
Side-Channel Attacks

Vitaly Shmatikov

CS 6431

Acoustic Information in Typing

Different keystrokes make different sounds

• Different locations on the supporting plate

• Each key is slightly different

Frequency information in the sound of the typed
key can be used to learn which key it is

• Observed by Asonov and Agrawal (2004)
slide 2

“Key” Observation

Build acoustic model for keyboard and typist

Exploit the fact that typed text is non-random
(for example, English)

• Limited number of words

• Limited letter sequences (spelling)

• Limited word sequences (grammar)

This requires a natural language model

slide 3

[Zhuang et al. “Keyboard Acoustic
Emanations Revisited”. CCS 2005]

Overview

Initial

training

Unsupervised Learning

Language Model Correction

Sample Collector

Classifier Builder

keystroke classifier
recovered keystrokes

Feature Extraction

wave signal

(recorded sound)

Subsequent

recognition

Feature Extraction

wave signal

Keystroke Classifier

Language Model Correction

(optional)

recovered keystrokes

[Zhuang, Zhou, Tygar]

slide 4

Sound of a Keystroke

Each keystroke is represented as a vector of
Cepstrum features

• Fourier transform of the decibel spectrum

• Standard technique from speech processing

slide 5

[Zhuang, Zhou, Tygar]

Bi-Grams of Characters

Group keystrokes into N clusters

Find the best mapping from cluster labels to
characters

Exploit the fact that some 2-character
combinations are more common than others

• Example: “th” vs. “tj”

• Hidden Markov Models (HMM) for unsupervised learning

slide 6

5 11 2

“t” “h” “e”

[Zhuang, Zhou, Tygar]

Spelling and Grammar

First, spelling correction

Then, simple statistical model of English
grammar: common tri-grams of words

• Use HMMs again to model

slide 7

[Zhuang, Zhou, Tygar]

Recovered Text

_____ = errors in recovery = errors corrected by grammar

slide 8

Before spelling
and grammar

correction

After spelling
and grammar

correction

[Zhuang, Zhou, Tygar]

Feedback-based Training

Recovered characters + language correction
provide feedback for more rounds of training

Output: keystroke classifier

• Language-independent

• Can be used to recognize random sequences of keys

– For example, passwords

• Many possible representations of keystroke classifier

– Neural networks, linear classification, Gaussian mixtures

slide 9

[Zhuang, Zhou, Tygar]

Experiment: Single Keyboard

Logitech Elite Duo
 wireless keyboard

4 data sets recorded in
 two settings: quiet and noisy

• Consecutive keystrokes are clearly separable

Automatically extract keystroke positions in
the signal with some manual error correction

[Zhuang, Zhou, Tygar]

slide 10

Results for a Single Keyboard

slide 11

Recording length Number of words Number of keys

Set 1 ~12 min ~400 ~2500

Set 2 ~27 min ~1000 ~5500

Set 3 ~22 min ~800 ~4200

Set 4 ~24 min ~700 ~4300

Set 1 (%) Set 2 (%) Set 3 (%) Set 4 (%)

Word Char Word Char Word Char Word Char

Initial 35 76 39 80 32 73 23 68

Final 90 96 89 96 83 95 80 92

[Zhuang, Zhou, Tygar]

Datasets

Initial and final recognition rate

Experiment: Multiple Keyboards

Keyboard 1: Dell QuietKey PS/2

• In use for about 6 months

Keyboard 2: Dell QuietKey PS/2

• In use for more than 5 years

Keyboard 3: Dell Wireless Keyboard

• New

slide 12

[Zhuang, Zhou, Tygar]

Results for Multiple Keyboards

12-minute recording with app. 2300 characters

Keyboard 1 (%) Keyboard 2 (%) Keyboard 3 (%)

Word Char Word Char Word Char

Initial 31 72 20 62 23 64

Final 82 93 82 94 75 90

[Zhuang, Zhou, Tygar]

slide 13

slide 14

Encrypted Voice-over-IP

Human speech = sequence of phonemes
• Example: “rock and roll” = [ɹɒk ænd ɹoʊl]

Variable-rate encoding: encodings of different
phonemes have different lengths

Stream ciphers preserve length of plaintext,
therefore can observe length of individual
encrypted phonemes

Use a language model (phonotactics) to
reconstruct speech without decrypting

[White et al. “Phonotactic Reconstruction of Encrypted
VoIP Conversations: Hookt on fon-iks”. Oakland 2011]

slide 15

Phonotactic Reconstruction

slide 16

Segment Stream into Phonemes

Transition between phonemes:

sound changes significantly, thus more
information needs to be encoded in the frame

slide 17

Frequency Analysis

Language correction

slide 18

Segment Stream into Words

Insert potential word breaks to break up phoneme
triples that don’t occur in any English word

Match phonemes around the break with all
possible phonemes that can end/begin words

Use pronunciation dictionary to match phoneme
subsequences to words, insert breaks at positions
consistent with all matches
• [inɔliɹæg] “an oily rag”

 “an oil E. rag”

 “an awe ill E. rag”

slide 19

Reconstruct Words

Previous step produces phoneme sequences
corresponding to individual words

Compute phonetic edit distance between each
phoneme sequence and each word in the
pronunciation dictionary

Use word and part-of-speech model to
disambiguate between homophones
• “ate” vs. “eight”

Result: human-understandable transcript of the
conversation

slide 20

Attacking Cryptographic Schemes

Cryptanalysis
• Find mathematical weaknesses in constructions

• Statistical analysis of plaintext / ciphertext pairs

Side-channel attacks
• Exploit characteristics of implementations

• Power analysis

• Electromagnetic radiation analysis

• Acoustic analysis

• Timing analysis

Protecting Data on a Laptop

slide 21

File system

Disk drivers

On-the-fly crypto

Password:

Common Attack Scenario

slide 22

Security Assumptions

The encryption is strong

The OS protects the key in RAM

…the attacker might reboot to
circumvent the OS, but since RAM
is volatile, the key will be lost…

0

Dynamic RAM Volatility

1

Write “1”

1

DRAM cell
(capacitor)

0

Refresh (read and rewrite)

Refresh interval ≈ 32 ms

What if we don’t refresh?
slide 23

Decay After Cutting Power

5 secs 30 secs 60 secs 300 secs

slide 24

Capturing Residual Data

No special equipment needed, but …

… booting OS overwrites large areas of RAM

Solution: boot a small low-level program to dump
out memory contents

• PXE dump (9 KB)

• EFI dump (10 KB)

• USB dump (22 KB)

What if BIOS clears RAM?

• Common on systems with error-corrected RAM

slide 25

Slowing Decay By Cooling

-50°C < 0.2% decay after 1 minute
slide 26

-196°C Liquid nitrogen

< 0.17% decay after 1 hour

Not necessary in practice

Even Cooler

slide 28

Dealing with Bit Errors

Some bit errors inevitable, especially
without cooling (increasing with memory density)

Given corrupted K’, find K:

Brute-force search over low
Hamming distance to K’

e.g. 256-bit key with 10% error:

> 256 guesses (too slow!)

Naïve Approach

Most programs store
precomputed derivatives of K
(e.g., key schedules)

These derivatives contain
redundancy; can treat them as
error correcting codes

Insight

slide 29

[Halderman et al. “Cold Boot
Attacks on Encryption Keys”.

USENIX Security 2008]

Correcting Bit Errors in DES

 Key schedule contains ~14 redundant copies of
each bit from the key

0100000010000100 ~20% error

0000000000000000 0

slide 30

AES Key Schedule

Round 0 key (K)

Round 1 key

Round 10 key

…

…

Core

128-bit key K 10 more 128-bit keys for cipher rounds

Byte

slide 31

Correcting Bit Errors in AES (1)

Round 0 key (K)

Round 1 key

Core

Key schedule recovered from memory (contains errors)

1. Slices: 4 bytes in Round 0 determine 3 bytes in Round 1

2. Enumerate 232 possibilities for each 7 byte slice

3. Eliminate values unlikely to have decayed to observed bytes
(excludes vast majority)

slide 32

Correcting Bit Errors in AES (2)

Round 0 key (K)

Round 1 key

Core

4. Repeat for each of the 4 slices

5. Combine possible slice values into candidate keys

6. Test candidates keys by expanding them into full key schedules –
compare to recovered memory

Key schedule recovered from memory (contains errors)

slide 33

Finding AES Key Schedules

Iterate through each byte of memory

Treat following region as an AES key schedule

For each word in the candidate “schedule”:

• Calculate correct value, assuming other bytes correct

• Take Hamming distance to observed value

If total distance is low, output the key

slide 34

Demonstrated Attacks

 Linux dm-crypt

 Linux LoopAES

 Windows BitLocker

 Mac OS FileVault

 TrueCrypt

slide 35

slide 36

Timing Attack

Basic idea: learn the system’s secret by observing
how long it takes to perform various computations

Typical goal: extract private key

Extremely powerful because isolation doesn’t help

• Victim could be remote

• Victim could be inside its own virtual machine

• Keys could be in tamper-proof storage or smartcard

Attacker wins simply by measuring response times

slide 37

RSA Cryptosystem

Key generation:

• Generate large (say, 512-bit) primes p, q

• Compute n=pq and (n)=(p-1)(q-1)

• Choose small e, relatively prime to (n)

– Typically, e=3 (may be vulnerable) or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod (n)

• Public key = (e,n); private key = d

– Security relies on the assumption that it is difficult to compute
roots modulo n without knowing p and q

Encryption of m (simplified!): c = me mod n

Decryption of c: cd mod n = (me)d mod n = m

slide 38

How RSA Decryption Works

RSA decryption: compute yx mod n

• This is a modular exponentiation operation

Naïve algorithm: square and multiply

slide 39

Kocher’s Observation

This takes a while
to compute

 This is instantaneous

Whether iteration takes a long time
depends on the kth bit of secret exponent

Exploiting Timing Dependency

Assumption / heuristic: timings of subsequent
multiplications are independent

• Given that we know the first k-1 bits of x …

 Given a guess for the kth bit of x …

 … Time for remaining bits independent

Given measurement of total time, determine
whether there is correlation between

 “time for kth bit is long” and “total time is long”

Exact
timing

Exact
guess

slide 40

slide 41

Outline of Kocher’s Attack

Idea: guess some bits of the exponent and
predict how long decryption will take

If guess is correct, will observe correlation; if
incorrect, then prediction will look random

• This is a signal detection problem, where signal is
timing variation due to guessed exponent bits

• The more bits you already know, the stronger the
signal, thus easier to detect (error-correction property)

Start by guessing a few top bits, look at
correlations for each guess, pick the most
promising candidate and continue

slide 42

RSA in OpenSSL

OpenSSL is a popular open-source toolkit

• mod_SSL (in Apache = 28% of HTTPS market)

• stunnel (secure TCP/IP servers)

• sNFS (secure NFS)

• Many more applications

Kocher’s attack doesn’t work against OpenSSL

• Instead of square-and-multiply, OpenSSL uses CRT,
sliding windows and two different multiplication
algorithms for modular exponentiation

– CRT = Chinese Remainder Theorem

– Secret exponent is processed in chunks, not bit-by-bit

[Brumley and Boneh.

“Remote Timing Attacks are Practical”.

USENIX Security 2003]

slide 43

Chinese Remainder Theorem

n = n1n2…nk

where gcd(ni,nj)=1 when i j

The system of congruences

 x = x1 mod n1 = … = xk mod nk

• Has a simultaneous solution x to all congruences

• There exists exactly one solution x between 0 and n-1

For RSA modulus n=pq, to compute x mod n
it’s enough to know x mod p and x mod q

slide 44

RSA Decryption With CRT

To decrypt c, need to compute m=cd mod n

Use Chinese Remainder Theorem (why?)

• d1 = d mod (p-1)

• d2 = d mod (q-1)

• qinv = q-1 mod p

• Compute m1 = cd1 mod p; m2 = cd2 mod q

• Compute m = m2+(qinv*(m1-m2) mod p)*q

 these are precomputed

Attack this computation in order to learn q.

This is enough to learn private key (why?)

slide 45

Montgomery Reduction

Decryption requires computing m2 = cd2 mod q

This is done by repeated multiplication

• Simple: square and multiply (process d2 1 bit at a time)

• More clever: sliding windows (process d2 in 5-bit blocks)

In either case, many multiplications modulo q

Multiplications use Montgomery reduction

• Pick some R = 2k

• To compute x*y mod q, convert x and y into their
Montgomery form xR mod q and yR mod q

• Compute (xR * yR) * R-1 = zR mod q

– Multiplication by R-1 can be done very efficiently

slide 46

Schindler’s Observation

At the end of Montgomery reduction, if zR > q,
then need to subtract q

• Probability of this extra step is proportional to c mod q

If c is close to q, a lot of subtractions will be done

If c mod q = 0, very few subtractions

• Decryption will take longer as c gets closer to q, then
become fast as c passes a multiple of q

By playing with different values of c and observing
how long decryption takes, attacker can guess q

• Doesn’t work directly against OpenSSL because of
sliding windows and two multiplication algorithms

slide 47

Value of ciphertext c

Decryption
time

q

2q p

Reduction Timing Dependency

slide 48

Integer Multiplication Routines

30-40% of OpenSSL running time is spent on
integer multiplication

If integers have the same number of words n,
OpenSSL uses Karatsuba multiplication

• Takes O(nlog23)

If integers have unequal number of words n and
m, OpenSSL uses normal multiplication

• Takes O(nm)

slide 49

g<q g>q

Montgomery
effect

Longer Shorter

Multiplication
effect

Shorter Longer

g is the decryption value (same as c)

Different effects… but one will always
dominate!

Summary of Time Dependencies

slide 50

Decryption time #Reductions
Mult routine

Value of ciphertext

q

0-1 Gap

Discontinuity in Decryption Time

slide 51

Normal SSL Handshake

Regular client
SSL
server

 1. ClientHello

 2. ServerHello
 (send public key)

3. ClientKeyExchange
(encrypted under public key)

Exchange data encrypted with new shared key

slide 52

Attacking SSL Handshake

SSL
server

1. ClientHello

2. ServerHello
 (send public key)

Attacker

3. Record time t1
 Send guess g or ghi

4. Alert

5. Record time t2
 Compute t2–t1

slide 53

Initial guess g for q between 2511 and 2512 (why?)

Try all possible guesses for the top few bits

Suppose we know i-1 top bits of q. Goal: ith bit.

• Set g =<known i-1 bits of q>000000

• Set ghi=<known i-1 bits of q>100000 - note: g<ghi

– If g<q<ghi then the ith bit of q is 0

– If g<ghi<q then the ith bit of q is 1

Goal: decide whether g<q<ghi or g<ghi<q

Attack Overview

slide 54

Two Possibilities for ghi

Decryption time #Reductions
Mult routine

Value of ciphertext

q

g

ghi?

ghi? Difference in decryption times

between g and ghi will be small

Difference in decryption times

between g and ghi will be large

slide 55

Timing Attack Details

What is “large” and “small”?

• Know from attacking previous bits

Decrypting just g does not work because of
sliding windows

• Decrypt a neighborhood of values near g

• Will increase difference between large and small
values, resulting in larger 0-1 gap

Attack requires only 2 hours, about 1.4 million
queries to recover the private key

• Only need to recover most significant half bits of q

slide 56

Impact of Neighborhood Size

zero-one gap

slide 57

Extracting RSA Private Key

Montgomery reduction
dominates

Multiplication routine dominates

zero-one gap

slide 58

Works On The Internet

Similar timing on
WAN vs. LAN

slide 59

Defenses

Bad: require statically that all decryptions take
the same time

• For example, always do the extra “dummy” reduction

• … but what if compiler optimizes it away?

Bad: dynamically make all decryptions the same
or multiples of the same time “quantum”

• Now all decryptions have to be as slow as the slowest
decryption

Good: Use RSA blinding

slide 60

RSA Blinding

Instead of decrypting ciphertext c, decrypt a
random ciphertext related to c

• Compute x’ = c*re mod n, r is random

• Decrypt x’ to obtain m’

• Calculate original plaintext m = m’/r mod n

Since r is random, decryption time is random

2-10% performance penalty

slide 61

Blinding Works

