
Security Protocols

Vitaly Shmatikov

CS 6431

Cryptographic Protocols

Use cryptography to achieve some higher-level
security objective

• Authentication, confidentiality, integrity, key
distribution or establishment…

Examples: SSL/TLS, IPsec, Kerberos, SSH,
802.11b and 802.11i, Skype, S/MIME, hundreds
of others

• New protocols constantly proposed, standardized,
implemented, and deployed

slide 2

Needham and Schroeder. “Using Encryption for
Authentication in Large Networks of Computers”
(CACM 1979)

Initiated the field of cryptographic protocol design

• Led to Kerberos, IPsec, SSL, and all modern protocols

Observed the need for rigorous protocol analysis

• “Protocols … are prone to extremely subtle errors that
are unlikely to be detected in normal operation… The
need for techniques to verify the correctness of such
protocols is great, and we encourage those interested
in such problems to consider this area.”

slide 3

Needham-Schroeder Protocols

Many simple attacks against protocols have
been discovered over the years

• Even carefully designed, widely deployed protocols
...often years after the protocol has been deployed

– Examples: SSL, SSH, 802.11b, GSM

• Simple = attacks do not involve breaking crypto!

Why is the problem difficult?

• Concurrency + distributed participants + (often
incorrect) use of cryptography

• Active attackers in full control of communications

• Implicit assumptions and goals behind protocols

slide 4

Things Goes Wrong

Design Principles (1)

1. Every message should say what it means

2. The conditions for a message to be acted on
should be clearly set out

3. Mention the principal’s name explicitly in the
message if it is essential to the meaning

4. Be clear as to why encryption is being done

5. Don’t assume a principal knows the content of
encrypted material that is signed by that
principal

 slide 5

[Abadi and Needham. “Prudent Engineering Practice
for Cryptographic Protocols ”. Oakland 1994]

Design Principles (2)

6. Be clear on what properties you are assuming
about nonces

7. Predictable quantities used for challenge-
response should be protected from replay

8. Timestamps must take into account local clock
variation and clock maintenance mechanisms

9. A key may have been used recently, yet be old

slide 6

[Abadi and Needham]

Design Principles (3)

10. If an encoding is used to present the meaning
of a message, then it should be possible to tell
which encoding is being used

11. The protocol designer should know which trust
relations his protocol depends on

slide 7

[Abadi and Needham]

slide 8

NS Symmetric-Key Protocol

Alice Bob

{Kc, A}Kb

Goal: A and B establish a fresh, shared, secret
key Kc with the help of a trusted key server

Trusted key server

A, B, NonceA

{ NonceA, B, Kc, {Kc, A}Kb }Ka Ka
Kb

 Ka, Kb

{NonceB}Kc

{NonceB-1}Kc

Denning-Sacco Attack

Attacker recorded an old session and
compromised session key Kx used in that session

B now believes he shares a fresh secret Kx with A

Moral: use timestamps to detect replay of old
messages

slide 9

Bob

{Kx, A}Kb

{NonceB}Kx

{NonceB-1}Kx

 A B

A’s identity Fresh random number
generated by A

B’s reasoning:
 The only way to learn NonceB is
 to decrypt the second message
 Only A can decrypt second message
 Therefore, A is on the other end

A is authenticated!

Kb

{ NonceB}

Ka

{ NonceA, NonceB }

Kb

{ A, NonceA } Encrypted with B’s public key

slide 10

A’s reasoning:
 The only person who could know NonceA
 is the person who decrypted the first message
 Only B can decrypt message encrypted with Kb
 Therefore, B is on the other end of the line

B is authenticated!

NS Public-Key Protocol

What Does This Protocol Achieve?

 A B

Kb

{ NonceB }

Ka

{ NonceA, NonceB }

Kb

{ A, NonceA }

Protocol aims to provide both authentication and secrecy

After this exchange, only A and B know NonceA and
NonceB  they can be used to derive a shared key

slide 11

B can’t decrypt this message,
but he can replay it

 A B

{ A, Na }

Kc

C

{ A, Na } Kb

{ Na, Nc }
Ka

{ Na, Nc } Ka

{ Nc } Kb

Evil participant B tricks
honest A into revealing
C’s nonce Nc

C is convinced that he is talking to A!

Evil B pretends
that he is A

Lowe’s Attack on NSPK

slide 12

[Lowe. “Breaking and Fixing the Needham-Schroeder
Public-Key Protocol using FDR”. TACAS 1996]

 A B

{ A, Na }

Kc

C

{ A, Na } Kb

{ Na, Nc } Ka

{ Na, Nc } Ka

Abadi-Needham Principle #1

slide 13

Every message should say what it means

Who sent this message?

 A B

Kb

{ NonceB}

Ka

{ NonceA, B, NonceB }

Kb

{ A, NonceA }

slide 14

Does this solve the problem? How?

Lowe’s Fix to NSPK

Lessons of Lowe’s Attack

Attacker is a legitimate protocol participant!

Exploits participants’ reasoning to fool them

• A is correct that B must have decrypted {A,Na}Kb
message, but this does not mean that the {Na,Nb}Ka
message came from B

• The attack does not rely on breaking cryptography!

It is important to realize limitations of protocols

• The attack requires that A willingly talk to adversary

• In the original setting, each workstation is assumed to
be well-behaved, and the protocol is correct!

Discover attacks like this automatically?
slide 15

Analyzing Security Protocols

Model protocol

Model adversary

Formally state security properties

See if properties preserved under attack

Result: under given assumptions about the
system, no attack of a certain form will destroy
specified properties

• There is no “absolute” security

slide 16

Crypto Protocol Analysis

Formal Models Computational Models

Modal Logics Model Checking Game Theory

Dolev-Yao

(perfect cryptography)

Random oracle

Probabilistic process calculi

Probabilistic I/O automata

…

Finite-state

Checking

Process Calculi
…

Symbolic Analysis

Applied pi calculus BAN logic

Finite processes,

infinite attacker

Finite processes,

finite attacker

Analysis Techniques

slide 17

Dolev-Yao Model (1983)

Abstract, idealized model of cryptography

• Treat cryptographic operations as abstract data types

– Symmetric-key decryption: decrypt({M}K,K) = M

– Public-key decryption: decrypt({M}PubKey(A), PrivKey(A)) = M

Attacker is a nondeterministic process

• Can intercept any message, decompose into parts

• Decrypt if and only if it knows the correct key

• Create new message from data it has observed

Attacker cannot perform computational analysis

• Cannot analyze actual cryptographic scheme used

• Cannot perform statistical tests, timing attacks…
slide 18

Finite-State Analysis

Describe protocol as a finite-state system

• State variables with initial values

• Transition rules

• Communication by shared variables

• Scalable: choose system size parameters

Specify correctness condition

Find violations by automatic exhaustive state
enumeration

• Many tools available: FDR, Mur, …

slide 19

Rules for Protocol Participants

Messages = abstract terms

Participants = finite-state automata operating
on terms

IF

 net[i].dest = B &

 net[i].encKey = B.myPubKey

THEN

 msg.nonce1:= B.myNonce;

 msg.nonce2:= net[i].nonce;

 msg.encKey:= B.keys[net[i].snd];

 net[i+1]:= msg

AB {A,NA}pk(B)

BA {NB,NA}pk(A)

slide 20

Rules for Dolev-Yao Attacker

Read and write on the network

• Full control over all messages exchanged by honest
parties (but cannot break cryptography)

Analyze messages

• Decrypt if and only if correct key is known

• Break into smaller pieces

Construct messages

• Concatenate known fragments

• Encrypt with known keys

slide 21

Correctness Conditions

Specified as predicates over system variables

Secrecy

 ! setInclusion(B.myNonce, Attacker.KnownNonces) &

 ! setInclusion(A.myNonce, Attacker.KnownNonces)

 Authentication

  A (B.state=DONE) & (B.talkingTo=A) ->

 A.talkingTo=B

slide 22

Protocol State Space

...

...

 Participant + attacker rules
define a state transition graph

 Every possible execution of the
protocol is a path in the graph

 Exhaustively enumerate all
nodes of the graph, verify
whether correctness conditions
hold in every node

 If not, the path to the violating
node describes the attack

Correctness

condition violated

slide 23

Restrictions on the Model

Two sources of infinite behavior

• Multiple protocol runs, multiple participant roles

• Message space or data space may be infinite

Finite approximation

• Assume finite number of participants

– Example: 2 clients, 2 servers

• Assume finite message space

– Represent random numbers by r1, r2, r3, …

– Do not allow encrypt(encrypt(encrypt(…)))

This is restriction is not necessary

(symbolic analysis!)

This restriction is necessary

for decidability

slide 24

Tradeoffs

Finite models are abstract and greatly simplified

• Components modeled as finite-state machines

• Cryptographic functions modeled as abstract data types

• Security property stated as unreachability of “bad” state

They are tractable…

• Lots of verification methods, many automated

 …but not necessarily sound

• Proofs in the abstract model are subject to simplifying
assumptions which ignore some of attacker’s capabilities

 Attack in the finite model implies actual attack

slide 25

slide 26

Stream Ciphers

One-time pad:

 Ciphertext(Key,Message)=MessageKey

• Key must be a random bit sequence as long as message

Idea: replace “random” with “pseudo-random”

• Use a pseudo-random number generator (PRNG)

• PRNG takes a short, truly random secret seed and
expands it into a long “random-looking” sequence

– E.g., 128-bit seed into a 106-bit

 pseudo-random sequence

Ciphertext(Key,Msg)=IV, MsgPRNG(IV,Key)

• Message processed bit by bit (unlike block cipher)

No efficient algorithm can tell
this sequence from truly random

slide 27

Stream Cipher Terminology

The seed of a pseudo-random generator typically
consists of initialization vector (IV) and key

• The key is a secret known only to the sender and the
recipient, not sent with the ciphertext

• IV is usually sent with the ciphertext

The pseudo-random bit stream produced by
PRNG(IV,key) is referred to as the keystream

Encrypt message by XORing with keystream

• ciphertext = message  keystream

slide 28

Properties of Stream Ciphers

Usually very fast (faster than block ciphers)

• Used where speed is important: WiFi, DVD, RFID, VoIP

Unlike one-time pad, stream ciphers do not
provide perfect secrecy

• Only as secure as the underlying PRNG

• If used properly, can be as secure as block ciphers

PRNG must be cryptographically secure

slide 29

Using Stream Ciphers

No integrity

• Associativity & commutativity:

 (M1PRNG(seed))  M2 = (M1M2)  PRNG(seed)

• Need an additional integrity protection mechanism

Known-plaintext attack is very dangerous if
keystream is ever repeated

• Self-cancellation property of XOR: XX=0

• (M1PRNG(seed))  (M2PRNG(seed)) = M1M2

• If attacker knows M1, then easily recovers M2 …

 also, most plaintexts contain enough redundancy that
can recover parts of both messages from M1M2

slide 30

How Random is “Random”?

slide 31

Cryptographically Secure PRNG

Next-bit test: given N bits of the pseudo-random
sequence, predict (N+1)st bit

• Probability of correct prediction should be very close to
1/2 for any efficient adversarial algorithm

 (means what?)

PRNG state compromise

• Even if the attacker learns the complete or partial state
of the PRNG, he should not be able to reproduce the
previously generated sequence

– … or future sequence, if there’ll be future random seed(s)

Common PRNGs are not cryptographically secure

slide 32

RC4

Designed by Ron Rivest for RSA in 1987

Simple, fast, widely used

• SSL/TLS for Web security, WEP for wireless

Byte array S[256] contains a permutation of numbers from 0 to 255

i = j := 0

loop

 i := (i+1) mod 256

 j := (j+S[i]) mod 256

 swap(S[i],S[j])

 output (S[i]+S[j]) mod 256

end loop

slide 33

RC4 Initialization

Divide key K into L bytes

for i = 0 to 255 do

 S[i] := i

j := 0

for i = 0 to 255 do

 j := (j+S[i]+K[i mod L]) mod 256

 swap(S[i],S[j])

Key can be any length
up to 2048 bits

Generate initial permutation
from key K

 To use RC4, usually prepend initialization vector (IV) to the key

• IV can be random or a counter

 RC4 is not random enough… First byte of generated sequence depends
only on 3 cells of state array S - this can be used to extract the key!

• To use RC4 securely, RSA suggests discarding first 256 bytes Fluhrer-Mantin-
Shamir attack

slide 34

802.11b Overview

Standard for wireless networks (IEEE 1999)

Two modes: infrastructure and ad hoc

IBSS (ad hoc) mode BSS (infrastructure) mode

slide 35

WEP: Wired Equivalent Privacy

Special-purpose protocol for 802.11b

Goals: confidentiality, integrity, authentication

• Intended to make wireless as secure as wired network

Assumes that a secret key is shared between
access point and client

Uses RC4 stream cipher seeded with 24-bit
initialization vector and 40-bit key

• Terrible design choice for wireless environment

slide 36

Shared-Key Authentication

beacon

Prior to communicating data, access point may require client to authenticate

Access Point

Client

association
request

 association
response

 probe request
OR

 challenge

IV, challengeRC4(IV,K)

unauthenticated &
unassociated

authenticated &
unassociated

authenticated &
associated

Passive eavesdropper recovers RC4(IV,K),
can respond to any subsequent challenge
without knowing K

[Borisov et al. “Intercepting Mobile Communications:
The Insecurity of 802.11”. MOBICOM 2001]

slide 37

How WEP Works

24 bits 40 bits

(IV, shared key) used as RC4 seed

• Must never be repeated (why?)

• There is no key update protocol, so

 security relies on never repeating IV

IV sent in the clear

Worse: changing IV with
each packet is optional! CRC-32 checksum is linear in :

if attacker flips some plaintext bits,
he knows which bits of CRC to flip to
produce the same checksum no integrity!

We should use

CRC32 to …

NEVER USE
CRC32 FOR
ANYTHING

Picture: iSEC Partners

slide 38

RC4 Is a Bad Choice for Wireless

Stream ciphers require sender and receiver to be
at the same place in the keystream

• Not suitable when packet losses are common

WEP solution: a separate keystream for each
packet (requires a separate seed for each packet)

• Can decrypt a packet even if a previous packet was lost

But there aren’t enough possible seeds!

• RC4 seed = 24-bit initialization vector + fixed key

• Assuming 1500-byte packets at 11 Mbps,

 224 possible IVs will be exhausted in about 5 hours

Seed reuse is deadly for stream ciphers

[Borisov et al.]

slide 39

Recovering the Keystream

Get access point to encrypt a known plaintext

• Send spam, access point will encrypt and forward it

• Get victim to send an email with known content

With known plaintext, easy to recover keystream

• C  M = (MRC4(IV,key))  M = RC4(IV,key)

Even without knowing the plaintext, can exploit
plaintext regularities to recover partial keystream

• Plaintexts are not random: for example, IP packet
structure is very regular

Not a problem if the keystream is not re-used

[Borisov et al.]

slide 40

Keystream Will Be Re-Used

In WEP, repeated IV means repeated keystream

Busy network will repeat IVs often

• Many cards reset IV to 0 when re-booted, then
increment by 1  expect re-use of low-value IVs

• If IVs are chosen randomly, expect repetition in O(212)
due to birthday paradox

Recover keystream for each IV, store in a table

• (KnownM  RC4(IV,key))  KnownM = RC4(IV,key)

Wait for IV to repeat, decrypt, enjoy plaintext

• (M’  RC4(IV,key))  RC4(IV,key) = M’

[Borisov et al.]

slide 41

It Gets Worse

Misuse of RC4 in WEP is a design flaw with no fix

• Longer keys do not help!

– The problem is re-use of IVs, their size is fixed (24 bits)

• Attacks are passive and very difficult to detect

Perfect target for the Fluhrer et al. attack on RC4

• Attack requires known IVs of a special form

• WEP sends IVs in plaintext

• Generating IVs as counters or random numbers will
produce enough “special” IVs in a matter of hours

This results in key recovery (not just keystream)

• Can decrypt even ciphertexts whose IV is unique

slide 42

Fixing the Problem

Extensible Authentication Protocol (EAP)

• Developers can choose their own authentication method

– Passwords (Cisco EAP-LEAP), public-key certificates (Microsoft
EAP-TLS), passwords OR certificates (PEAP), etc.

802.11i standard fixes 802.11b problems

• Patch (TKIP): still RC4, but encrypts IVs and establishes
new shared keys for every 10 KBytes transmitted

– Use same network card, only upgrade firmware

– Deprecated by the Wi-Fi alliance

• Long-term: AES in CCMP mode, 128-bit keys, 48-bit IVs

– Block cipher in a stream cipher-like mode

