: |S| very big for large applications 
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Callgraph Model 

Build a control-flow graph of the application by 
static analysis of its source or binary code 

Result: non-deterministic finite-state automaton 
(NFA) over the set of system calls 
• Each vertex executes at most one system call 

• Edges are system calls or empty transitions 

• Implicit transition to special “Wrong” state for all 
system calls other than the ones in original code;     
all other states are accepting 

System call automaton is conservative 

• Zero false positives! 

[Wagner and Dean. “Intrusion Detection 

via Static Analysis”.  Oakland 2001] 
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NFA Example       

• Monitoring is O(|V|) per system call 

• Problem: attacker can exploit impossible paths 

– The model has no information about stack state! 

[Wagner and Dean] 
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write 

log 

 

  

 

exec 

myexec 

log 
 

 

  

setuid 

mysetuid 

log 

void 

myexec (char *src) 

{ 

  log(“Execing”, 7); 

  exec(“/bin/ls”); 

} 

void  

mysetuid (uid_t uid) 

{ 

  setuid(uid); 

  log(“Set UID”, 7); 

} 

void  

log (char *msg, 

     int len) 

{ 

  write(fd, msg, len); 

} 

  
Another NFA Example   

[Giffin] 
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NFA Permits Impossible Paths 

e 

e e 

e 
 

  

write 

log 

 

  

 

exec 

myexec 

log 

 

 

  

setuid 

mysetuid 

log 

 
Impossible execution path 

is permitted by NFA! 
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NFA: Modeling Tradeoffs 

A good model should be… 

• Accurate: closely models expected execution 

• Fast: runtime verification is cheap 

NFA Fast 

Slow 

Accurate Inaccurate 
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Abstract Stack Model 

NFA is not precise, loses stack information 

Alternative: model application as a context-free 
language over the set of system calls 

• Build a non-deterministic pushdown automaton (PDA) 

• Each symbol on the PDA stack corresponds to single 
stack frame in the actual call stack 

• All valid call sequences accepted by PDA; enter 
“Wrong” state when an impossible call is made 
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e 

e 
push A 

pop A 

e 

e 
pop B 

push B  

  

write 

log 

 

  

 

exec 

myexec 

log 

 

 

  

setuid 

mysetuid 

log 

PDA Example 
[Giffin] 
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Another PDA Example 
[Wagner and Dean] 
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PDA: Modeling Tradeoffs 

Non-deterministic PDA has high cost 

• Forward reachability algorithm is cubic in 
automaton size 

• Unusable for online checking 

NFA Fast 

Slow 

Accurate Inaccurate 
 

 

 

 

    

PDA 
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Dyck Model  

Idea: make stack updates (i.e., function calls and 
returns) explicit symbols in the alphabet 

• Result: stack-deterministic PDA 

At each moment, the monitor knows where the 
monitored application is in its call stack 

• Only one valid stack configuration at any given time 

How does the monitor learn about function calls? 

• Use binary rewriting to instrument the code to issue 
special “null” system calls to notify the monitor 

– Potential high cost of introducing many new system calls 

• Can’t rely on instrumentation if application is corrupted 

[Giffin et al. “Efficient Context-Sensitive  

Intrusion Detection”. NDSS 2004] 
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Example of Dyck Model 

A 

A  

B 

 B 

 

  

write 

log 

 

  

 

exec 

myexec 

 

 

  

setuid 

mysetuid 

Runtime monitor now 
“sees” these transitions 

    

[Giffin] 
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System Call Processing Complexity 

 

 

 

 
 

    n is state count 

    m is transition count 

Model 
Time & Space 
Complexity 

NFA O(n) 

PDA O(nm2) 

Dyck O(n) 

[Giffin] 
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Runtime Bounds Checking 

Referent object = buffer to which pointer points 

• Actual size is available at runtime! 

1. Modified pointer representation 

• Pointer keeps information about its referent object 

• Incompatible with external code, libraries, etc.  

2. Special table maps pointers to referent objects 

• Check referent object on every dereference 

• What if a pointer is modified by external code?  

3. Keep track of address range of each object 

• For every pointer arithmetic operation, check that the 
result points to the same referent object 
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Jones-Kelly 

Pad each object by 1 byte 

• C permits a pointer to point to the byte right after an 
allocated memory object 

Maintain a runtime tree of allocated objects 

Backwards-compatible pointer representation 

Replace all out-of-bounds addresses with special 
ILLEGAL value (if dereferenced, program crashes) 

Problem: what if a pointer to an out-of-bounds 
address is used to compute an in-bounds address 

• Result: false alarm 

[Jones and Kelly. “Backwards-Compatible Bounds  

Checking for Arrays and Pointers in C Programs”.  

Automated and Algorithmic Debugging 1997] 
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Example of a False Alarm 

{ 

  char *p, *q, *r, *s; 

  p = malloc(4); 

  q = p+1; 

  s = p+5; 

  r = s-3; 

} 

       

referent object (4 bytes) 

 

   

  
out of bounds! 

S is set to 
ILLEGAL 

Program will crash if  
r is ever dereferenced 

 

Note: this code works even though 

it’s technically illegal in standard C 
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Ruwase-Lam 

Instead of ILLEGAL, make each out-of-bounds 
pointer point to a special OOB object 

• Stores the original out-of-bounds value 

• Stores a pointer to the original referent object 

Pointer arithmetic on out-of-bounds pointers 

• Simply use the actual value stored in the OOB object 

If a pointer is dereferenced, check if it points to 
an actual object. If not, halt the program! 

[Ruwase and Lam. “A Practical Dynamic  

Buffer Overflow Detector”.  NDSS 2004] 
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Example of an OOB Object 

{ 

  char *p, *q, *r, *s; 

  p = malloc(4); 

  q = p+1; 

  s = p+5; 

  r = s-3; 

} 

       

referent object (4 bytes) 

 

  

Value of r is  
in bounds 

 

Note: this code works even though 

it’s technically illegal in standard C 

OOB object 
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Performance Issues 

Checking the referent object table on every 
pointer arithmetic operation is very expensive 

Jones-Kelly: 5x-6x slowdown 

• Tree of allocated objects grows very big 

Ruwase-Lam: 11x-12x slowdown if enforcing 
bounds on all objects, up to 2x if only strings 

Unusable in production code! 
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Dhurjati-Adve 

Split memory into disjoint pools 

• Use aliasing information 

• Target pool for each pointer known at compile-time 

• Can check if allocation contains a single element (why 
does this help?) 

Separate tree of allocated objects for each pool 

• Smaller tree  much faster lookup; also caching 

Instead of returning a pointer to an OOB, return 
an address from the kernel address space 

• Separate table maps this address to the OOB 

• Don’t need checks on every dereference (why?) 

[Dhurjati and Adve. “Backwards-compatible  

Array Bounds Checking for C with  

Very Low Overhead”.  ICSE 2006] 



 

q  = OOB(p+20,p) 

Put OOB(p+20,p) into a map 
p = malloc(10 * sizeof(int)); 

q = p + 20; 

 

r =  q – 15; 

 

*r = …  ; //no bounds overflow 

 

*q = … ; // overflow 

r = p + 5 

Check if q is out of bounds:  

Runtime error 

Check if r is out of bounds 

OOB Pointers: Ruwase-Lam 
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Check on every dereference 



 

q  = 0xCCCCCCCC 

Put (0xCCCCCCCC, OOB(p+20,p))  

      into a map 

p = malloc(10 * sizeof(int)); 

q = p + 20; 

 

r =  q – 15; 

 

*r = …  ; //no bounds overflow 

 

*q = … ; // overflow 

r = p + 5 

No software check necessary! 

Runtime error 

No software check necessary! 

OOB Pointers: Dhurjati-Adve 
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Baggy Bounds 

Allocators pad objects to align pointers 

Insight: to prevent “bad” out-of-bounds memory 
accesses, it is enough to check allocation bounds, 
not the precise object bounds 

• What is a “bad” out-of-bounds access? 

       

Object 

  

Padding 

    

Next object 

 

Out-of-bounds access to padding is harmless 

(is this true?) 

 

[Akritidis et al. “Baggy Bounds Checking”.   

USENIX Security 2009] 
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Very Efficient Bounds Representation 

Storing the pointer to the object and its size 
requires at least 8 bytes per object 

Instead, use a custom allocator to pad and align 
objects to powers of 2  then it’s enough to 
store log of object’s size in the bounds table 

e= log2(alloc_size)    … this takes 1 byte per object and  

can be used to compute its size and base pointer: 

alloc_size = 1 << e 

base = p & ~(alloc_size-1)  

 

[Akritidis et al.] 
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Very Efficient Bounds Table 

Partition memory into slots and align allocated 
objects to slot boundaries 

• Thus each slot can belong to at most 1 object 

Bounds table = contiguous array of 1-byte 
entries (an entry per each slot) 

Given an address p, finding its entry takes a 
single memory lookup 

• p>>log2(slot_size) + constant table base = address 
of the corresponding entry in the bounds table 

• No need for tree traversal! 

[Akritidis et al.] 
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Very Efficient Bounds Checking 

Given a pointer arithmetic operation … 

p’ = p + i 

… perform a very efficient check 

(pˆp’)>>BoundsTable[p>>log2(slot_size)] == 0 

This checks whether p and p’ have the same 
prefix with only log(alloc_size) least significant 
bytes modified 

• No need to check against lower and upper bounds! 

[Akritidis et al.] 
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Handling Out-of-Bounds Pointers 

Use a variant of Dhurjati-Adve technique to 
prevent OOB pointers from being dereferenced 

• Restrict the program to lower half of address space, 
set the most significant bit of OOB pointers to 1, thus 
all OOB look as if they point into kernel space 

Find the original referent object by checking 
whether the OOB pointer is in the top or bottom 
half of a slot (how does this work?) 

• Only works within slot_size/2 of the original object 

• On 64-bit architectures, can do better by using 
“spare” bits to tag each pointer with its bounds info 

[Akritidis et al.] 
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Baggy Bounds Check on x86 

mov eax, buf 

shr eax, 4 

mov al, byte ptr [TABLE+eax] 

char *p = buf[i]; 

mov ebx, buf 

xor ebx, p 

shr ebx, al 

jz ok 

    p = slowPath(buf, p) 

ok: 

[Akritidis et al.] 

 

 

Look up log(object size) 

Assuming 16-byte slots 

 

Check if p and buf differ in at most 

log(object size) least significant bytes 

 

If buf is out of bounds, 

recover the referent object, 

remove OOB mark 

 
 

Unsafe pointer operation 
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Reference Monitor 

Observes execution of the program/process 

• At what level? Possibilities: hardware, OS, network 

Halts or confines execution if the program is about 
to violate the security policy 

• What’s a “security policy”? 

• Which system events are relevant to the policy? 

– Instructions, memory accesses, system calls, network packets… 

Cannot be circumvented by the monitored process 
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Enforceable Security Policies 

Reference monitors can only enforce  
   safety policies 

• Execution of a process is a sequence of states 

• Safety policy is a predicate on a prefix of the sequence 

– Policy must depend only on the past of a particular execution; 
once it becomes false, it’s always false 

Not policies that require knowledge of the future 

• “If this server accepts a SYN packet, it will eventually 
send a response” 

Not policies that deal with all possible executions 

• “This program should never reveal a secret” 

[Schneider 1998] 



 

Reference Monitor Implementation 

– Policies can depend on application semantics 

– Enforcement doesn’t require context switches in the kernel 

– Lower performance overhead 

Program 

RM 
 

Kernel 

  

RM 

Program 

 
Kernel 

  

Program 

 
Kernel 

  

RM 

Kernelized Wrapper Modified program 

Integrate reference monitor into 
program code during compilation 

or via binary rewriting 
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What Makes a Process Safe? 

Memory safety: all memory accesses are “correct” 

• Respect array bounds, don’t stomp on another process’s 
memory, don’t execute data as if it were code 

Control-flow safety: all control transfers are 
envisioned by the original program 

• No arbitrary jumps, no calls to library routines that the 
original program did not call 

Type safety: all function calls and operations have 
arguments of correct type 
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OS as a Reference Monitor 

Collection of running processes and files 

• Processes are associated with users 

• Files have access control lists (ACLs) saying which 
users can read/write/execute them  

OS enforces a variety of safety policies 

• File accesses are checked against file’s ACL 

• Process cannot write into memory of another process 

• Some operations require superuser privileges 

– But may need to switch back and forth (e.g., setuid in Unix) 

• Enforce CPU sharing, disk quotas, etc. 

Same policy for all processes of the same user 
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Hardware Mechanisms: TLB 

TLB: Translation Lookaside Buffer 

• Maps virtual to physical addresses 

• Located next to the cache 

• Only supervisor process can manipulate TLB 

– But if OS is compromised, malicious code can abuse TLB to 
make itself invisible in virtual memory (Shadow Walker) 

TLB miss raises a page fault exception 

• Control is transferred to OS (in supervisor mode) 

• OS brings the missing page to the memory 

This is an expensive context switch 
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Time 

calls f=fopen(“foo”) 

User Process 

library executes “break” 

Kernel  

 
trap 

saves context, flushes TLB, etc. 

checks UID against ACL, sets up IO  
buffers & file context, pushes ptr to  
context on user’s stack, etc. 

restores context, clears supervisor bit 
 calls fread(f,n,&buf) 

library executes “break” 
 saves context, flushes TLB, etc. 

checks f is a valid file context, does 
disk access into local buffer, copies 
results into user’s buffer, etc. 

restores context, clears supervisor bit 
 

Steps in a System Call 
[Morrisett] 
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Modern Hardware Meets Security 

Modern hardware: large number of registers, big 
memory pages 

Isolation  each process should live in its own 
hardware address space 

… but the performance cost of inter-process 
communication is increasing 

• Context switches are very expensive 

• Trapping into OS kernel requires flushing TLB and 
cache, computing jump destination, copying memory 

Conflict: isolation vs. cheap communication 
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Software Fault Isolation (SFI) 

Processes live in the same hardware address 
space; software reference monitor isolates them 

• Each process is assigned a logical “fault domain” 

• Check all memory references and jumps to ensure they 
don’t leave process’s domain 

Tradeoff: checking vs. communication 

• Pay the cost of executing checks for each memory 
write and control transfer to save the cost of context 
switching when trapping into the kernel 

[Wahbe et al.  SOSP 1993] 
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Fault Domains 

Process’s code and data in one memory segment 

• Identified by a unique pattern of upper bits 

• Code is separate from data (heap, stack, etc.) 

• Think of a fault domain as a “sandbox” 

Binary modified so that it cannot escape domain 

• Addresses are masked so that all memory writes are to 
addresses within the segment 

– Coarse-grained memory safety (vs. array bounds checking) 

• Code is inserted before each jump to ensure that the 
destination is within the segment 

Does this help much against buffer overflows? 
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Verifying Jumps and Stores 

If target address can be determined statically, 
mask it with the segment’s upper bits 

• Crash, but won’t stomp on another process’s memory 

If address unknown until runtime, insert checking 
code before the instruction 

Ensure that code can’t jump around the checks 

• Target address held in a dedicated register 

• Its value is changed only by inserted code, atomically, 
and only with a value from the data segment 
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Simple SFI Example 

Fault domain = from 0x1200 to 0x12FF 

Original code: write x 

Naïve SFI: x := x & 00FF 

                       x := x | 1200 

      write x 

Better SFI: tmp := x & 00FF 

    tmp := tmp | 1200 

    write tmp 

convert x into an address that 
lies within the fault domain  

What if the code jumps right here? 
 … 
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Inline Reference Monitor 

Generalize SFI to more general safety policies 
than just memory safety 

• Policy specified in some formal language 

• Policy deals with application-level concepts: access to 
system resources, network events, etc. 

– “No process should send to the network after reading a file”, 
“No process should open more than 3 windows”, … 

Policy checks are integrated into the binary code 

• Via binary rewriting or when compiling 

Inserted checks should be uncircumventable 

• Rely on SFI for basic memory safety 
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Main idea: pre-determine control flow graph 
(CFG) of an application 

• Static analysis of source code 

• Static binary analysis    CFI 

• Execution profiling 

• Explicit specification of security policy 

Execution must follow the pre-determined 
control flow graph 

CFI: Control-Flow Integrity 
[Abadi et al. “Control-Flow Integrity”.  CCS 2005] 
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Use binary rewriting to instrument code with 
runtime checks (similar to SFI) 

Inserted checks ensure that the execution always 
stays within the statically determined CFG 

• Whenever an instruction transfers control, destination 
must be valid according to the CFG 

Goal: prevent injection of arbitrary code and 
invalid control transfers (e.g., return-to-libc) 

• Secure even if the attacker has complete control over 
the thread’s address space 

CFI: Binary Instrumentation 
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CFG Example 
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For each control transfer, determine statically its 
possible destination(s) 

Insert a unique bit pattern at every destination 

• Two destinations are equivalent if CFG contains 
edges to each from the same source 

– This is imprecise (why?) 

• Use same bit pattern for equivalent destinations 

Insert binary code that at runtime will check 
whether the bit pattern of the target instruction 
matches the pattern of possible destinations 

CFI: Control Flow Enforcement 
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CFI: Example of Instrumentation 

Original code 

Instrumented code 

 

 

Abuse an x86 assembly instruction to 

insert “12345678” tag into the binary 

 

 

Jump to the destination only if 

the tag is equal to “12345678” 
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Unique IDs 

• Bit patterns chosen as destination IDs must not appear 
anywhere else in the code memory except ID checks 

Non-writable code 

• Program should not modify code memory at runtime 

– What about run-time code generation and self-modification? 

Non-executable data 

• Program should not execute data as if it were code 

Enforcement: hardware support + prohibit system 
calls that change protection state + verification at 
load-time 

CFI: Preventing Circumvention 
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Suppose a call from A goes to C, and a call from B 
goes to either C, or D (when can this happen?) 

• CFI will use the same tag for C and D, but this allows 
an “invalid” call from A to D 

• Possible solution: duplicate code or inline 

• Possible solution: multiple tags 

Function F is called first from A, then from B; 
what’s a valid destination for its return? 

• CFI will use the same tag for both call sites, but this 
allows F to return to B after being called from A 

• Solution: shadow call stack 

Improving CFI Precision 
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CFI: Security Guarantees 

Effective against attacks based on illegitimate 
control-flow transfer 

• Stack-based buffer overflow, return-to-libc exploits, 
pointer subterfuge 

Does not protect against attacks that do not 
violate the program’s original CFG 

• Incorrect arguments to system calls 

• Substitution of file names 

• Other data-only attacks 
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Possible Execution of Memory 
[Erlingsson] 
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WIT: Write Integrity Testing 

Combines static analysis … 

• For each memory write, compute the set of memory 
locations that may be the destination of the write 

• For each indirect control transfer, compute the set of 
addresses that may be the destination of the transfer 

• “Color table” assigns matching colors to instruction 
(write or jump) and all statically valid destinations 

– Is this sound? Complete? 

… with dynamic enforcement 

• Code is instrumented with runtime checks to verify 
that destination of write or jump has the right color  

[Akritidis et al. “Preventing  

Memory Error Exploits with WIT”.   

Oakland 2008] 
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WIT: Write Safety Analysis 

Start with off-the-shelf “points-to” analysis 

• Gives a conservative set of possible values for each ptr 

A memory write instruction is “safe” if… 

• It has no explicit destination operand, or destination 
operand is a temporary, local or global variable 

– Such instructions either modify registers, or a constant number 
of bytes starting at a constant offset from the frame pointer or 
the data segment (example?) 

• … or writes through a pointer that is always in bounds 

– How do we know statically that a pointer is always in bounds? 

Safe instructions require no runtime checks 

Can also infer safe destinations (how?) 
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WIT: Runtime Checks 

Statically, assign a distinct color to each unsafe 
write instruction and all of its possible destinations 

• What if some destination can be written by two 
different instructions? Any security implications? 

Add a runtime check that destination color 
matches the statically assigned color 

• What attack is this intended to prevent? 

Same for indirect (computed) control transfers 

• Except for indirect jumps to library functions (done 
through pointers which are protected by write safety) 

• How is this different from CFI? Hint: think RET address 
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WIT: Additional Protections 

Change layout of stack frames to segregate safe 
and unsafe local variables 

Surround unsafe objects by guards/canaries 

• What attack is this intended to prevent? How? 

Wrappers for malloc()/calloc() and free() 

• malloc() assigns color to newly allocated memory 

• free() is complicated 

– Has the same, statically computed color as the freed object 

– At runtime, treated as an unsafe write to this object 

– Reset color of object to 0 (what attack does this prevent?) 

– Several other subtle details and checks 
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WIT: Handling Libraries 

Basic WIT doesn’t work for libraries (why?) 

Instead, assign the same, standard color to all 
unsafe objects allocated by library functions and 
surround them by guards 

• Different from the colors of safe objects and guards 

• What attack does this not prevent? 

Wrappers for memory copying functions 

• For example, memcpy() and strcpy() 

• Receive color of the destination as an extra argument, 
check at runtime that it matches static color 
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Native Client 

Goal: download an x86 binary and run it “safely” 

• Much better performance than JavaScript, Java, etc.  

ActiveX: verify signature, then unrestricted 

• Critically depends on user’s understanding of trust 

.NET controls: IL bytecode + verification 

Native Client: sandbox for untrusted x86 code 

• Restricted subset of x86 assembly 

• SFI-like sandbox ensures memory safety 

• Restricted system interface 

• (Close to) native performance  

[Yee et al. “Native Client”.  Oakland 2009] 
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NaCl Sandbox 

Code is restricted to a subset of x86 assembly 

• Enables reliable disassembly and efficient validation 

• No unsafe instructions 

– syscall, int, ret, memory-dependent jmp and call, privileged 
instructions, modifications of segment state … 

No loads or stores outside dedicated segment 

• Address space constrained to 0 mod 32 segment 

• Similar to SFI 

Control-flow integrity 
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Constraints for NaCl Binaries 
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Control-Flow Integrity in NaCl 

For each direct branch, statically compute target 
and verify that it’s a valid instruction 

• Must be reachable by fall-through disassembly 

Indirect branches must be encoded as  

  and  %eax, 0xffffffe0 

  jmp  *%eax 

• Guarantees that target is 32-byte aligned 

• Works because of restriction to the zero-based segment 

• Very efficient enforcement of control-flow integrity 

No RET 

• Sandboxing sequence, then indirect jump 
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Interacting with Host Machine 

Trusted runtime environment for thread creation, 
memory management, other system services 

Untrusted  trusted control transfer: trampolines 

• Start at 0 mod 32 addresses (why?) in the first 64K of 
the NaCl module address space 

– First 4K are read- and write-protected (why?) 

• Reset registers, restore thread stack (outside module’s 
address space), invoke trusted service handlers 

Trusted  untrusted control transfer: springboard 

• Start at non-0 mod 32 addresses (why?) 

• Can jump to any untrusted address, start threads 
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Other Aspects of NaCl Sandbox 

No hardware exceptions or external interrupts 

• Because segment register is used for isolation, stack 
appears invalid to the OS   no way to handle 

No network access via OS, only via JavaScript in 
browser 

• No system calls such as connect() and accept() 

• JavaScript networking is subject to same-origin policy 

IMC: inter-module communication service 

• Special IPC socket-like abstraction 

• Accessible from JavaScript via DOM object, can be 
passed around and used to establish shared memory 


