
Network Telescopes

Vitaly Shmatikov

CS 6431

slide 2

TCP Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening…

Spawn a new thread,
store data
(connection state, etc.)

Wait

Connected

slide 3

SYN Flooding Attack

S

SYNspoofed source addr 1 Listening…

Spawn a new thread,
store connection data

SYNspoofed source addr 2

SYNspoofed source addr 3

SYNspoofed source addr 4

SYNspoofed source addr 5

… and more

… and more

… and more

… and more

… and more

MS Blaster (August 16, 2003):

every infected machine sent 50
packets per second to port 80 on
windowsupdate.com

slide 4

SYN Flooding Explained

Attacker sends many connection requests with
spoofed source addresses

Victim allocates resources for each request

• New thread, connection state maintained until timeout

• Fixed bound on half-open connections

Once resources exhausted, requests from
legitimate clients are denied

This is a classic denial of service attack

• Common pattern: it costs nothing to TCP initiator to
send a connection request, but TCP responder must
spawn a thread for each request - asymmetry!

Low-Rate SYN Floods

OS

Backlog
queue size

Linux 1.2.x 10

FreeBSD 2.1.5 128

WinNT 4.0 6

slide 5

Backlog timeout: 3 minutes

Attacker need only send

128 SYN packets every 3 minutes

 low-rate SYN flood

[Phrack 48, no 13, 1996]

Backscatter

slide 6

Attacker uses spoofed,
randomly selected
source IP addresses

Victim replies to
spoofed source IP

Results in unsolicited
response from victim
to third-party IP
addresses

[Moore et al. “Inferring Internet
Denial-of-Service Activity”]

How a Network Telescope Works

slide 7

[Moore, Voelker, Savage]

slide 8

Network Telescopes and Honeypots

Monitor a cross-section of Internet address space

• Especially useful if includes unused “dark space”

Attacks in far corners of the Internet may
produce traffic directed at your addresses

• “Backscatter”: responses of DoS victims to SYN
packets from randomly spoofed IP addresses

• Random scanning by worms

Can combine with “honeypots”

• Any outbound connection from a honeypot behind an
otherwise unused IP address means infection (why?)

• Can use this to analyze worm code (how?)

Measuring Backscatter

Listen to unused IP addresss space (darknet)

A lonely SYN/ACK packet is likely to be the
result of a SYN attack

2001: 400 SYN attacks/week

2013: 773 SYN attacks/24 hours

• Arbor Networks ATLAS

0 232

monitor

(1/256 of IP address space)

/8 network

slide 9

slide 10

Backscatter Analysis

m attack packets sent

n distinct IP addresses monitored by telescope

Expectation of observing an attack:

R’ = actual rate of attack,

 R = extrapolated attack rate

[Moore, Voelker, Savage]

Analysis Assumptions

Address uniformity

• Spoofed addresses are random, uniformly distributed

Reliable delivery

• Attack and backscatter traffic delivered reliably

Backscatter hypothesis

• Unsolicited packets observed represent backscatter

slide 11

[Moore, Voelker, Savage]

Observed Protocols

slide 12

[Moore, Voelker, Savage]

Victims by Top-Level Domain

slide 13

[Moore, Voelker, Savage]

Victims by Autonomous System

slide 14

[Moore, Voelker, Savage]

Repeated Attacks

slide 15

[Moore, Voelker, Savage]

slide 16

Exploits sprint overflow the ICQ filtering module of
ISS BlackICE/RealSecure intrusion detectors

• Debugging code accidentally left in released product

• Exploit = single UDP packet to port 4000

• Payload contains “(^.^ insert witty message here
^.^)”, deletes randomly chosen sectors of hard drive

Chronology of Witty

• Mar 8, 2004: vulnerability discovered by eEye

• Mar 18, 2004: high-level description published

• 36 hours later: worm released

• 75 mins later: all 12,000 vulnerable machines infected!

Witty Worm

slide 17

CAIDA/UCSD Network Telescope

Monitors /8 of IP address space

• All addresses with a particular first byte

Recorded all Witty packets it saw

In the best case, saw approximately 4 out of
every 1000 packets sent by each Witty infectee
(why?)

slide 18

Pseudocode of Witty (1)

1. srand(get_tick_count())

2. for(i=0; i<20,000; i++)

3. destIP rand()[0..15] | rand()[0..15]

4. destPort rand()[0..15]

5. packetSize 768 + rand()[0..8]

6. packetContents top of stack

7. send packet to destIP/destPort

8. if(open(physicaldisk,rand()[13..15]))

 write(rand()[0..14] || 0x4E20); goto 1;

9. else goto 2

Each Witty packet contains

bits from 4 consecutive

pseudo-random numbers

Seed pseudo-random generator

slide 19

Witty’s PRNG

Witty uses linear congruential generator to
generate pseudo-random addresses

 Xi+1 = A * Xi + B mod M
– First proposed by Lehmer in 1948

– With A = 214013, B = 2531011, M = 232, orbit is a complete
permutation (every 32-bit integer is generated exactly once)

Can reconstruct the entire state of generator from
a single packet (equivalent to a sequence number)

 destIP (Xi)[0..15] | (Xi+1)[0..15]

 destPort (Xi+2)[0..15]

Given top 16 bits of Xi …

… try all possible lower 16 bits and

check if they yield Xi+1 and Xi+2

consistent with the observations

[Kumar et al. “Outwitting
the Witty Worm”]

Estimating Infectee’s Bandwidth

Suppose two consecutively received packets from
a particular infectee have states Xi and Xj

Compute j-i

• Count the number of PRNG “turns” between Xi and Xj

Compute the number of packets sent by infectee
between two observations

• Equal to (j-i)/4 (why?)

sendto() in Windows is blocking (means what?)

Bandwidth of infectee =

• Does this work in the presence of packet loss?

slide 20

(j-i)/4 * packet size / T

[Kumar, Paxson, Weaver]

slide 21

Pseudocode of Witty (2)

1. srand(get_tick_count())

2. for(i=0; i<20,000; i++)

3. destIP rand()[0..15] | rand()[0..15]

4. destPort rand()[0..15]

5. packetSize 768 + rand()[0..8]

6. packetContents top of stack

7. send packet to destIP/destPort

8. if(open(physicaldisk,rand()[13..15]))

 write(rand()[0..14] || 0x4E20); goto 1;

9. else goto 2

[Kumar, Paxson, Weaver]

Each Witty packet contains

bits from 4 consecutive

pseudo-random numbers

Seed pseudo-random generator

What does it mean if telescope observes consecutive packets

that are “far apart” in the pseudo-random sequence?

Answer:

re-seeding of infectee’s PRNG

caused by successful disk access

slide 22

More Analysis

Compute seeds used for reseeding

• srand(get_tick_count()) – seeded with uptime

• Seeds in sequential calls grow linearly with time

Compute exact random number used for each
subsequent disk-wipe test

• Can determine whether it succeeded or failed, and
thus the number of drives attached to each infectee

Compute every packet sent by every infectee

Compute who infected whom

• Compare when packets were sent to a given address
and when this address started sending packets

[Kumar, Paxson, Weaver]

slide 23

Bug in Witty’s PRNG

Witty uses a permutation PRNG, but only uses
16 highest bits of each number

• Misinterprets Knuth’s advice that the higher-order
bits of linear congruential PRNGs are more “random”

Result: orbit is not a compete permutation,
misses approximately 10% of IP address space
and visits 10% twice

… but telescope data indicates that some hosts
in the “missed” space still got infected

• Maybe multi-homed or NAT’ed hosts scanned and
infected via a different IP address?

[Kumar, Paxson, Weaver]

slide 24

Witty’s Hitlist

Some hosts in the unscanned space got infected
very early in the outbreak

• Many of the infected hosts are in adjacent /24’s

• Witty’s PRNG would have generated too few packets
into that space to account for the speed of infection

• They were not infected by random scanning!

– Attacker had the hitlist of initial infectees

Prevalent /16 = U.S. military base (Fort Huachuca)

• Worm released 36 hours after vulnerability disclosure

• Likely explanation: attacker (ISS insider?) knew of ISS
software installation at the base… wrong!

[Kumar, Paxson, Weaver]

slide 25

Patient Zero

A peculiar “infectee” shows up in the telescope
observation data early in the Witty oubreak

• Sending packets with destination IP addresses that
could not have been generated by Witty’s PRNG

– It was not infected by Witty, but running different code to
generate target addresses!

• Each packet contains Witty infection, but payload size
not randomized; also, this scan did not infect anyone

– Initial infectees came from the hitlist, not from this scan

Probably the source of the Witty outbreak

• IP address belongs to a European retail ISP;
information passed to law enforcement

[Kumar, Paxson, Weaver]

slide 26

Was There a Hitlist?
[Robert Graham]

Typical worm propagation curve

Gotta be a
hitlist, right?

Alternative explanation: the initially infected BlackIce copies were

running as network intrusion detectors in promiscuous mode

monitoring a huge fraction of DoD address space (20% of all Internet)

Proved by analysis of infectees’ memory dumps in Witty packets
http://blog.erratasec.com/2014/03/witty-worm-no-seed-population-involved.html

