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Acoustic Information in Typing  

Different keystrokes make different sounds 

• Different locations on the supporting plate 

• Each key is slightly different 

 

 

 

 

Frequency information in the sound of the typed 
key can be used to learn which key it is 

• Observed by Asonov and Agrawal (2004) 
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“Key” Observation 

Build acoustic model for keyboard and typist 

Exploit the fact that typed text is non-random 
(for example, English) 

• Limited number of words 

• Limited letter sequences (spelling) 

• Limited word sequences (grammar) 

This requires a natural language model 
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[Zhuang et al. “Keyboard Acoustic 
Emanations Revisited”. CCS 2005] 



 

Overview 

Initial  

training 

Unsupervised Learning 

Language Model Correction 

Sample Collector 

Classifier Builder 

keystroke classifier 
recovered keystrokes 

Feature Extraction 

wave signal 

(recorded sound) 

Subsequent 

recognition 
      

Feature Extraction 

wave signal 

Keystroke Classifier 

Language Model Correction 

(optional) 

recovered keystrokes 

[Zhuang, Zhou, Tygar] 
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Sound of a Keystroke 

Each keystroke is represented as a vector of 
Cepstrum features 

• Fourier transform of the decibel spectrum 

• Standard technique from speech processing 
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[Zhuang, Zhou, Tygar] 



 

Bi-Grams of Characters 

Group keystrokes into N clusters 

Find the best mapping from cluster labels to 
characters 

Exploit the fact that some 2-character 
combinations are more common than others 

• Example: “th” vs. “tj” 

• Hidden Markov Models (HMM) for unsupervised learning 
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“t” “h” “e” 

[Zhuang, Zhou, Tygar] 



 

Spelling and Grammar 

First, spelling correction 

Then, simple statistical model of English 
grammar: common tri-grams of words 

• Use HMMs again to model 
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[Zhuang, Zhou, Tygar] 



 

Recovered Text 

 

 

 

 

_____ = errors in recovery = errors corrected by grammar 
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Before spelling 
and grammar 

correction 

After spelling 
and grammar 

correction 

[Zhuang, Zhou, Tygar] 



 

Feedback-based Training 

Recovered characters + language correction 
provide feedback for more rounds of training 

Output: keystroke classifier 

• Language-independent 

• Can be used to recognize random sequences of keys 

– For example, passwords 

• Many possible representations of keystroke classifier 

– Neural networks, linear classification, Gaussian mixtures 
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[Zhuang, Zhou, Tygar] 



 

Experiment: Single Keyboard 

Logitech Elite Duo  
   wireless keyboard 

4 data sets recorded in  
   two settings: quiet and noisy 

• Consecutive keystrokes are clearly separable 

Automatically extract keystroke positions in 
the signal with some manual error correction 

[Zhuang, Zhou, Tygar] 
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Results for a Single Keyboard 
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Recording length Number of words Number of keys 

Set 1 ~12 min ~400 ~2500 

Set 2 ~27 min ~1000 ~5500 

Set 3 ~22 min ~800 ~4200 

Set 4 ~24 min ~700 ~4300 

Set 1 (%) Set 2 (%) Set 3 (%) Set 4 (%) 

Word Char Word Char Word Char Word Char 

Initial 35 76 39 80 32 73 23 68 

Final 90 96 89 96 83 95 80 92 

[Zhuang, Zhou, Tygar] 

Datasets 

 

 

 

 

Initial and final recognition rate 



 

Experiment: Multiple Keyboards 

Keyboard 1: Dell QuietKey PS/2 

• In use for about 6 months 

 

Keyboard 2: Dell QuietKey PS/2 

• In use for more than 5 years 

 

Keyboard 3: Dell Wireless Keyboard 

• New 
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[Zhuang, Zhou, Tygar] 



 

Results for Multiple Keyboards 

12-minute recording with app. 2300 characters 

Keyboard 1 (%) Keyboard 2 (%) Keyboard 3 (%) 

Word Char Word Char Word Char 

Initial 31 72 20 62 23 64 

Final 82 93 82 94 75 90 

[Zhuang, Zhou, Tygar] 
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Encrypted Voice-over-IP 

 

Human speech = sequence of phonemes 
• Example: “rock and roll” = [ɹɒk ænd ɹoʊl] 

Variable-rate encoding: encodings of different 
phonemes have different lengths 

Stream ciphers preserve length of plaintext, 
therefore can observe length of individual 
encrypted phonemes 

Use a language model (phonotactics) to 
reconstruct speech without decrypting 

[White et al. “Phonotactic Reconstruction of Encrypted 
VoIP Conversations: Hookt on fon-iks”. Oakland 2011] 
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Phonotactic Reconstruction 
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Segment Stream into Phonemes 

Transition between phonemes:  

sound changes significantly, thus more 
information needs to be encoded in the frame 
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Frequency Analysis 
 

Language correction 
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Segment Stream into Words 

Insert potential word breaks to break up phoneme 
triples that don’t occur in any English word 

Match phonemes around the break with all 
possible phonemes that can end/begin words 

Use pronunciation dictionary to match phoneme 
subsequences to words, insert breaks at positions 
consistent with all matches 
• [inɔliɹæg] “an  oily  rag” 

    “an  oil E.   rag” 

    “an  awe ill E.  rag” 
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Reconstruct Words 

Previous step produces phoneme sequences 
corresponding to individual words 

Compute phonetic edit distance between each 
phoneme sequence and each word in the 
pronunciation dictionary 

Use word and part-of-speech model to 
disambiguate between homophones 
• “ate” vs. “eight” 

Result: human-understandable transcript of the 
conversation 
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Attacking Cryptographic Schemes 

Cryptanalysis 
• Find mathematical weaknesses in constructions 

• Statistical analysis of plaintext / ciphertext pairs 

Side-channel attacks 
• Exploit characteristics of implementations 

• Power analysis 

• Electromagnetic radiation analysis 

• Acoustic analysis 

• Timing analysis 



 

Protecting Data on a Laptop 
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File system 

Disk drivers 

On-the-fly crypto 

Password: 
      ******** 

         
    

 
   
 



 

Common Attack Scenario 
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Security Assumptions 

The encryption is strong 

The OS protects the key in RAM 

 

 

 

…the attacker might reboot to 
circumvent the OS, but since RAM  
is volatile, the key will be lost… 



 

 

 

 

0 

Dynamic RAM Volatility 

 

 

 

1 

Write “1” 

  

 

 

 
 

 

 

 

 

 

1 

DRAM cell 
(capacitor) 

 

 

 

0 

Refresh (read and rewrite) 

Refresh interval ≈ 32 ms 

  

What if we don’t refresh? 
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Decay After Cutting Power 

5 secs 30 secs 60 secs 300 secs 
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Capturing Residual Data 

No special equipment needed, but … 

… booting OS overwrites large areas of RAM 

Solution: boot a small low-level program to dump 
out memory contents 

• PXE dump (9 KB) 

• EFI dump (10 KB) 

• USB dump (22 KB) 

What if BIOS clears RAM? 

• Common on systems with error-corrected RAM 
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Slowing Decay By Cooling 

-50°C < 0.2% decay after 1 minute 
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-196°C Liquid nitrogen 

< 0.17% decay after 1 hour 

Not necessary in practice 

Even Cooler 
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Dealing with Bit Errors 

Some bit errors inevitable, especially  
without cooling (increasing with memory density) 

 

 

Given corrupted K’, find K: 

Brute-force search over low 
Hamming distance to K’ 
 
e.g. 256-bit key with 10% error: 

> 256 guesses (too slow!) 
 

Naïve Approach 
 

 

Most programs store 
precomputed derivatives of K 
(e.g.,  key schedules) 

These derivatives contain 
redundancy; can treat them as 
error correcting codes 

Insight 
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[Halderman et al. “Cold Boot 
Attacks on Encryption Keys”.  

USENIX Security 2008] 



 

Correcting Bit Errors in DES 

 Key schedule contains ~14 redundant copies of 
each bit from the key 

 

 

 

 

 

  

 

0100000010000100 ~20% error 

0000000000000000 0 
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AES Key Schedule 

  

Round 0 key (K) 

Round 1 key 

Round 10 key 

…
 

…
 

Core 

128-bit key K    10 more 128-bit keys for cipher rounds 

  

Byte 
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Correcting Bit Errors in AES (1) 

  

Round 0 key (K) 

Round 1 key 

Core   

Key schedule recovered from memory (contains errors) 

1.   Slices: 4 bytes in Round 0 determine 3 bytes in Round 1 

2. Enumerate 232 possibilities for each 7 byte slice 

3. Eliminate values unlikely to have decayed to observed bytes  
(excludes vast majority) 
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Correcting Bit Errors in AES (2) 

  

Round 0 key (K) 

Round 1 key 

Core   

4. Repeat for each of the 4 slices 

5. Combine possible slice values into candidate keys 

6. Test candidates keys by expanding them into full key schedules – 
compare to recovered memory 

Key schedule recovered from memory (contains errors) 
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Finding AES Key Schedules 

Iterate through each byte of memory 

Treat following region as an AES key schedule 

For each word in the candidate “schedule”: 

• Calculate correct value, assuming other bytes correct 

• Take Hamming distance to observed value 

If total distance is low, output the key 
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Demonstrated Attacks 

  Linux dm-crypt 

  Linux LoopAES 

  

 

 

 

  
 

 

  

  

 
 

 

 

  

           

  Windows BitLocker 

  Mac OS FileVault 

  TrueCrypt 
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Timing Attack 

Basic idea: learn the system’s secret by observing 
how long it takes to perform various computations 

Typical goal: extract private key 

Extremely powerful because isolation doesn’t help 

• Victim could be remote 

• Victim could be inside its own virtual machine 

• Keys could be in tamper-proof storage or smartcard 

Attacker wins simply by measuring response times 
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RSA Cryptosystem 

Key generation: 

• Generate large (say, 512-bit) primes p, q 

• Compute n=pq and (n)=(p-1)(q-1) 

• Choose small e, relatively prime to (n) 

– Typically, e=3 (may be vulnerable) or e=216+1=65537 (why?) 

• Compute unique d such that ed = 1 mod (n) 

• Public key = (e,n);  private key = d 

– Security relies on the assumption that it is difficult to compute 
roots modulo n without knowing p and q 

Encryption of m (simplified!): c = me mod n 

Decryption of c:  cd mod n = (me)d mod n = m 
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How RSA Decryption Works 

RSA decryption: compute yx mod n 

• This is a modular exponentiation operation 

Naïve algorithm: square and multiply 
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Kocher’s Observation 

 

This takes a while 
to compute 

 

 This is instantaneous 

 

 

Whether iteration takes a long time 
depends on the kth bit of secret exponent 

 



 

Exploiting Timing Dependency 

Assumption / heuristic: timings of subsequent 
multiplications are independent 

• Given that we know the first k-1 bits of x … 

   Given a guess for the kth bit of x … 

   … Time for remaining bits independent 

Given measurement of total time, determine 
whether there is correlation between 

   “time for kth bit is long” and “total time is long” 

Exact 
timing 

Exact 
guess 
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Outline of Kocher’s Attack 

Idea: guess some bits of the exponent and 
predict how long decryption will take 

If guess is correct, will observe correlation; if 
incorrect, then prediction will look random 

• This is a signal detection problem, where signal is 
timing variation due to guessed exponent bits 

• The more bits you already know, the stronger the 
signal, thus easier to detect (error-correction property) 

Start by guessing a few top bits, look at 
correlations for each guess, pick the most 
promising candidate and continue 
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RSA in OpenSSL 

OpenSSL is a popular open-source toolkit 

• mod_SSL (in Apache = 28% of HTTPS market) 

• stunnel (secure TCP/IP servers) 

• sNFS (secure NFS) 

• Many more applications 

Kocher’s attack doesn’t work against OpenSSL 

• Instead of square-and-multiply, OpenSSL uses CRT, 
sliding windows and two different multiplication 
algorithms for modular exponentiation 

– CRT = Chinese Remainder Theorem 

– Secret exponent is processed in chunks, not bit-by-bit 

[Brumley and Boneh. 

“Remote Timing Attacks are Practical”.  

USENIX Security 2003] 
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Chinese Remainder Theorem 

n = n1n2…nk  

where gcd(ni,nj)=1 when i  j 

The system of congruences   

 x = x1 mod n1 = … = xk mod nk 

• Has a simultaneous solution x to all congruences  

• There exists exactly one solution x between 0 and n-1 

For RSA modulus n=pq, to compute x mod n   
it’s enough to know x mod p and x mod q 
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RSA Decryption With CRT 

To decrypt c, need to compute m=cd mod n  

Use Chinese Remainder Theorem (why?) 

• d1    = d mod (p-1) 

• d2    = d mod (q-1) 

• qinv = q-1 mod p 

• Compute m1 = cd1 mod p; m2 = cd2 mod q 

• Compute m = m2+(qinv*(m1-m2) mod p)*q 

 these are precomputed 

Attack this computation in order to learn q. 

This is enough to learn private key (why?) 
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Montgomery Reduction 

Decryption requires computing m2 = cd2 mod q 

This is done by repeated multiplication 

• Simple: square and multiply (process d2 1 bit at a time) 

• More clever: sliding windows (process d2 in 5-bit blocks) 

In either case, many multiplications modulo q 

Multiplications use Montgomery reduction 

• Pick some R = 2k 

• To compute x*y mod q, convert x and y into their 
Montgomery form xR mod q and yR mod q 

• Compute (xR * yR) * R-1 = zR mod q 

– Multiplication by R-1 can be done very efficiently 
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Schindler’s Observation 

At the end of Montgomery reduction, if zR > q, 
then need to subtract q 

• Probability of this extra step is proportional to c mod q 

If c is close to q, a lot of subtractions will be done 

If c mod q = 0, very few subtractions 

• Decryption will take longer as c gets closer to q, then 
become fast as c passes a multiple of q 

By playing with different values of c and observing 
how long decryption takes, attacker can guess q 

• Doesn’t work directly against OpenSSL because of 
sliding windows and two multiplication algorithms 
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Value of ciphertext c 

Decryption 
time 

 

q 

 

 

 

2q p 

  

 

 

  

Reduction Timing Dependency 
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Integer Multiplication Routines 

30-40% of OpenSSL running time is spent on 
integer multiplication 

If integers have the same number of words n, 
OpenSSL uses Karatsuba multiplication 

• Takes O(nlog23) 

If integers have unequal number of words n and 
m, OpenSSL uses normal multiplication 

• Takes O(nm) 
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g<q g>q 

Montgomery 
effect 

Longer Shorter 

Multiplication 
effect 

Shorter Longer 

g is the decryption value (same as c) 

Different effects… but one will always 
dominate! 

Summary of Time Dependencies 
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Decryption time   #Reductions 
Mult routine 

 
 

Value of ciphertext  

q 

  

 

 

 

 

 

0-1 Gap 

Discontinuity in Decryption Time 
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Normal SSL Handshake 

Regular client 
SSL 
server  

 1. ClientHello 

 2. ServerHello  
   (send public key) 

3. ClientKeyExchange 
(encrypted under public key) 

 

Exchange data encrypted with new shared key 
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Attacking SSL Handshake 

SSL 
server  

1. ClientHello 

2. ServerHello  
   (send public key) 

 

Attacker 

3. Record time t1 
    Send guess g or ghi 

 

 
4. Alert      

5. Record time t2 
    Compute t2–t1  



 

slide 53 

Initial guess g for q between 2511 and 2512 (why?) 

Try all possible guesses for the top few bits 

Suppose we know i-1 top bits of q. Goal: ith bit. 

• Set g  =<known i-1 bits of q>000000  

• Set ghi=<known i-1 bits of q>100000  - note: g<ghi 

– If g<q<ghi then the ith bit of q is 0 

– If g<ghi<q then the ith bit of q is 1 

Goal: decide whether g<q<ghi or g<ghi<q 

  

Attack Overview 
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Two Possibilities for ghi 
 

Decryption time #Reductions 
Mult routine 

 
 

Value of ciphertext  

q 

  

 

 

 

 

g 

  

ghi? 

 

ghi? Difference in decryption times 

between g and ghi will be small 

Difference in decryption times 

between g and ghi will be large 
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Timing Attack Details 

What is “large” and “small”? 

• Know from attacking previous bits 

Decrypting just g does not work because of 
sliding windows 

• Decrypt a neighborhood of values near g 

• Will increase difference between large and small 
values, resulting in larger 0-1 gap 

Attack requires only 2 hours, about 1.4 million 
queries to recover the private key 

• Only need to recover most significant half bits of q 
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Impact of Neighborhood Size 

 

zero-one gap 
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Extracting RSA Private Key 

 

Montgomery reduction 
dominates 

 

Multiplication routine dominates 

 
zero-one gap 



 

slide 58 

Works On The Internet 

 

Similar timing on 
WAN vs. LAN 
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Defenses 

Bad: require statically that all decryptions take 
the same time 

• For example, always do the extra “dummy” reduction 

• … but what if compiler optimizes it away? 

Bad: dynamically make all decryptions the same 
or multiples of the same time “quantum” 

• Now all decryptions have to be as slow as the slowest 
decryption 

Good: Use RSA blinding 
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RSA Blinding 

Instead of decrypting ciphertext c, decrypt a 
random ciphertext related to c 

• Compute x’ = c*re mod n, r is random 

• Decrypt x’ to obtain m’ 

• Calculate original plaintext m = m’/r mod n 

Since r is random, decryption time is random 

2-10% performance penalty 
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Blinding Works 


