
Security of

Mobile Applications

Vitaly Shmatikov

CS 6431

Structure of Android Applications

This is a very brief and incomplete summary

• See Enck et al. “Understanding Android Security”

Applications include multiple components

• Activities: user interface

• Services: background processing

• Content providers: data storage

• Broadcast receivers for messages from other apps

Intent: primary messaging mechanism for
interaction between components

slide 2

Explicit Intents

slide 3

Yelp
Map
App

Name: MapActivity

To: MapActivity

Only the specified destination receives this message

Implicit Intents

slide 4

Yelp

Map
App

Handles Action: VIEW

Implicit Intent
Action: VIEW

Browser
App

Handles Action: VIEW

Android Security Model

Based on permission labels
 assigned to applications and components

Every app runs as a separate user

• Underlying Unix OS provides system-level isolation

Reference monitor in Android middleware
mediates inter-component communication

slide 5

Access permitted if labels
assigned to the invoked
component are in the collection
of invoking component

Mandatory Access Control

Permission labels are set (via manifest) when app
is installed and cannot be changed

Permission labels only restrict access to
components, they do not control information flow
– means what?

Apps may contain “private” components that
should never be accessed by another app
(example?)

If a public component doesn’t have explicit
permissions listed, it can be accessed by any app

slide 6

System API Access

System functionality (eg, camera, networking) is
accessed via Android API, not system components

App must declare the corresponding permission
label in its manifest + user must approve at the
time of app installation

Signature permissions are used to restrict access
only to certain developers

• Ex: Only Google apps can directly use telephony API

slide 7

Refinements

Permission labels on broadcast intents

• Prevents unauthorized apps from receiving these
intents – why is this important?

Pending intents

• Instead of directly performing an action via intent,
create an object that can be passed to another app,
thus enabling it to execute the action

• Invocation involves RPC to the original app

• Introduces delegation into Android’s MAC system

slide 8

Unique Action Strings

slide 9

Common developer pattern

Showtime
Search

Results UI

IMDb App
Handles Actions:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action: willUpdateShowtimes

Eavesdropping

slide 10

[Felt et al. “Analyzing Inter-Application
Communication in Android”. Mobisys 2011]

Showtime
Search

Malicious
Receiver

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Implicit Intent
Action: willUpdateShowtimes

Eavesdropping App

Intent Spoofing

slide 11

[Felt et al.]

Malicious
Component

Results UI

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Action:
showtimesNoLocationError

Malicious
Injection
App

Also man-in-the-middle

System Broadcast

slide 12

[Felt et al.]

Component App 1

Handles Action: BootCompleted

Component App 2

Handles Action: BootCompleted

Component App 3

System
Notifier

Action:
BootCompleted

Event notifications
broadcast by the system
(can’t be spoofed)

Broadcast receivers
make components
publicly accessible

Exploiting Broadcast Receivers

slide 13

[Felt et al.]

Handles Action:
BootCompleted

Malicious
Component

Malicious
App

Component

App 1

To:
App1.Component

Real World Example: ICE

slide 14

[Felt et al.]

Allows doctors access to medical
information on phones

Contains a component that listens
for the BootCompleted system
broadcast

On receipt of this intent, exits the
app and locks the screen

Permissions: Not Just Android

slide 15

All mobile OSes, HTML5 apps, browser extensions…

Permission Re-Delegation

An application with a permission performs a
privileged task on behalf of an application
without permission

slide 16

[Felt et al. “Permission Re-Delegation: Attacks
and Defenses”. USENIX Security 2011]

API

Malware
Settings

app

TurnOnWifi()

Permission System

turnOnWifi()

API

Permission System

Public service
for receiving
UI messages

pressButton(0)

Malware
Settings

app

turnOnWifi()

User
pressed
button

Examples of Re-Delegation

Permission re-delegation is an example of a
“confused deputy” problem

The “deputy” app may accidentally expose
privileged functionality…

… or intentionally expose it, but the attacker
invokes it in a surprising context

• Example: broadcast receivers in Android

… or intentionally expose it and attempt to reduce
the invoker’s authority, but do it incorrectly

• Remember postMessage origin checks?

slide 17

[Felt et al.]

Mobile Apps in Web Languages

slide 18

Hybrid App Development

slide 19

WebView

Embedded browser in smartphone apps

Basic same origin policy inside the browser +
holes in the browser sandbox allowing Web
code to invoke native functionality

• Camera, contacts, file system, etc.

Multiple “bridges” between Web and local code

• JavaScript interfaces to local objects

• Interception of browser events (eg, special URLs)

• Other custom and ad-hoc schemes

slide 20

[Luo et al. “Attacks on WebView in
the Android System”. ACSAC 2011]

Invoking Java from JavaScript

slide 21

[Luo et al.]

Invoking JavaScript from Java

slide 22

[Luo et al.]

The Hybrid Security Model

slide 23

Attacks from Malicious App

slide 24

[Luo et al.]

JavaScript injection
Event sniffing and hijacking

Attack from Malicious Web Content

slide 25

[Luo et al.]

Frame Confusion

slide 26

[Luo et al.]

What is the origin of
this JavaScript object?

Android

Java code

It Gets Worse

slide 27

[Luo et al.]

Java Reflection API…

accessible from Web side

Showing this content is
Ok, only native access
should be blocked

Simple Fixes Don’t Work

Most hybrid frameworks don’t even attempt to
verify whether access request comes from an
authorized Web origin

PhoneGap attempts to filter based
 on developer-provided whitelist

• Mediation either incomplete (does not catch iframe
loads) or too strict (prohibits even loading of
content from other origins, breaks look-and-feel)

• Incorrect origin checks

– Broken regexes bite again – anchoring bugs, etc.

slide 28

[Georgiev et al. “Breaking and Fixing Origin-Based Access Control
in Hybrid Web/Mobile Application Frameworks”. NDSS 2014]

State of the Union

Convergence of Web and mobile programming

Complex, poorly understood software stacks with
badly fitting security policies

New classes of vulnerabilities

• Worst case: Web advertiser gets to inject arbitrary code
into mobile apps running on your phone!%#$!

Evolving defenses

• Our capability-based NoFrak defense is being integrated
into PhoneGap, but that’s just the first step…

slide 29

