
Symbolic Protocol Analysis With an Abelian
Group Operator or Diffie-Hellman Exponentiation

Jonathan Millen and Vitaly Shmatikov�

Computer Science Laboratory
SRI International

�millen,shmat�@csl.sri.com

Abstract

We demonstrate that for any well-defined cryptographic protocol, the symbolic
trace reachability problem in the presence of an Abelian group operator (e.g., multi-
plication) can be reduced to solvability of a decidable system of quadratic Diophantine
equations. This result enables complete, fully automated formal analysis of protocols
that employ primitives such as Diffie-Hellman exponentiation, multiplication, and xor,
with a bounded number of role instances, but without imposing any bounds on the size
of terms created by the attacker.

1 Introduction

Conventional formal analysis of cryptographic protocols relies on the so called “Dolev-
Yao” attacker model, which assumes that the attacker can intercept any message and con-
struct or modify messages using a given set of computational and cryptographic primitives.
Cryptographic operations are treated abstractly as black boxes, in the sense that they are
assumed to have no computational features other than those associated with encryption
and decryption. Black-box cryptographic primitives are characterized using simple axioms
such as dec�enc��� ��� ���� � �, where ��� is the inverse key to �, which might be
either � itself for symmetric encryption, or the corresponding private key for public-key
encryption. Sometimes even less is assumed: for example, in the free algebra model dec
is not used explicitly (the consequences of this restriction are discussed in [Mil03]).

This rudimentary treatment of encryption is not adequate to deal with primitives such as
xor (exclusive or), multiplication, and Diffie-Hellman exponentiation, which are widely
used in security protocols. The attacker can and will exploit associativity, commutativ-
ity, cancellation, and other properties of these operations. For example, Bull’s recursive
authentication protocol was formally proved correct in a model that treated xor as an ab-
stract encryption, and then found to be vulnerable once self-cancellation properties of xor
are taken into account [Pau97, RS98].

We use symbolic trace reachability as the standard representation of the protocol analy-
sis problem for trace-based security properties, which include secrecy and most authentica-
tion properties. This problem has been shown to be undecidable in several general settings

�Partially supported by ONR Grants N00014-01-1-0837 and N00014-03-1-0961, and by DARPA contract
N66001-00-C-8014.

(for example, see [DLMS99]). Our approach follows the line of research that makes the
reachability problem decidable by bounding the number of sessions, but allowing an un-
bounded attacker who may create messages of arbitrary depth [AL00, FA01, Bor01, MS01].
Other model checking approaches require a priori bounds on message complexity or may
fail to terminate. Inductive proof approaches have no finiteness limitations, but require
substantially more human effort per protocol, and are still subject to undecidability results.

In symbolic approaches, messages are represented as terms in an algebra generated
by abstract computational primitives. Messages may contain variables, representing data
fields whose value is not known in advance to the recipient. A variable can be viewed as the
attacker’s input to the protocol execution since the attacker can instantiate it with any term
available to him as long as the instantiation is consistent in every term where the variable
appears.

A trace is a sequence of messages sent and received. A trace is reachable if there is a
substitution that instantiates all variables with ground terms such that all messages sent by
the honest parties are consistent with the protocol specification, and all messages received
by the honest parties from the network could have been constructed by the attacker from
the previously sent messages and attacker’s initial knowledge.

A trace is an attack if it violates the security condition – in the case of secrecy, if a value
that is supposed to remain secret appears in the trace as an unencrypted received message
(i.e., is announced by the attacker). For a bounded number of sessions, the symbolic trace
reachability problem has been shown to be NP-complete [RT01], assuming a free term
algebra.

Our main contribution is to extend the constraint solving approach, first proposed
in [MS01], to handle the algebraic properties of Abelian group operators. For any well-
defined cryptographic protocol, we show that symbolic trace reachability is equivalent to
solvability in integers of a certain system of quadratic equations. We then prove that this
system is decidable. Decidability of the bounded-session protocol insecurity problem for
xor (first shown in [CLS03, CKRT03b]) and for the free attacker algebra without equa-
tional properties (previously proved in [RT01, CCM01, MS01]) follow as special cases.

1.1 Overview

In Section 2, we introduce our formal model and describe how to reduce the protocol anal-
ysis problem to a sequence of symbolic constraints. In Section 3, we posit the origination
stability condition, which is a necessary property of any well-defined protocol. In Sec-
tion 4, we summarize the theory of ground term derivability in the presence of an Abelian
group operator, due to Comon-Lundh and Shmatikov [CLS03].

The main technical result of the paper appears in Section 5. If the constraint sequence
has a solution, we prove that it has a conservative solution. Intuitively, the conservative
solution uses only the structure that is already present in the original sequence. We show
that the substitution for any variable is a product of terms (and their inverses) drawn from
a finite set: the non-variable subterms of the original constraint sequence. The resulting
set of product derivation problems is naturally reduced to a system of quadratic Diophan-
tine equations, as shown in Section 6. One of the steps along the way is Abelian group
unification, which is known to be decidable [BS01]. We then proceed to demonstrate that
the quadratic system has a solution if and only if a particular linear subsystem has a so-
lution. Since linear Diophantine equations are decidable (e.g., [CD94]), this establishes
decidability of the protocol analysis problem in the presence of an Abelian group operator.

2

In Section 7, we extend our approach to protocols with Diffie-Hellman exponentia-
tion, under the restriction that multiplication may appear only in exponents. We replace
exponentials by a combination of products and uninterpreted functions, which reduces the
symbolic analysis problem for such protocols to the solvability of a symbolic constraint
sequence with an Abelian group operator. Conclusions are in Section 8.

1.2 Related work

Boreale and Buscemi [BB03] and Chevalier et al. [CKRT03a] recently developed decision
procedures for protocol analysis in the presence of Diffie-Hellman exponentiation. Neither
addresses decidability in the presence of an Abelian group operator. The decision procedure
of [BB03] requires an a priori upper bound on the number of factors in each product, but the
paper does not indicate how to compute this bound for a given symbolic trace. In general,
establishing upper bounds on the size of variable instantiations needed for a feasible attack
on a protocol is a highly non-trivial problem and one of the main challenges in proving
decidability. Therefore, the technique of [BB03] cannot be considered a complete decision
procedure even for protocols with Diffie-Hellman exponentiation.

Chevalier et al. [CKRT03a] proved that the insecurity problem for a restricted class
of protocols is NP-complete in the presence of Diffie-Hellman exponentiation. They do
not consider Abelian group operators outside exponents, and their result only applies to
protocols in which no more than one new variable is introduced in each protocol message.
Also, they do not permit variables to be instantiated with products. These restrictions are
quite strong, ruling out some well-defined protocols. For example, a protocol in which an
honest participant receives � � �, then receives �, and then sends � is not permitted by the
syntactic restrictions of [CKRT03a] (this protocol may be rewritten so as to satisfy the re-
strictions, but it is not clear whether there exists a general-purpose syntactic transformation
that converts any protocol into one satisfying the restrictions of [CKRT03a]). In contrast,
the results of this paper are directly applicable to any protocol which is well-defined in the
following sense: an honest participant is not required to output the value of an attacker’s
variable before he has received any message containing that variable.

The technique of [CKRT03a] is more general in its treatment of Diffie-Hellman expo-
nentiation since it allows exponentiation from an arbitrary base, while only constant-base
exponentiation is considered in this paper. See [Shm04] for an extension of our constraint
solving technique to modular exponentiation from an arbitrary base.

Pereira and Quisquater [PQ01] discovered an attack on a group Diffie-Hellman (GDH)
protocol that exploits algebraic properties of Diffie-Hellman exponents. Their approach
is specific to GDH-based protocols, and the attacker model is restricted correspondingly
(e.g., the attacker is not even equipped with the ability to perform standard symmetric
encryption). They do not attempt to address the general problem of deciding whether a term
is derivable in an attacker algebra with the equational theory of multiplication, or whether
a particular symbolic attack trace has a feasible instantiation. Since they only consider the
problem in the ground case, the resulting system of equations is linear, whereas the system
we obtain in the general case with variables is quadratic (see Section 6). An application of
our approach to one of the Pereira-Quisquater examples is summarized in Section 7.

Recent research by Narendran et al. focuses on decidability of unification modulo the
equational theory of multiplication and exponentiation [MN02, KNW02, KNW03]. While
equational unification is an important subproblem in symbolic protocol analysis, unification
alone is insufficient to decide whether a particular symbolic attack trace is feasible.

3

Decidability of symbolic protocol analysis in the presence of xor has been proved
in [CKRT03b, CLS03]. Chevalier et al. [CKRT03b] showed that the problem is NP-
complete in a restricted protocol model which is very similar to the one proposed in this
paper. Independently, Comon-Lundh and Shmatikov [CLS03] demonstrated decidability of
symbolic protocol analysis with xor in the unrestricted model. This paper lifts the results
of [CLS03] by considering the symbolic analysis problem in the presence of an arbitrary
Abelian group operator, resulting in a substantially more complicated theory than in the
xor case. In contrast, [CLS03] only considers Abelian group operators in the ground case,
and obtains symbolic decidability results for xor only.

Bertolotti et al. [BDSV03] investigated cryptographic protocol analysis in the presence
of associative and commutative operators. The algebraic theory considered in this paper is
significantly more complicated. In protocols such as group Diffie-Hellman [STW96], the
exponents form an Abelian group. In particular, the attacker can easily compute multiplica-
tive inverses. To discover attacks such as that found by Pereira and Quisquater [PQ01], the
algebraic theory must include inverses and cancellative reductions such as � � ��� � �.
Demonstrating decidability in the presence of an Abelian group operator (rather than mere
associativity and commutativity) is the main technical contribution of this paper.

2 Model

We begin with the strand space model of [THG99]. A strand is a sequence of nodes rep-
resenting the activity of one party executing the protocol. Strands are finite and do not
have branching or loops. Associated with each node is a message term with a sign, + or
�, indicating that the message is sent or received, respectively. Messages in a strand are
ground terms in a suitable algebra.

A protocol specification is a set of roles for legitimate parties in the protocol. A role
can be instantiated with different data in different protocol sessions. Hence, roles in a
protocol are specified as strand schemas, in which message terms may contain variables.
A role strand is a partially (or fully or un-) instantiated strand schema that is a role; a role
instance is a fully instantiated (ground) role strand.

In the usual strand space model, there is a standard set of penetrator roles represent-
ing primitive computations that an attacker can perform. An attack on a protocol may
involve many concurrent sessions or role instances woven together with penetrator strands.
A bundle is a collection of (protocol and penetrator) role instances in which the source
of each received message is identified. Thus, nodes in a bundle are partially ordered by
their strand sequence and also by the connection of a send node to a receive node for the
same message. Bundles are backward complete in the sense that the strand predecessor of
each (non-initial) node must be present, and the send node for each receive node must be
present. A bundle is essentially a Lamport diagram [Lam78] in which the processes are
strands. (Lamport called this a space-time diagram, but others renamed it in the context of
distributed systems.)

2.1 Overview of constraint solving

It is shown in [THG99] and elsewhere how security questions can be reduced to questions
about the existence of a bundle that exhibits a security violation. In our constraint solving
approach begun in [MS01], bundle existence is determined by starting with a semibundle

4

consisting of partially instantiated role instances, in which the sources of received mes-
sages are not necessarily determined. (The term “semibundle” comes from the Athena
paper [Son99].) In a semibundle to be analyzed, the number of instances of each role has
been chosen, and variables representing nonces (or session keys) have been instantiated
to symbolic constants in the roles that generate them. The remaining variables are, for
purposes of analysis, viewed as chosen or constructed by the attacker.

As in Athena, search for a solution begins with a semibundle that has no penetrator
strands. Athena adds penetrator strands and role strands as necessary to extend the semi-
bundle until it is a complete bundle. We never add role strands, because we bound the
number of roles to begin with to achieve decidability. We never add penetrator strands,
because their purpose is modeled implicitly by derivation constraints. We solve the con-
straints to see if the original semibundle can be instantiated to the role strands of a bundle.
Unlike Athena, we solve the problem in an infinite state space that includes all possible
combinations of penetrator strands.

A different sequence of derivation constraints is generated for each possible trace.
Derivation constraints assert that each received message is derivable, using attacker term-
generation rules, from messages that were previously sent in the trace. A solution instan-
tiates variables in the semibundle so that ground terms representing received messages are
all derivable. If the constraint sequence is not solvable for any of the possible traces, then
an attack bundle does not exist for the given set of role strands (though one might exist for
a larger set).

An efficient method for generating traces and solving a set of derivation constraints by
applying rules for successive transformations of the constraint sequence is given in [MS01].
One important advance in that paper is the ability to handle non-atomic or constructed
symmetric keys, that is, keys that may be the result of a combination of operations such as
concatenation, encryption, and hashing. Some work was done subsequently to improve the
efficiency of constraint generation and solving. Corin and Etalle devised an incremental
approach [CE02] that has been adopted and incorporated into our own software tool. Re-
cently, the AVISPA project made further improvements with a “constraint differentiation”
approach [BMV03].

This paper focuses on the decidability of constraint solving in the extended model with
Abelian group operations. The constraint solving step is different from that of [MS01],
and consists mainly in reducing the constraint solving problem to a choice among a finite
selection of substitutions, followed by solving a system of simultaneous linear Diophantine
equations.

The solution approach presented here is aimed only at establishing decidability. An-
alyzing complexity and finding an efficient way to carry out protocol analysis are left to
future work. A practical algorithm similar to that of [MS01] may work by gradual discov-
ery of the right set of substitutions by successive unifications, but unification would have to
be performed modulo the equational theory of Abelian groups, followed by solving a sys-
tem of linear Diophantine equations. Practical techniques for solving linear Diophantine
equations have already been developed in the context of associative-commutative unifica-
tion [LC89].

2.2 Term algebra

To focus on decidability in the presence of an Abelian group operator, we use a simplified
term algebra that includes only pairing, symmetric encryption (but not decryption), a one-

5

argument function � modeling a one-way hash function, and an Abelian group operator
written as multiplication. There are also assumed to be an unlimited number of variables
and free constants (zero-argument functions). This is almost a free algebra, that is, one with
no valid equations between terms (other than identities). But our term algebra is not free
because multiplication forms an Abelian group, with unit � and a multiplicative inverse.
The notation for these operations is shown in Fig. 1.

As in prior work with free algebras, there is no explicit decryption operator. Decryption
is performed implicitly by protocol participants. The attacker’s ability to extract compo-
nents of a pair, or to decrypt an encrypted term when he knows the decryption key is
modeled by separate attacker inference rules, which are discussed in Section 2.4.

The overall algebraic structure is described as the disjoint combination of a free theory
and the Abelian group theory, following [SS89]. In this context, “disjoint” means that each
relation involves only functions (and constants) from one theory at a time, in this case the
group theory. However, any term is acceptable as an argument to any function. One way
of viewing this is that all terms are untyped (or share a common base type, or sort). In
particular, we do not distinguish between keys and other kinds of messages.

Actual cryptographic operators do have requirements on their arguments, at least on
their size in bits, and in many cases more subtle restrictions. Protocol implementations
depend on observing these restrictions. For example, our algebra would allow a term like
���������, but a protocol would normally have to apply a type coercion operator (a hash or
truncation, perhaps) to ��� � �� before it could be used as a key. Moreover, when the Abelian
group operator is applied to a compound term (e.g., a pair), in the actual implementation
the corresponding bitstring must be interpreted as an element of the right group, which
may or may not be possible. We trust the protocol specification in this respect. If terms
appearing in the abstract protocol specification involve application of the Abelian group
operator to compound terms, we assume that such terms can be mapped into the group.
Nevertheless, due to our abstract treatment of cryptographic functions, our analysis may
generate unimplementable attacks, e.g., those involving application of the Abelian group
operator to ciphertexts encrypted with a symmetric key, etc. These spurious attacks can be
recognized by static inspection and discarded.

It is natural to ask here about the relationship between ground terms in our term algebra
and the bitstrings they are mapped to in the protocol implementation. This is not an easy
question to answer because of the level of abstraction of our model (and all Dolev-Yao-
style [DY83] models in general). For example, regarding encryption as a free operator
means that the infinite sequence of terms �� ����� �������� � � � are all distinct, whereas in
practice the bitstring values would all have the same length and could not all be distinct.
Thus, there are additional relations in reality, and this implies that there may be more
attacks on the real protocol than on the abstract version. Such concerns are addressed in
work on computationally sound formal models, which is beyond the scope of this paper.
The Abadi-Rogaway paper [AR02] is a good introduction to this issue.

Additional relations may also come about because of particular ways that encryption
is performed. Encryption can be accomplished using exponentiation or multiplication, for
example, and some interaction with the multiplicative Abelian group operator could occur,
especially if they both use modular arithmetic. Such design choices might lead to attacks
that would not be discovered in the present model. However, our decision procedure will
determine the existence of any attack strategies that work uniformly, that is, for all possible
cryptographic implementations that satisfy the abstract axioms.

We describe a specific extension with exponentials in Section 7, for application to pro-

6

���� ��� Pairing of terms �� and ��.
������ Term �� encrypted with term ��

using a symmetric algorithm.
�� � � � � � �� Product of terms (associative and commutative).

��� Multiplicative inverse of term �.
���� Any free function.

Figure 1: Message term constructors

� � � � �
� � ��� � �

�����
��

� �

��� � ���
�� � ��

�� � ����

Figure 2: Normalization rules for products and inverses

tocols using Diffie-Hellman key agreement, while still allowing ordinary symmetric en-
cryption in the protocol. The idea is to transform constraints with exponential terms into
constraints with products of exponents. Other extensions are possible with no conceptual
difficulty. Abstract public key encryption can be handled in a way similar to symmetric en-
cryption, using a pair of functions ����� and 	���� to generate a pair of keys for a principal
�. Variations and extensions of pairing could also be added without affecting decidability,
such as
-tuples for some or all
 � �, or associative concatenation.

The associative and commutative properties of our multiplicative group allow us to
regard the product as an operator on a set of any number of terms, as suggested by the
extended product notation �� � � � � � ��.

Terms can be put in normal form by applying the reduction rules given in Fig. 2. A
term is in normal form if no further reductions are possible, even after rearranging products
using associativity and commutativity. Normalization also includes “flattening” products,
so that �� ��� �will be normalized to � �� �. The normal form is unique up to permutations
of the extended product. Thus, for example, ���������� �� reduces to either �� or ��, and
these two productss are regarded as equal. We assume that terms are always normalized.

A term with a positive integer exponent is defined in the expected way; for example,
�� � � � �. A term with a negative exponent, like ���, is an abbreviation for an inverse
with a positive exponent, like ������.

2.3 Unification

There is a unification algorithm that can be applied to any two terms � � and �� constructed
using the syntax of Fig. 1, by combining conventional structural unification on the free
operators and Abelian Group (AG-) unification modulo associativity and commutativity of
the � operator and normalization rules of Fig. 2. If both terms to be unified are not products,

7

Unpairing (UL, UR) Decryption (D)

� � ��� ��

� � �

� � ��� ��

� � �

� � ���� � � �

� � �

Pairing (P) Encryption (E)

� � � � � �

� � ��� ��

� � � � � �

� � ����

Function (F) Inversion (I)

� � �

� � ����

� � �

� � ���

Multiplication (M)

� � �� � � � � � ��

� � �� � � � � � ��

Figure 3: Attacker’s capabilities

we use conventional unification by structural recursion, treating all constructors of Fig. 1
as free functions. If at least one of the terms is a product, unification is performed modulo
AG, which is known to be decidable [BS01] and which produces a finite number of most
general unifiers. In the rest of the paper, we use ��� ������� ��� notation for the finite
set of most general unifiers of �� and ��. Note that because a non-product term may contain
products as inner subterms, �� and �� may have more than one most general unifier even if
neither is a product.

2.4 Attacker model

We use the standard attacker model augmented with rules concerning products and inverses
(an extension to exponentials can be found in Section 7). The attacker’s ability to derive
terms is characterized as a term closure under the inference rules of Fig. 3. The sequent
� � � means that � is derivable (computable) from the terms in the set � . The term closure
of � is the set of all terms derivable from � (including members of �).

2.5 Constraint generation

Suppose we are given a protocol specified as a set of roles (strand schemas). We first
choose a finite set of role strands for the semibundle. (There is no algorithm to determine
how many of each are needed.) Each role may be instantiated zero or more times. In each

8

role strand, any nonce variable generated by that role is instantiated with a distinct symbolic
constant.

As an example, consider the protocol with two roles �� and ��� ����, where � and
� are nonces, and the security policy is to keep � secret. In the semibundle pictured below,
� has been instantiated with � in the first role strand, which generates it, and � has been
instantiated with �.

The third strand (node 4) is an artificial “test” strand introduced to detect compromise
of �. If � can be received (in the clear) by the test party, then � has been compromised.

��������� �� �� �� �����������

��
��������� ���� ����������������

No variables remaining in a semibundle should occur in more than one strand. Even
though role specifications may use the same variable like � or � in different roles because
the value is expected to be the same, there is no guarantee that corresponding variables will
be instantiated with the same value during execution.

We generate all possible node orderings, or traces, that are consistent with the given
strands. This is a finite set that grows exponentially with the number of strands. (Some
traces can be discarded safely, but for proving decidability we may as well assume that we
have all of them.) Each trace yields a sequence of derivation constraints.

In general, if ��� � � � � �� is the sequence of receive-node messages, and � � is the set of
messages sent in nodes prior to the node in which � � is received, then the constraints are
just the sequence

� � ��� � ����

Each individual constraint �� � �� can be interpreted as “at step �, the attacker knows
messages in �� and needs to generate message ��.” We will refer to �� as the target term
of the constraint, and �� as the source set of the constraint. Both �� and messages in ��
may contain variables. We assume that �� contains terms that are initially known to the
attacker, such as constants specific to the protocol and the attacker’s own long-term keys.
It is usually not necessary to include the constant �, since if �� contains any term �, the
attacker can derive � as � � ���.

The properties of protocol-generated sequences are discussed in Section 3.
Our example semibundle has traces corresponding to all node orderings that respect

the ordering of nodes 2 and 3. Note also that the only traces of interest are attacks, which
end with node 4. Thus, the complete set of orderings to examine is 1234, 124, 14, 2134,
2314, 214, 24, 4. (One can show that it is sufficient to examine 1234 and 14, since any
attack possible with a different ordering is possible with one of these.) The ordering 1234
generates the constraint sequence

�� �
��� ������ ��

For convenience, we simplify the notation for source sets by regarding a list as a union.
Thus, ��� ������� may be written �� ������ and � � ���� � may be written �� �� �.

We say that � is a solution of � � � (written � � � � �) if � is a ground substitution
such that either �� 	 ��, or �� � �� is derivable using the inference rules of Fig. 3.

9

Given a constraint sequence � � ��� � ���, � is a solution of the constraint sequence
(� � �) if � simultaneously solves every constraint �� � ��.

The constraint sequence arising from the trace 1234 in the example can be satisfied with
the substitution �
� �, since the attacker’s Decryption rule (D) can be applied to satisfy
the second constraint.

2.6 Subterms and product closures

We introduce a few definitions for convenience. If � is a finite set of terms, let �	�� � be
the set of subterms of � , which is the least set of terms such that:

� If � 	 � then � 	 �	�� �

� If ��� �� 	 �	�� � then �� � 	 �	�� �

� If ���� 	 �	�� � then �� � 	 �	�� �

� If ���� 	 �	�� � then � 	 �	�� �

� If �� � � � � � �� 	 �	�� � then �� 	 �	�� � for each �

Note that �� � �� is not considered a subterm of �� � �� � ��. For an individual term �,
�	��� � �	�����. We say that � is a superterm of � if � 	 �	���.

Define

��� �
���
� ��� � � � � � �� � ��� �� 	 � or ���� 	 ��

�	���
���
�

�
	��
���

�	��� � �����

�����
���
� ����	����

���� �
���
� �� 	 �	�� � � � is a variable�

����
���
� �	��� ������

�����
���
�
�������

Thus, ���� is the set of all non-variable subterms of�, and ����� is the closure of this set
under product (�) and inverse.

3 Well-Defined Protocols and Constraint Sequences

We start by defining two properties of constraint sequences that are essential for establish-
ing decidability: monotonicity and origination. Conceptually, these properties are similar
to those defined for the constraint solving method of [MS01]. Informally, monotonicity
means that the attacker’s knowledge never decreases as the protocol progresses: all mes-
sages intercepted by the attacker are simply added to the set of terms available to him.
Origination means that each variable appears for the first time in some message generated
by the attacker (recall that in the symbolic analysis approach, variables model attacker’s
input to the protocol execution).

Our proof of decidability requires that monotonicity and origination be preserved by
any partial substitution (this is a technical difference from [MS01]). In this section, we
argue that this is true for any symbolic constraint sequence associated with a well-defined

10

protocol. Our notion of well-definedness is formalized below, but it can be informally
understood as follows. For any choice of attacker’s inputs to the protocol execution, the
protocol should never require an honest participant to generate a message containing an
attacker’s input before the attacker sent any message with that input.

Although a constraint sequence must be solved by a ground substitution, the substiti-
tions we work with below are not always ground substitutions. We do assume, for con-
venience, that all substitutions are idempotent. An idempotent substitution eliminates ev-
ery variable it instantiates. That is, if we define the domain ���� � ����� �� ��, then
� 	 �	���� implies � �	 ����. Furthermore, a substitution does not introduce new vari-
ables in the context of a constraint sequence: ������ � �����.

3.1 Monotonicity and origination

Let� � ��� � ��� � � � � �� � ��� be any constraint sequence generated from a protocol.

Definition 3.1 (Monotonicity) � satisfies the monotonicity property if � � � implies that
�� � ��.

This property means that the attacker does not “forget” terms. As the protocol pro-
gresses, the set of the terms available to the attacker does not decrease. The constraint
generation procedure described in Section 2.5 produces monotonic constraint sequences.
Furthermore, this property is preserved by substitutions.

To understand the origination property, recall that variables represent the attacker’s
input to the protocol execution. Therefore, each variable must appear for the first time in
some message generated by the attacker, i.e., in some message received by an honest party.

Definition 3.2 (First occurrence) Given a constraint sequence � � �� � � ���, define
����� for any variable � 	 ����� to be the index of the constraint in which � appears
for the first time, i.e., � 	 ������ � ����, but � � �� � �	 ����� � ���. Where � is
clear from the context, we will refer to ����� simply as ��.

Definition 3.3 (Origination) A constraint sequence � � �� � � ��� satisfies the origina-
tion property if � 	 ������� �� � ��.

Origination implies that the first occurrence of a variable is in a target term, since, if
� 	 �������, we would have �� � ��, which is impossible.

In order to ensure this property for the initial constraint sequence generated from a
protocol specification, we observe two conventions. First, nonces generated by a role are
instantiated with new symbolic constants in that role. This ensures (in a free constant
context) that all nonces are different. Second, we require that any other variables chosen
by a role, such as the choice of responder principal made by an initiator, and the choice of
initiator as well, are either instantiated with constants (for the strand containing a shared
secret), or are placed in a prior received message, as if the attacker chose these values. This
is artificial, but it makes sense for analysis, since we want to find attacks in which these
values are chosen in a worst-case way, and we may as well assume that the attacker has
chosen them.

For example, the one-message protocol � � � � ��� would have an additional
message � � � � ��� inserted (� for enemy or attacker). We assume that the attacker

11

initially knows constants �� �� � representing principals’ names. We can model this with
another, earlier message � � � � ���� ��� ��. The two role strand schemas are then

� � ����� ��� �� � ���� ���� ���� ��� and
� � ����� ���.

In a semibundle with one � strand and one � strand, the nonce � would be instantiated in
�’s role, producing the constraint sequence

�� �� �� ���� ���
�� �� �� ���
� ���� ����

(In this example we assumed that constants �� �� � are known initially to the attacker, and

is a new constant for the nonce generated by �.)

3.2 Well-defined protocols

For subsequent results, we need the property that origination is preserved by substitutions.
This property will follow from a condition, defined below, called well-definedness, which is
intuitively equivalent to requiring that honest participants make no undetermined choices.
If a protocol is presented in a way that allows an undetermined choice, we want to analyze
the protocol as though the attacker made the choice.

To explain our notion of an ill-defined protocol, suppose a protocol specification re-
quires an honest participant to receive � � � at a point in the protocol where he has never
received any messages containing � or � before, and then return �. This is an undetermined
choice, because an honest recipient needs to split a product of two unknown values. Recall
that the attacker has complete control over the values of � and �. Suppose the attacker
chooses � and � so that � � ��� in some execution of the protocol. Then, in this execution
of the protocol, the honest participant will receive � (since ��� � � � �), and will then have
to return ���, even though he has not received any prior message containing � and thus
has no way of knowing what value was chosen by the attacker for �. In this example, the
protocol is not implementable as specified, since there is no way for the honest participant
to determine which value of � the attacker had in mind.

We stress that non-implementability of this protocol is unrelated to hardness of factor-
ization. Even if � � � had unique factorization and the honest participant had unlimited
computational power, he would still have no way of determining which of the two factors
was chosen by the attacker as � (because � is commutative, values of � and � are completely
symmetric). In this case, the honest participant has to make an undetermined choice be-
tween two candidates, which means that the protocol cannot be implemented as specified.

In contrast, suppose a protocol specification requires an honest participant to receive
� � �, then receive �, and then return �. The correct choice of � is then determined and
computable as � � �� � �� � ���. This protocol is well-defined.

The ability of an honest participant to compute the messages he is required to send
by the protocol specification is no different in principle from the ability of the attacker to
compute the messages received by honest participants (although honest participants may
have access to term generation rules other than those of Fig. 3). The honest participants’
computations required by the protocol are, roughly, the mirror image of the attacker’s com-
putations. Thus, if a constraint sequence � is generated from a trace of a well-defined
protocol, each attacker term set �� must be computable from terms previously received

12

by honest participants, namely ��� �� � ��, plus any initial knowledge of honest partic-
ipants such as their own secret keys. (At each step, an honest participant needs only to
generate the difference �� � ����.) This observation will lead us to the formal definition of
well-definedness below.

We start by definining the honest participants’ knowledge at each step of the symbolic
protocol trace. Each �� is a set of terms. Even though there may be more than one honest
participant, we combine all honest participants’ knowledge into one set, because this is
sufficient for our purpose.

Definition 3.4 Let � � ��� � ��� be a constraint sequence generated from the protocol,
and let �� be the set of terms collectively known to honest participants before the start of
protocol execution. For all � such that � � � � ���, define � � � �� � ��� �� � ��.

Note that �� does not contain any terms with variables with them. The reason for this
is the origination property, which requires that every variable must appear for the first time
in some message sent by the attacker, and no messages had been sent before the protocol
started.

Consider the computation that the honest participants must execute according to the
protocol specification. In a sense, it is the mirror image of the attacker computation. Recall
that each constraint �� � �� means that the attacker needs to generate �� from terms in
��. For honest participants, the reverse is true: they must generate terms in � � from their
knowledge ��.

Informally, a protocol is well-defined if it does not require honest participants to output
a message containing a variable that they have never observed before. Moreover, this condi-
tion must hold for any value of variables. Since variables are controlled by the attacker and
represent the attacker’s input to the protocol execution, the protocol must be well-defined
for any choice of these values. Intuitively, this means that a participant’s behavior in the
protocol must be well-defined regardless of how other participants choose their nonces,
what they send in lieu of ciphertexts encrypted by unknown keys, and so on.

Definition 3.5 (Well-defined protocol) A protocol is well-defined if every symbolic con-
straint sequence � � ��� � ��� generated from its specification satisfies the following
property: for any �, for any partial substitution �, ������ � ������� �

�
�� �������,

As mentioned above, an example of an ill-defined protocol is a protocol in which an
honest participant receives � � � and is then required to send �. This means that honest par-
ticipants must produce � from their knowledge �� � �� � �� where ������ � �. Observe
that there exist variable values (modeled as partial substitutions), e.g., � � ��
� ����,
such that in the resulting concrete protocol execution the honest participant’s knowledge
is �� � ��� and he is required to output � even though he has never seen any terms con-
taining � before. This protocol is not well-defined. On the other hand, a protocol in which
an honest participant is required to output � when his knowledge is � � � �� � �� � ��� is
well-defined. Under any partial substitution �, ������ � ������ � ��� ����.

We argue that any protocol that does not force honest participants to make undeter-
mined choices satisfies Definition 3.5. Otherwise, the behavior of some honest participant
is not defined for some values of attacker’s inputs. For those values, the honest participant
is expected to output the value of an attacker’s variable before the attacker has sent any
messages containing that value.

13

If a protocol designer wishes to check whether his protocol specification is well-defined,
Definition 3.5 may be difficult to verify to practice because, for each constraint sequence
generated from the protocol specification, it quantifies over all possible substitutions. In ap-
pendix A, we explain how to check whether a constraint sequence satisfies Definition 3.5
by considering only a finite number of substitutions (namely, those that may lead to can-
cellation of variables in the knowledge of honest participants).

We now prove a simple auxiliary lemma that will help demonstrate stability of origina-
tion under any partial substitution.

Lemma 3.6 If the protocol is well-defined according to Definition 3.5, and� � �� �����
is the corresponding symbolic constraint sequence, then, for any partial substitution �,
� ������� �

�
�� �������.

Proof: Proof is by induction over all constraints in �. By Definition 3.3, ���� �� � �,
thus the lemma is satisfied vacuously. Suppose the lemma holds for all � � ��� 	 � where
� � �. Consider �� � ��. By Definition 3.5, ������ � ������� �

�
�� �������. By

the induction hypothesis, ��������� �
�
���� ������� �

�
�� �������. Therefore

������� � ������ � ������� � ��������� �
�
�� �������. This completes the in-

duction. �

3.3 Stability of monotonicity and origination

This section contains the results which are used in the rest of the paper.

Theorem 3.7 (Stability of monotonicity) Let� � ������� � � � ������� be a constraint
sequence generated from a protocol. Then � � � implies ��� � ���.

Proof: Observe that for all �� 	 ��� there exists � 	 �� such that �� � ��. Since � is
generated from the protocol, it satisfies Definition 3.1. Therefore, if � � �, then for all
� 	 ���� � 	 ��, and for all �� 	 ���, there exists ��� 	 ��� such that �� � ��� � ��. There-
fore, ��� � ���. �

Theorem 3.8 (Origination stability) Let� � ������� � � � ������� be a constraint se-
quence generated from a well-defined protocol. For any partial substitution �,�� satisfies
the origination property.

Proof: Stability of origination under any substitution follows directly from Lemma 3.6.
As described in Section 3.3,� satisfies the origination property by construction. Consider
any partial substitution �, let � be some variable occurring in �� and let �� be the in-
dex of the constraint in which it occurs for the first time. By Lemma 3.6, ���� ���� ��
�� �������. Therefore, for any variable � 	 ��������, � occurs in some ��� where

� � �. We conclude that �� � ��, and the origination property is satisfied. �

14

4 Ground Derivability

In this section, we outline the theory of ground term derivability in the attacker model with
an Abelian group operator due to Comon-Lundh and Shmatikov [CLS03]. We only state
the key lemmas. Proofs can be found in [CLS03]. Note that in [CLS03], Abelian groups
were considered only in the ground case. In contrast, this paper is devoted to solving the
problem in the symbolic case.

The normalization property stated in Lemma 4.5 may appear superficially similar to
the analysis-followed-by-synthesis closure previously established for the free attacker al-
gebra [Pau98, CJM00]. Normalization results of [Pau98, CJM00] do not apply, however,
to attacker models with non-atomic encryption keys and equational theories with cancel-
lation, requiring development of a new proof normalization theory such as [CLS03]. For
example, � cannot be derived from � � ���������� �� by any sequence in which analysis
steps are followed only by synthesis steps.

Definition 4.1 (Ground proof) A ground proof of � � � is a tree labeled with sequents
� � � such that all terms in � , � and � are ground and:

� Every leaf is labeled with � � � such that � 	 �

� Every non-leaf node labeled with � � � has parents 	�� � � � 	� such that
	� � � � 	�

� � �
is an instance of one of the inference rules of Fig. 3

� The root is labeled with � � �

The size of a proof is the number of its nodes.
Informally, there exists a proof of � � � if and only if the attacker can construct term

� from the term set � using its capabilities as defined by the rules of Fig. 3.

Lemma 4.2 If there is a minimal size proof � of one of the following forms:

...

� � ��� ��

� � �

...

� � ��� ��

� � �

...

� � ����

...

� � �

� � �

then ��� �� 	 �	�� �, ��� �� 	 �	�� �, or ���� 	 �	�� �, respectively.

Proof: This lemma was proved in [CLS03]. �

Definition 4.3 (Proof composition) If �� is a proof of � � �� for � � �� � � � �
 and � is a
proof of ����� � �� � � � �
� � �, then the composition ����� � � � ���� is the proof of � � �
constructed by putting proofs �� together in the obvious way.

Definition 4.4 (Normal ground proof) A ground proof � of � � � is normal if

� either � 	 �	�� � and every node of � is labeled � � � with � 	 �	�� �,

15

� or � � ����� � � � ���� where every proof �� is a normal proof of some � � �� with
�� 	 �	�� � and proof � is built using the inference rules (P),(E),(F),(M),(I) only.

Lemma 4.5 (Existence of normal ground proof) If there is a ground proof of � � �, then
there is a normal ground proof of � � �.

Proof: This lemma was proved in [CLS03] for an attacker theory which is identical to that
of Fig. 3, but without (F) rule. The proof can be trivially extended to account for (F). �

Lemma 4.6 If there exists a proof of � � � and ��� �� 	 �	���, where ��� �� is either
��� ��, ��� ��, or ����, then either

� ��� �� 	 �	�� �, or

� there exist normal proofs of � � � and � � � in which no nodes are labeled with
� � ��� ��.

Proof: We prove the lemma for ��� �� (the proofs for ��� �� and ��� � are similar).
Suppose ��� �� 	 �	���, but ��� �� �	 �	�� �. Consider the minimal size normal proof of

� � � (such a proof must exist by Lemma 4.5). By Definition 4.4, this proof has the form
����� � � � ���� where �� is the proof of some �� 	 �	�� �, and context � is built using the
inference rules (P),(E),(F),(M),(I) only.

By assumption, for all �, ��� �� �	 �	���� (otherwise, there is a contradiction with
��� �� �	 �	�� � since �� 	 �	�� �, thus �	���� � �	�� �). Consider the first inference in �

that results in the appearance of ��� ��, i.e.,
� � �� � � � � � ��

� � ��
such that ��� �� 	 �	����

but for all �, ��� �� �	 �	����. Let �� be the subproof of � � �� . By minimality of the proof,
�� , no node in the subproof of � � �� is labeled with � � ��� ��.

For rules (E),(F),(M),(I), if ��� �� 	 �	�� ��, then there exists � such that ��� �� 	 �	����.
The condition ������ �� �	 �	���� can hold only if (i) the inference rule in question is (P),

and (ii) �� � ��� ��. Therefore, the inference has the form
� � � � � �

� � ��� ��
. In this case,

� � ��. Therefore, no node of the subproof of � � � is labeled with � � ��� ��. �

5 Conservative Solutions

We will use the ground derivability results of [CLS03] as summarized in Section 4 to
reason about solutions of symbolic constraint sequences. Our main insight is that, assuming
the symbolic constraint sequence � is generated from a well-defined protocol and has a
solution, there exists a conservative solution that uses only the structure already present
in �. Even though variables may need to be instantiated, in the conservative solution all
instantiations are products of subterms (and their inverses) that are already present in the
original sequence�.

16

To illustrate by example, consider the following constraint sequence, where � and � are
variables:

�� �� ��
�� �� ��� ��� ��� ���
�� �� ��� ��� �� � ��� � ����

One solution of this sequence is the substitution � � ��
� � � ��� ��� �
� ��� �����.
This solution, however, is not conservative, since the ��� �� term is not among the subterms
of the original (uninstantiated) constraint sequence. We demonstrate that if the constraint
sequence is solvable, then it also has a conservative solution — in this case, � � � ��
�
�� �
� ��. We can then reduce the protocol analysis problem to the search for conservative
solutions of the corresponding constraint sequence.

Lemma 5.1 �	���� � �	�� �� �
�
���	
�	 � �	����.

Proof: It is sufficient to show that, for all � 	 ��� �	���� � �	���� �
�
���	
��� �	����.

The proof is by induction on the depth of �’s structure. For the induction basis, consider
the case when the depth of � is 0, i.e., � � � for some constant �, in which case �	���� �
�	��� � � 	 �	����, or � � � for some variable �, in which case �	���� � �	����. Now
suppose �	���� � �	���� �

�
���	
��� �	���� for any � of depth less than or equal to �, and

consider � of depth � � �. If � � ��� ��, then �	���� ���� � ���� ��� � �	���� � �	����.
Observe that ���� ��� � ��� ��� 	 �	����, and, since the induction hypothesis holds
for � and �, �	���� � �	����

�
���	
�
� �	����� �	���� � �	����

�
���	
��� �	����.

Because �	���� �	��� � �	���� ��� and ����� � ����� � ������ ���, we obtain that
�	���� ���� � �	���� ���� �

�
���	
��
���� �	����. The proofs for � � ����� ����� ���,

and �� � � � � � �� are identical. �

Lemma 5.2 (Instantiation doesn’t introduce structure) Let � be a constraint sequence
generated from a protocol, and let �� be some term set such that �� � �� 	 �. If, for some
term �, there is a minimal size normal proof � of one of the following forms:

...

��� � ��� ��

��� � �

...

��� � ��� ��

��� � �

...

��� � ����

...

��� � �

��� � �

Then ��� �� 	 �	����� (resp. ��� �� 	 �	�����, resp. ���� 	 �	�����).

Proof: We prove the lemma for ��� ��. The proofs for ��� �� and ��� � are similar.
By Lemma 4.2 and Lemma 5.1, ��� �� 	 �	����� � �	����� �

�
���	
�	��

�	����.
If ������ is empty, the lemma follows trivially. Suppose ������ is not empty. Since �
is generated from a well-defined protocol, � satisfies the origination stability property by
Theorem 3.8. Construct a linear ordering � on ����� consistent with the order of first
occurrence, so that �� � �� implies � � �. Arrange variables ��� � � � � �� 	 ������ so
that �� � � � � � ��.

We prove the lemma by induction over the size of ���� ��. More precisely, we will
show, if �� 	 ������, then if ��� �� 	 �	�����, then ��� �� 	 �	����� � �	����� � � � � �
�	�������.

17

By the origination property (Definition 3.3), there exists � � � such that � � 	 ������
and � 	 ������ implies � � �� . Observe that �	����� � �	����� �

�
���	
�	��

�	����.
By the monotonicity property (Definition 3.1), � � � �� (in fact, since �� 	 ������
and �� �	 ������, �� � ��). Therefore, �	����� � �	����� and ������ � ������.
Since � 	 ������ implies � � ��, it must be that � � �� 	 ������ where � � �.
Therefore, for all � 	 ������� �	���� � �	����� � � � � � �	�������. We conclude that
�	����� � �	�������	������� � ���	�������. To complete the induction step, it remains
to show that ��� �� 	 �	�����.

Since �� 	 �	���� (by the origination property) and ��� �� 	 �	����� (by assumption),
��� �� 	 �	�����. We apply Lemma 4.6 to the proof of ��� � ���. If ��� �� 	 �	�����,
we are done.

Now suppose ��� �� �	 �	�����. By Lemma 4.6, there must exist a proof of ��� � �
such that no node is labeled with � � ��� ��. Since ��� � ���, this proof can also serve
as the proof of ��� � �. But this contradicts the assumption that the minimal size normal
proof of ��� � � relies on ��� � ��� ��. We conclude that ��� �� 	 �	�����. �

Lemma 5.3 If � � ��� �� 	 ������ (resp. ���� 	 ������, ���� 	 ������), then there
exists �� � ���� ��� 	 �	��� (resp. ������ 	 �	���� ����� 	 �	���) such that ��� � �.

Proof: Observe that �	��� � � � � � ��� � ��� � � � � � ��� �
�
� �	����, and �	����� � �	���.

Therefore, it follows immediately from the definition ������ �
���	��� � �������
that ��� �� 	 ������ if and only if ��� �� 	 �	����. This implies that there exists
���� ��� 	 �	��� such that ���� ���� � ��� ��. The proofs for ���� and ���� are iden-
tical. �

Lemma 5.4 Suppose � is a proof by Definition 4.1, and let
� � �� �� � ���

� � ��

be an

inference in � which is an instance of some rule other than (M) or (I) (the � � � � premise
may be absent). For � 	 ��� �� ��, if �� 	 ������ for some �, then �� 	 �	����.

Proof: If the rule is (P), then �� � ���� ���. By assumption, �� 	 ������. By Lemma 5.3,
there exists ����� �

�
�� 	 �	��� such that �� � ���� for � 	 ��� ��. Therefore, �� 	 �	����

and, since ��� 	 �	��� by definition for � 	 ��� ��, �� 	 �	����. If the rule is (UL), then
�� � ���� ��� for some term � �. By assumption, �� 	 ������. By Lemma 5.3, this implies
that �� 	 �	����, and, by the same reasoning as above, �� 	 �	����. The proofs for
(UR),(D),(E),(F) are similar. �

Definition 5.5 (Conservative substitution) Substitution � is conservative if

�� 	 ������ �	���� � ������

Intuitively, a conservative substitution does not introduce any structure that was not
already present in the original symbolic sequence �. We will prove that if there exists
some solution � � �, then there exists a conservative solution � �

� �.

18

Define transformation �� on normalized ground terms as follows:

���� �

�
 if 	 ������
� otherwise

������ ��� �

�
������� ������ if ��� �� 	 �������
� otherwise

�������� �

�
������������ if ���� 	 �������
� otherwise

�������� �

�
�������� if ���� 	 �������
� otherwise

����� � � � � � ��� � ������ � � � � � ������ �� � ��

����
��� � �����

��

Then define substitution �� as ��� � ������. Essentially, ��� is the same as ��,
except that all subterms of �� that are not in ������ have been eliminated by the transfor-
mation ��.

In our choice of ��, we use � as the replacement for any subterm whose structure was
not already present in the original constraint sequence. This choice is arbitrary. In fact, any
value computable by the attacker would work just as well. The essence of our argument
in the rest of this section is that if there exists some attack (i.e., some instantiation of
variables that makes the symbolic trace feasible), then there is an equivalent attack which
can be constructed without using these terms at all. Therefore, it does not matter what these
subterms are replaced with, as long as the replacement value can be feasibly computed by
the attacker.

Lemma 5.6 If � 	 ����� or � 	 �����, then ��� � ������.

Proof: If � 	 �����, then ��� � ������ by definition of ��. Otherwise, by induction
on the structure of �. If � � 	 �����, is a constant, then ������ � ����� � ���� �
 � �� � ���. For the induction hypothesis, assume that the lemma is true for � �� � � � � ��.
For the induction step, we need to show that it holds for ���� ���, ������ , ����, ��

�� and
�� � � � � � ��.

Consider � � ���� ��� 	 �����. This implies that �� 	 ������. Observe that �� �
����� ���� 	 ������, and ��� � ������ �����. By the induction hypothesis, ������� �
���

�. Given that �� 	 ������, by definition of ��, ������ � ��������� �������� �
������ ����� � ���.

The proofs for ������ , ����, ��
�� and �� � � � � � �� are similar. �

Lemma 5.7 �� is a conservative substitution.

Proof: Consider any � 	 �����. By definition, ��� � ������. We prove that
�	�������� � ������ by induction on the structure of ������.

If ������ � where is a constant, then, by definition of ��, it must be that 	
������. For the induction hypothesis, suppose ������ � ���� ��� or ������ or ����� or
�� � � � � � �� or ����, and ��� � � � � �� 	 ������.

First, consider the case when ������ � ���� ��� (the ������ and ����� cases are similar).
If ���� ��� �	 ������, then, by definition of ������, it must be the case that ���� ��� �
������ � �, and we obtain a contradiction. Therefore, ���� ��� 	 ������.

19

Now consider the case when ������ � �� � � � � � �� or ������ � ��
�� and, by the

induction hypothesis, �� 	 ������ for all �. Since ������ is closed under � and inverse,
������ 	 ������. �

Lemma 5.8 Given � � � 	 � and some ground term �, if there exists a proof of �� � �,
then there exists a proof of ��� � �����.

Proof: Let � be the normal proof of �� � � using the inference rules of Fig. 3. Such a
proof exists by Lemma 4.5. We prove the lemma by induction over the structure of � .

For the induction basis, suppose that � consists of a single leaf node �� � � such that
� 	 ��. This implies that there exists � 	 � such that � � ��. Either � 	 �����,
or � 	 � � ����� � �����. In either case, by Lemma 5.6, ��� � �����. Therefore,
����� 	 ���, and the proof of ��� � ����� consists of a single node ��� � �����.

Consider one inference of � of the form
�� � �� �� � � �� � ���

�� � �
(the �� � ��

premises for � � � may be absent) and assume as the induction hypothesis that for all �
there exist proofs �� of ��� � ������. To complete the induction, it is sufficient to show
that for any inference rule, there exists a proof of �� � � �����.

If the rule is (D), then �� � ����� , �� � �� for some term ��. By Lemma 5.2, ����� 	
�	�� ��, i.e., there exists ������ 	 � such that ��� � �� ��� � ��. Since ������ �	 ���� �,
we obtain that ������ 	 ��� � � �����. Therefore, ����� 	 ������, thus ��������� �
�������������. By the induction hypothesis, �� is the proof of ��� � ��������� and ��

is the proof of ��� � ������. The proof of ��� � ����� is then constructed as follows:

��

��� � �������������

��

��� � ������

��� � �����

A similar argument applies for rules (UL),(UR).
If the rule is (P), then � � ���� ���. According to the definition of ��, there are two

possibilities. If ������� ���� � �, then ������� ���� 	 ���, and the proof of ��� �
������� ���� consists of one node ��� � �. If ������� ���� � �������� �������, the proof
of ��� � ������� ���� is constructed as follows:

��

��� � ������
��

��� � ������

��� � ������� ����

A similar argument applies for rules (E),(F),(M),(I). �

Theorem 5.9 (Existence of conservative solution) If there exists a solution � � �, then
there exists a conservative solution �� � �.

Proof: Let � � � be a solution of �. Define substitution � � with domain ����� by
��� � ������. By Lemma 5.7, �� is a conservative substitution. To show that �� � �,

20

consider any constraint � � � 	 �. Since � � �, there exists a proof of �� � ��.
Either � 	 �����, or � 	 �	��� � ����� � �����. In either case, by Lemma 5.6,
��� � ������. By Lemma 5.8, there exists a proof of �� � � ������ � ���. Therefore,
�� � �. �

Lemma 5.10 If � is a conservative substitution, then �	���� � ������.

Proof: First, observe that �	���� � ����� �
�
���	
��� �	����. By definition of ����,

����� � ������. By Definition 5.5, �� 	 �������	���� � ������. Therefore,
�	���� � ������. �

Definition 5.11 (Conservative proof) Given � � � 	 � and a substitution �, a proof �
of �� � �� is conservative if, for every node of � labeled �� � �,

� either � 	 �	����, or

� node �� � � is obtained by (M) or (I) inference rule and is only used as a premise
of an (M) or (I) rule.

Lemma 5.12 (Existence of conservative proof) If � � � � � ������� is a conservative
solution, then there exists a conservative proof of ���� � ���

� for each �.

Proof: Let �� be the conservative solution of �. Consider any constraint � � � ��. Since
�� � �, by Lemma 4.5 there exists a normal proof � � of ���� � ���

�. Let ��� � �� �
����, and let � � ��� ���� � �����. ¿From Definition 4.4 of normal proofs, it follows
that every node of �� is labeled ���

� � � where � 	 �	� ����
��. Since ��� � �	���, by

Lemma 5.10 � 	 �������.

Any inference in �� other than (M) or (I) must have the form
� � �� �� � ���

� � ��

.

Since ������ 	 �������, by Lemma 5.4 ������ 	 �	�����. �

6 Decision Procedure for Symbolic Constraints

In this section, we present a decision procedure for symbolic constraint sequences associ-
ated with well-defined protocols. The essence of our decidability result is the proof that
for each symbolic constraint sequence �, there exists a finite number of systems of si-
multaneous Diophantine equations such that (i) each system is decidable, and (ii) � has a
solution if and only if at least one of the systems has a solution in integers. We emphasize
that our goal is a theoretical decidability result. Therefore, we are concerned only with
showing finiteness of our procedure and decidability of a particular class of Diophantine
equations. In future work, we plan to investigate an efficient constraint solving procedure
based on [MS01] that can be applied to practical protocol analysis.

Our decision procedure starts with two finite, nondeterministic steps �� and��, fol-
lowed by two deterministic steps �� and �. Let �� be an initial constraint sequence
generated from the protocol specification. For each step � �, we show that (i) there are

21

finitely many�� such that���� �� ��, and (ii)���� has a solution if and only if at least
one �� has a solution. This guarantees soundness and completeness. Soundness means
that if any member of the set of sequences obtained by a particular step has a solution, then
the original sequence has a solution. Completeness means that if the original sequence has
a (conservative) solution, then at least one of the sequences obtained at each step has the
same solution. Performing the steps does not require a priori knowledge of the solution. If
a solution exists, it will be discovered by exhaustively enumerating all possible sequences
produced by our procedure and checking whether each one has a solution.

For each of the constraint sequences� produced by the last step, we show that� has
a solution if and only if a special system of quadratic Diophantine equations has a solution.
Quadratic Diophantine equations are undecidable in general, but the system obtained in
our case is solvable if and only if a particular linear subsystem is solvable. Since linear
Diophantine equations are decidable, this establishes that the symbolic protocol analysis
problem is decidable in the presence of an Abelian group operator.

Following Theorem 5.9, we limit our attention to conservative solutions. Our decision
procedure consists in the following steps:

1. Guess subterm equalities.

2. For each constraint, guess all subterms derivable from the set of terms available to
the attacker, and add them to this set.

3. Remove all constraints in which the derivation involves inference rules other than
(M) or (I).

4. Substitute all target terms that introduce new variables.

5. For each of the resulting sequences, solve a system of linear Diophantine equations
to determine whether the sequence has a solution or not.

Running example. We will use the following symbolic trace as an (artificial) running
example to illustrate our decision procedure. An event � �� � is a �� node in an �-role
strand, etc.

�� � �� � � � �� � �� �! ��
�� � �� � �" � ! �� � �� � �"
�� � �� ���� �� � �� ��

Recall that the goal of symbolic protocol analysis is to determine whether this trace is
feasible, i.e., whether there exists an instantiation of variables " and ! such that every
term sent from the network and received by an honest participant (i.e., every term of the
form # ��) is derivable using the rules of Fig. 3. This is equivalent to deciding whether
the corresponding symbolic constraint sequence� has a solution:

� � �� � �" � ! �
� � �� ���� � �! �� �
� � �� ����� � �" � ��

22

6.1 Determine subterm equalities

Suppose � has some solution �. In the first step ��, we guess the equivalence relation
on �	��� induced by substitution �. As we argue below, there are only finitely many
possibilities to consider, and one of them is the right one. Of course, we don’t know �
beforehand. Therefore, to discover which equivalence relation is the right one, we will
need to enumerate all possible relations and perform the remaining steps of the decision
procedure for each one to determine whether it leads to a solvable sequence. If � does
not have a solution, it will not matter which equivalence relation we choose, since none of
them will lead to a solvable sequence.

More precisely, for all 	�� 	� 	 �	���, we guess whether 	�� � 	�� or not. Since
�	��� is finite, there are only a finite number of possible equivalence relations to consider.
Each equivalence relation represents a set of unification problems modulo associativity and
commutativity of � and normalization rules of Fig. 2 (see Section 2.3). There are finitely
many most general unifiers consistent with any given equivalence relation. Let � be the
finite set of candidate unifiers. For each � 	 �, let �� � ��.

Observe that for any substitution �, there exists a partial substitution � 	 � such that
	�� � 	�� if and only if 	�� � 	��. Therefore, any � � � Æ � � for some � 	 �. (Notation:
Composition of substitutions is left to right, so ���� Æ ��� � ������� � �����.)

Lemma 6.1 (Soundness:) For any�� such that� �� ��, if there exists a solution �� �
��, then there exists a solution � � �.

(Completeness:) If there exists a solution � � �, then ��� such that � �� �� and
� � ��.

Proof: To prove soundness, suppose some �� � �� where �� � �� for some � 	 �.
This means that �� � �� 	 �, ����� � ����� is derivable. Choose as � any substitution
of the form � Æ �� such that 	 	 �	��� 	� � 	��. Observe that �� � �� 	 � ��� � ���
is derivable. Therefore, � � �.

To prove completeness, observe that, by our definition of � �, for any substitution �
there exists a unifier � 	 � such that � � � Æ ��. Therefore, for any � such that � � �,
there exists�� � �� such that � � ��. �

Lemma 6.2 Suppose � � �. Consider �� such that � �� �� and � � ��, and any
	� 	� 	 �	����. If 	 �� 	�, then 	� �� 	��.

Proof: By construction of ��, for all 	� 	� 	 �	����, there exist �	� �	� 	 �	��� such that
�	� � 	� �	�� � 	�. Since � � � Æ ��, �	� � 	� and �	�� � 	�. By choice of �, if �	� � �	��,
then �	� � �	��. Therefore, if 	� � 	��, then 	 � 	�, or, reversing the order of implication,
if 	 �� 	�, then 	� �� 	��. �

Running example. In our running example, we guess that the only subterm equality is
�! �� � ����, giving us partial substitution �!
� �� and producing the following� �:

� � �� �� �" �
� � �� ���� � ���� �
� � �� ����� � �" � ��

23

6.2 Determine order of subterm derivation

In the second step��, we nondeterministically choose one of the candidate sequences� �

produced by ��. Assuming �� has a solution �, we (1) guess which subterms of ���
can be derived by the attacker using inference rules of Fig. 3, and (2) add each derivable
subterm 	 to every constraint �� � �� 	 �� such that 	� is derivable from ���.

In the resulting constraint sequence, every constraint is solved either by application of
a single inference rule, or the derivation involves only rules (M) and (I). In the former case,
we can discover the right rule by syntactic inspection. In the latter case, only multiplicative
operations are used, and we will convert the constraint solving problem into a system of
simultaneous Diophantine equations.

Since we don’t know � in advance, we need to exhaustively try all possible combina-
tions of subterms and constraints. If the chosen �� has a solution, one of the candidate
combinations will be the right one. If the chosen�� does not have a solution, all candidate
sequences will be unsolvable.

Formally, the�� step consists in the following sub-steps:

1. Guess $� � �	 	 �	���� � ��� � �� 	 �� such that there exists a proof of ��� �
	��, i.e., $� is the set of subterms that are derivable from some term set available to
the attacker. This terminates, since there are only finitely many subsets of �	�� �� to
consider.

2. For all 	 	 $� guess �� 	 ��� ����
� such that there exists a proof of ���� � 	�, but
there is no proof of ������ � 	�. In other words, �� is the index of the first constraint
in�� from whose source term set 	 can be constructed. This terminates, since $� is
finite, and, for each member of $�, there are only finitely many constraints in �� to
consider.

3. By definition of the normal proof, for any solution � � � �, any term set � such that
� � � 	 ��, any 	� 	� 	 $�, if the minimal size normal proof of �� � 	� contains
a node labeled �� � 	��, then the minimal size normal proof of �� � 	 �� does not
contain a node labeled �� � 	�. Therefore, � is consistent with at least one linear
ordering � on $� that satisfies the following property:

� If 	 � 	�, then the normal proof of �� � 	� does not contain any node labeled
with �� � 	��.

Of all possible orderings on $� that satisfy this property, we pick one that also satis-
fies

� If �� � ��� , then 	 � 	�.

This is possible since �� � ��� means that there does not exist a proof of ���� � 	��.
Therefore, the proof of ���� � 	� cannot have a node labeled ���� � 	��.

Intuitively, � is the order in which members of $� are derived. Since there are only
finitely many possible linear orderings on $� to consider, we find � by exhaustive
enumeration.

4. We arrange 	�� � � � � 	� 	 $� according to the ordering �, and insert each 	 � in the
constraint sequence immediately before the ��� ���� constraint. More precisely, we

24

replace�� with
�� � ���
� � �
������ � �������
���� � 	��
���� � 	� � ���� �
� � �
��� 	� � ��

Call the resulting sequence ����
� , and repeat this step for 	�� � � � � 	� 	 $�. Given

�
�����
� ,����

� is constructed by inserting ��	� immediately before ������ 	 �
�����
�

and adding 	� to the term sets of all subsequent constraints.

Let�� � �
���
� . Without loss of generality, assume that all duplicated constraints are

removed from��.

In the following lemma, we use �� �� as a shorthand for��� �� �� ��.

Lemma 6.3 (Soundness:) For any �� such that � � ��, if there exists a solution �� �
��, then there exists a solution � � �.

(Completeness:) If there exists a solution � � �, then ��� such that � � �� and
� � ��.

Proof: To prove soundness, observe that for every constraint � � � 	 � � there exists
�� � � 	 �� such that � � �� . Consider all subterms 	�� � � � � 	� 	 �� � � . By construction
of ��, 	� ��� � 	� 	 ��, ��� � � , and ����� � ��� � 	� . Because �� � ��, there
exists a proof of ��� � 	���. By induction over �	�� � � � � 	��, there exists a proof of
��� � 	��� 	� . Since �� � ��, there also exists a proof of ���� � ���. Therefore, for
all � � � 	 ��, there exists a proof of � �� � �	�� � � � � 	����� � ��� � ���. We conclude
that �� � ��. By Lemma 6.1, this implies that there exists a solution � � �.

Completeness follows directly from the construction of��. For any substitution � such
that � � ��, there exists a finite set of derivable subterms $�. Also, for each derivable
subterm 	 	 $�, there exists some constraint ��� � ��� 	 �� such that 	� is derivable
from ����, but not from the preceding ���. Since we consider all candidate sequences��

associated with all possible values of $� and ��, there exists �� such that �� �� �� and
� � ��. Completeness then follows from Lemma 6.1. �

Lemma 6.4 Suppose � � �. Consider �� such that � � �� and � � ��, and any
	� 	� 	 �	����. If 	 �� 	�, then 	� �� 	��.

Proof: Follows from Lemma 6.2 since �	���� � �	����. �

25

Lemma 6.5 	� 	 $�

�
���
� �

�� � ���
� � �
�� � ���
���� � �	��	� � 	��� 	��
���� � �	��	� � 	��� ���� �
� � �
�� � �	��	� � 	��� ���

where �� � ��� � � � �� � �� 	 �
�����
� � ���� � ���� � � � � �� � �� 	 ��.

Proof: Proof is by induction over � 	 ��� ���� %�. If � � �, � ���
� satisfies the lemma by

construction. Suppose the result holds for������
� .

By construction,

�
���
� �

�� � ���
� � �
�� � ���
� �
���
� 	��

� �
���

� �	��� ���� � � � �

� �
� � �	��� ��

where �� � ��� � � � �� � �� 	 �
�����
� .

By the induction hypothesis, & � ����� implies � �
� � �� �

�
��	����

�	�� where
�� � �� 	 ��. By our choice of ordering, 	��� � 	� and ��� � ����� . Therefore,

� �
���

� ���� �
�

��	����

�	�� � ���� �
�

��
��

�	��

and & � ���

� �
� � �	�� � �� �

�
��	����

�	�� � �	�� � �� �
�
��	��

�	��

. �

Lemma 6.6 �	� 	 $���� � %� ���� ��	��	� � 	���	� appears in����
� before � ����� .

Proof: The proof is by induction over � � %. For the induction basis, consider that � ���
�

�	��	� � 	��� 	� 	 �
���
� and appears before � � ���� by Lemma 6.5. Suppose the result

holds for����
� and consider������

� .

By the induction hypothesis, ���� � �	��	� � 	��� 	� appears in����
� before � � ���� .

Since ��� � ����� , this means that ������	
��	� � 	���	� appears in����

� before �������� .

By Lemma 6.5, ��� �� 	 �
���
� such that ��� �� appears before � ������� , ��� �� appears

in������
� before � ������� . Therefore, ���� � �	��	� � 	��� 	� appears in������

� before
� � ������ . �

26

Lemma 6.7 If � � � 	 �� and 	 	 $� such that 	� � �, then 	 	 � .

Proof: By construction of��, � 	 $�. By Lemma 6.6, �����	
��	� � 	��	 	 �

���
� � ��.

�

The most important property of our construction is that every constraint in� � is either
solved with one rule application, or the proof involves only multiplicative rules (M) and
(I).

Lemma 6.8 Let � be any solution such that � � �� for some �� such that � � ��.
Consider any � � � 	 �� and the last inference of the proof of �� � ��.

� If �� 	 ��, then � 	 � .

� If �� is obtained by (UL), then ��� ��� 	 � for some term ��.

� If �� is obtained by (UR), then ���� �� 	 � for some term ��.

� If �� is obtained by (D), then ����� 	 � for some term �� 	 � .

� If �� is obtained by (P), then � � ���� ��� for some terms ��� �� 	 � .

� If �� is obtained by (E), then � � ����
� for some terms ��� �� 	 � .

� If �� is obtained by (F), then � � ����� for some term �� 	 � .

Proof: Consider any��� 	 ��. Since � � �� is a conservative solution, by Lemma 5.12,
there exists a conservative proof of �� � ��.

If �� 	 ��, then there exists � 	 � � �	���� such that �� � ��. ¿From Lemma 6.4,
it follows that � � � 	 � . We conclude that, whenever �� 	 ��, � � � 	 �� is such that
� 	 � .

If �� �	 ��, consider the last inference of the conservative proof of �� � ��. It must
have the form

�� � �� �� � � �� � ���

�� � ��

(the �� � �� premises for � � � may be absent). If this inference is an instance of any rule
other than (M) or (I), then � � � and, by Definition 5.11, � ��� 	 �	�����, i.e., there exists
����� 	 �	���� such that ���� � �� and ���� � ��.

Since there exist proofs of �� � � �����, it must be that ����� 	 $�. Since the proof of
�� � �� contains nodes labeled �� � � �����, by definition of ordering � it must be that
����� � �. By Lemma 6.7, � ���� 	 � . We conclude that the proof of �� � �� consists of
one inference:

�� � ���� 	 �� ��� � ���� 	 ���

�� � ��

Consider all possible cases for this inference rule other than (M) or (I).
If the rule is (UL), then � ��� � ���� �� for some term �. By Lemma 5.10, � ��� 	 ������.

By Lemma 5.3, this means that there exists ���� ��� 	 �	���� such that ���� ���� � ����. By
Lemma 6.4, this implies that � �� � ���� ���. Since ��� � 	 �	����, Lemma 6.4 also implies

27

that �� � �. Therefore, � �� � ��� ��� 	 � . We conclude that, whenever �� is obtained by
(UL) rule, � � � 	 �� is such that ��� ��� 	 � . The proofs for (UR) and (D) is similar.

If the rule is (E), then �� � ��������. By Lemma 5.10, �� 	 ������. By Lemma 5.3,
there exists �� � �������� 	 �	���� and �� � ���. Since � 	 �	���� by Definition 5.11,
Lemma 6.4 implies �� � �. We conclude that, whenever �� is obtained by (E) rule,
� � ����
� and � � ����
� 	 �� where ���� 	 � . The proofs for (P) and (F) are similar.
�

Running example. In our running example, we guess that no subterms (other than those
already appearing as target terms) are derivable. Therefore, after removing duplicated con-
straints from��,�� � ��.

6.3 Eliminate all inferences other than (M) or (I)

In the third step ��, we eliminate all constraints which can be satisfied by a single ap-
plication of an inference rule other than (M) or (I). This step is deterministic. Lemma 6.8
implies that all such constraints can be found by syntactic inspection. Let� � be the result-
ing constraint sequence.

In the following lemma, we use�� �� as a shorthand for��� �� �� �� �� ��.

Lemma 6.9 (Soundness:) For any �� such that � � ��, if there exists a solution �� �
��, then there exists a solution � � �.

(Completeness:) If there exists a solution � � �, then ��� such that � � �� and
� � ��.

Proof: To prove soundness, suppose �� � ��. By Lemma 6.8, for every constraint � � �
eliminated by ��, there exists a one-step proof of �� � �� for any substitution �. This
means that there exists a proof of ��� � ��� for every constraint � � � 	 �� � ��.
By our assumption that �� � ��, there exists a proof of ��� � ��� for every constraint
� � � 	 ��. Therefore, �� � ��. Using Lemma 6.3, this is sufficient to demonstrate
soundness.

To prove completeness, observe that �� � ��. Therefore, if � � ��, then � � ��.
Then apply Lemma 6.3. �

Lemma 6.10 If � � ��, then � � � 	 ��, the proof of �� � �� uses (M) and (I) rules
only.

Proof: Consider a minimal size conservative proof of �� � �� and suppose it contains an
inference

�� � �� 	 �� ��� � �� 	 ���

�� � �

that is an instance of a rule other than (M) or (I). By construction of� �, this cannot be the
last inference, therefore, � �� �. By Definition 5.11 of a conservative proof, it must be that
� 	 �	����� � �	�����, i.e., there exists �� 	 �	���� such that ��� � �. By definition
of �, it must be that �� � �. By Lemma 6.7, this implies that � � 	 � . This contradicts

28

minimality of the proof. Therefore, the proof of �� � �� does not contain any inferences
other than (M) or (I). �

Lemma 6.11 If � 	 ������ let ��� � ��� 	 �� be the constraint in which � occurs for
the first time. Then � � ��� �

�
��� ���� where '� is an integer, ���� are not headed with

�, and � �	 �	���� � ����� �� � ���.

Proof: By the variable origination property (Definition 3.3), � �	 �	�� ���. Suppose � 	
�	������ for some � and ���� �� ��� . Lemma 6.10 implies that there exists � 	 �	�����
such that �� � �����. Since �	���� � �	����, Lemma 6.4 implies that � � ���� . This
means that � 	 �	�����, and contradicts the variable origination property. �

Definition 6.12 Define ���� �
�

���	
����
'� where '� is the power of � in the con-

straint in which it occurs for the first time.

Running example. In our example, we guess the first and third constraints were obtained
by application of rules (M) and (I) only. We eliminate the second constraint, obtaining the
following��:

� � �� �� �" �
� � �� ����� � �" � ��

6.4 Substitute target terms that introduce new variables

In the fourth step �, we take each target term in which some variable occurs for the
first time and introduce a new variable, substituting the entire term in question. This step
is deterministic. For example, if � occurs for the first time in constraint � � � � � ��, let
�� � ��
� ��

�
� � ��

�
� � where �� is a new variable, and apply �� to the entire constraint

sequence. In the resulting constraint sequence, each variable �� occurs for the first time in
some constraint of the form �� � ��.

In the definition below, a term with a fractional exponent �
�
� represents a term � such

that �� � ��. Obviously, taking a root of some element of a finite field requires that the
root in question exist. Our definition of �� guarantees the existence of all newly introduced
roots since the value of every rational exponent introduced by � appears explicitly in
the protocol specification. For example, if we replace �� with ��, then ��

�
� will appear in

the constraint sequence if and only if �� appears in the protocol specification (note that
�� � ����

�
�).

Recall from Definition 3.3 that �� is the index of the constraint ����� in which variable
� occurs for the first time, and that, by Lemma 6.11, � � � ��� �

�
��� ��� for some integer

'�.

Definition 6.13 If �� � �� 	 ��, define

�� �

�
��
� ��

�
�� �

�
�
� �
��

�� � if � � �� for some �; �� is a fresh variable
� otherwise

If more than one variable appears for the first time in ��, any one of them may be chosen.

29

Let � � ���� � � � ��� where �� is the number of constraints in ��. Although only
integer powers appear in��, � may contain rational powers.

Assume that term sets �� appearing in � have been ordered, i.e., �� � ����� ���� � � ��.

Definition 6.14 � is well-ordered if � � �� implies that ��� � ���� 	 ��� when � � ����.

Informally, Definition 6.14 means that term sets � � are consistently ordered so that if
the same term appears in multiple sets, it always appears in the same position. Due to the
monotonicity property of constraint sequences (Definition 3.1), if � � � �, then �� � ��� .
Without loss of generality, we can assume that � is well-ordered.

Lemma 6.15 For any rational % appearing as a power of some term in�, % � ���� is an
integer.

Proof: Follows directly from Definitions 6.12 and 6.13. �

Lemma 6.16 If � � � 	 �, the proof of �� � �� uses (M) and (I) rules only.

Proof: Follows from Lemma 6.10 and construction of� . �

Lemma 6.17 If � 	 �����, � occurs for the first time in some constraint of the form
� � � 	 � where � �	 �	�� �.

Proof: Follows from Definition 6.13 and construction of� . �

In the following lemma, we use � � � as a shorthand for � �� �� �� �� ��

�� � �.

Lemma 6.18 There exists a solution � � � if and only if there exists a solution � � �

for some� such that�� �.

Proof: Substitution 6.13 is simply a renaming of terms in � � and does not introduce or
lose any solutions. The result follows directly from Lemma 6.9. �

Running example. In our example, �� � �"
� �" � ����� �� � �. Therefore, � �
������ is:

� � �� �" �

� � �� ����� � � �" � ��� � ��

6.5 Derive a system of quadratic Diophantine equations

In the last step of the constraint solving procedure, we convert each constraint sequence�

into a system of quadratic Diophantine equations which is solvable if and only if � � �

for some �.
Diophantine equations are polynomial equations in any number of variables with inte-

ger coefficients, where only integer solutions are permitted. There is no general procedure
for determining the solvability of a Diophantine equation or finding a general solution; that

30

was Hilbert’s Tenth Problem. A system of Diophantine equations must be solved in com-
mon by the same substitution. One can reduce a single Diophantine equation of any degree
to a system of quadratic equations by introducing variables. For example, in the equation
�� � �� one can let � � ��, reducing the original equation to �� � ��. The system of the
latter two equations is equivalent to the first. Hence the solvability of systems of quadratic
Diophantine equations is also undecidable.

To solve the protocol analysis problem, we generate a system of quadratic Diophantine
equations. In our case, we can demonstrate that the system we get is solvable if and only
if a particular linear subsystem is solvable. Luckily, solvability of systems of linear Dio-
phantine equations is decidable (see, e.g., [CD94]). This problem is equivalent to solving
an integer linear programming problem, which is known to be intractable in general, but
there are efficient solution techniques that work well most of the time (just as the simplex
method works well for real linear programming).

The key to this result is Lemma 6.19. Intuitively, we prove that, for every constraint
� � � 	 �, the target term �� must be equal to some product of integer powers of
non-variable terms appearing in set � . We then simply represent each power as an integer
variable, and convert the constraint satisfaction problem for each constraint into a system
of linear Diophantine equations.

There is a complication along the way. In addition to the linear system corresponding
to the solvability of a given � � � constraint, the integer variables in question must also
satisfy a special system of quadratic equations. We show that this quadratic system always
has a solution. Therefore, only the linear system needs to be solved to determine whether
the constraint is satisfiable. Any solution of the linear system will automatically satisfy the
quadratic system.

For any term �, define ���� to be the set of all top-level factors of �. If � � � ��� � � � � � ����
where none of �� are headed with � and all �� are distinct, then ���� � ����� � � � � � �

��
� �. For

example, ����� ��
�
� � � ����� �

�
� �. Define ���� � ����� 	 ���� � �� �� � 	 ������ to be

the set of all non-variable factors of �. Let (��� �
�

������ � , i.e., (��� is � with all factors

of the form �� removed. For example, (�� � ������� � �
�
� � � � � �������. Obviously, if �

does not contain variables among top-level factors, then (��� � �.

Lemma 6.19 If � 	 �����, let �� be the index of the constraint in which variable �
occurs for the first time. Then if � � � and �� � �� 	 �

��� �
�

����	�

�(�������
������� (1)

such that

�)��� �� �)��� �� �

�	���
����

�
�

��������� �

��)���� �� � % �)��� �
���� (2)

for some integers �)��� ���)��� ��, where � � � � ���, and by convention if � � ���� � then
�)���� �� � �.

Before we begin the proof, it is helpful to give a small example that gives some insight
into how the exponents are computed.

Consider the constraints ��� � � and ���� �
�
�� � � � ��, where � is a variable and the

other terms do not contain variables. Each target term is a product of powers of the terms

31

on the left. Thus, we may write � � �
������
�� and �)��� �� �)��� ��. We also have �� �

�
������
�� � ����� � ��

������. To find �)��� ��, we substitute for � and also note that ��� � ��� because
� is well-ordered. Hence,

�� � �
��������������������
�� � ��

������
��

Therefore �)��� �� �)��� �� � �)��� �� �)��� ��. This expression should be recognizable as a
special case of equation (2).
Proof:(of Lemma 6.19) The proof is by induction over the length of the constraint se-
quence. For the induction basis, consider �� � �� 	 �. By Lemma 6.16, the proof of
��� � ��� contains only rules (M) and (I). Therefore, ��� �

�
����	�

������
������ for some

integers)��� ��, where � � � � ����. By Lemma 6.17, no variables occur in ��. Therefore,
for all �� ��� � (����� and for all � 	 ������ �

�, and %� �� �	 ������ �. Then for all
�� �)��� �� �)��� ��, and we obtain ��� �

�
����	�

�(�������
������� This completes the base

case.
Now suppose the lemma is true for all constraints up to and including � ��� � ����,

� � �. To complete the induction, we need to prove it for � � � ��. Applying Lemma 6.10
to �� � ��, we obtain that

��� �
�

�����	�

�������
������ � (3)

Now consider any ���� from the above product, and fix it. By definition of (�� ��� �, ���� �
(����� � � �

��
� � � � � � ���� for some variables ��� � � � � �� and rational constants %�� � � � � %�

where & � �. Consider any variable � 	 ���� � � � � ���, and let �� be the index of the
first constraint in which � occurs. By Lemma 6.17, the fact that � occurs in � � implies
that �� � �� cannot be the first constraint in which � occurs. There must exist a preceding
constraint of the form ��� � � 	 � and �� � �. The induction hypothesis holds for
this constraint, thus �� �

�
�����	��

�(��������
��������. By monotonicity (Definition 3.1),

��� � ��. Since all sets �� are ordered according to Definition 6.14, this means that
�� � ���� �� ���� � ��� . Moreover, since � occurs in ���� , Lemma 6.17 implies that
���� � � ��. We set �)���� �� � � for all � � ���� �, and we replace each ���� with the
corresponding ��� , obtaining

�� �
�
���

�(�������
�������� (4)

Substituting values for ���� � � � � ��� given by equation (4) into equation (3), we obtain
that

��� �
�

�����	�

� (����� �� �
�

��������� �

�
�
���

�(�������
���������� ������

��

Distributing the exponent)��� � ��, obtain

��� �
�

�����	�
� �(����� ���

������ � �
�

��������� �
�
�

��� �(�������
��������������

��� �

�
�

�����	�
�(����� ���

������ � ��
�����	�

�
�

��������� �
�
�

��� �(�������
��������������

�� ��

�
�

����	�
�(�������

������ �

�
�����	�

�
�

��� � �(�������
�

�����	
���

����������������
���

��

32

Observing that
�

�����	�
�
�

��� ��� � � ��� � � ��� �
�

����	�
�
�

���� ��� � � ��� � � ���, we
obtain

��� �
�

����	�
�(�������

������ �

�
����	�

�
�

����� �(�������
�

�����	
���

����������������
���

��

�
�

����	�
� �(�������

������ � �(�������
�

��
�
�
�

�����	
���

����������������
����

�

�
�

����	�
�(�������

�������
�

��
��
�

�����	
���

����������������
����

This completes the induction. �

6.6 Convert into a system of linear Diophantine equations

We now convert each constraint into an equivalent system of linear Diophantine equations.
If this system is unsolvable, the constraint cannot be satisfied and the entire constraint
sequence does not have a solution. If, on the other hand, there exist some values of �)��� ��
that solve the linear Diophantine system, we will demonstrate that quadratic equations (2)
are guaranteed to have a solution.

Consider any �� � �� 	 �. By Lemma 6.19, ��� �
�

����	�
�(�������

�������. By
definition, (����� does not contain any variables as top-level factors. It is possible that
���� 	 ����� for some variable �� and rational ��. Applying Lemma 6.17 and Lemma 6.19,
for all �� 	 ����� we obtain that ��� �

�
�����	��

�(��������
��������. Therefore,

equation (1) can be rewritten as�
�
��
�
���
��

�
�

�����	��
�(��������

���������� �
�

�����
��
���� ��

����	�
�(�������

�������
(5)

For any variable �� occurring in ��, it must be that �� � � since �� is the index of the
first constraint in which �� occurs. By Definitions 3.1 and 6.14, ���� � ��� . Dividing the
right-hand side of equation (5) by�

�
��
�
���
��

�
�

�����	��

�(��������
�����������

we obtain �

�����
��

���� �
�

����	�

�(�������
������ (6)

where
���� �� � �)��� ���

�
�
��
�
���
��

�� � �)���� �� (7)

Recall that �)���� �� � � if � � ���� �.
Let ����� �

�
	��
����

�������
�
����	�

������� be the set of all factors appearing
in equations (6). Since ����� � �	��� � �	����, by Lemma 6.4, if �� �� 	 �����

33

and � �� ��, then �� �� ���. Therefore, if * 	 ����� and �� � �� 	 �, the following
system of linear equations must hold:

'��	
 �
�

����	�
'� � ���� ��� �	

if *� 	 ������ if *�� 	 �������
� otherwise � otherwise

(8)

where ���� �� are integer variables (� ranges over the length of the constraint sequence, and,
for each �, � ranges from � to ����), and '� '�� � � � � '�	�� are rational constants. We multiply
both sides of each equation (8) by the lowest common multiplier of the denominators of
'� '�� � � � � '�	��, and obtain a system of linear Diophantine equations over ���� ��.

Lemma 6.20 � has a solution if and only if the system of equations (8) has a solution in
integers.

Proof: It follows immediately from the reduction in this section that if system (8) does not
have a solution in integers, then� does not have a solution, either. To complete the proof,
it is the necessary to show that if system (8) has a solution in integers, then system (7) and,
especially, the quadratic system (2) also have a solution.

Let ����� ��� be any solution of system (8). First, set ����� �� � � for all � 	 � and all
�. Since ������ � ���� � �, equation (8) degenerates into � �

�
�����	��

'� � ����� ��
and, clearly, is still satisfied. By Lemma 6.17, ��� � ��. Therefore,�

�
��
�
���
�� �

�� � �)���� �� � �)���� ��

and ����� �� � �)���� ��� �)���� �� � �. System (7) is thus satisfied by ����� �� � � as well.
Now, set �)���� �� � ���� for all � 	 � and all �. Recall from Definition 6.12

and Lemma 6.15 that ���� is an integer constant such % � ���� is an integer for any
rational power % appearing in�. We need to demonstrate that, provided �)���� �� � ���� ,
systems (7) and (2) are solvable in integers.

First, consider system (7). If � � �� for some ��, it degenerates into � � ���������

(see above). If for all ��� � �� ��, it becomes ���� �� � �)��� ���
�

�
��
�
���
��

�� � ���� , and
is solved simply by setting �)��� �� � ���� �� �

�
�
��
�
���
��

�� � ���� . This works since by
Lemma 6.15 �� � ���� is an integer.

It remains to show that the quadratic system (2) has a solution in integers. Pick any
�� � �� 	 � and fix it. Proof is by induction over all values of � from �� �� to �. For
the base case, consider � � ����. In this case, there are no � � � �, and we simply set
)��� �� � �)��� ��.

Now suppose the lemma is true for)��� � � ��� � � � �)��� �����. To complete the proof,
it is sufficient to show that there exists an integer value for)��� �� that satisfies equa-
tion (2). Observe that)��� � �� is an integer for all � � � � (by the induction hypothesis),
and �)���� �� � % � ���� � % is an integer for all � such that �� 	 ������ � (by Lemma 6.15).
Therefore,)��� �� � �)��� ���

�
�����

�
��������� �

��)���� �� �% �)��� ����� is an integer solution
for equation (2). This completes the induction and proves that, assuming linear system (8)
has an integer solution for ���� ��, systems (7) and (2) are solvable in integers, too. �

34

Running example. In our running example, we are solving the following� :

� � �� �" �

� � �� ����� � � �" � ��� � ��

Applying equation (6),� has a solution iff the following system is solvable in integers:

� � �� � ��������

�� � �� � �������� � ������������ � �� � ����������

Note that ����� � �, therefore,
�

�����
��
���� � �, and (�� � �" � ���� � � � ���.

We set ���� �� � � since �� � �, and convert the second equation into an equivalent
system of linear Diophantine equations (8), treating non-atomic terms such as ��� � as
constants:

� � ���� ��� � � ���� ��
� � ���� ��
� � ���� �� � ���� ��

This system has the following integer solution: ���� �� � �� ���� �� � �� ���� �� � ��.
Therefore, the constraint sequence has a solution. In this example, ���� � �, therefore,
�)��� �� � �, and �" � �� � ��������� � � � �. Reconstructing the values of original variables,
we obtain " � �" � ��� � ��� � �.

Theorem 6.21 (Soundness and completeness) Symbolic constraint sequence� has a so-
lution if and only if the system of linear equations (8) has a solution in integers for some
� such that�� �.

Proof: Follows immediately from lemmas 6.18 and 6.20. �

Corollary 6.22 (Decidability with xor) If � is interpreted as xor (i.e., ��� � �), then
symbolic trace reachability is decidable.

Corollary 6.23 (Decidability with free term algebra) If there are no operators with al-
gebraic properties, symbolic trace reachability is decidable.

7 Extension to Group Diffie-Hellman

In this section, we extend the constraint solving approach developed in Section 6 to pro-
tocols such as group Diffie-Hellman (GDH) [STW96]. Our extension, however, applies
only in a restricted setting. We assume that the Abelian group (multiplication) operator ap-
pears only in the exponents. In particular, exponentials are not multiplied with each other,
i.e., terms such as +�� � +�� do not appear in the protocol specification, nor is the attacker
permitted to multiply exponentials. This restriction is necessary to preserve decidability,
since it has been shown that unification (and, therefore, the symbolic analysis problem) is
undecidable in the presence of equational theories for both Abelian groups and exponen-
tiation [KNW02, KNW03]. This does not affect our ability to analyze protocols such as
GDH since they satisfy the restriction (a similar restriction is adopted by [PQ01]).

35

�� � �
��
�� � �
�

Figure 4: Normalization rules for exponentials

We extend the message term constructors of Figure 1 with terms �
 representing expo-
nentials. We also extend the rules of Figure 2 with the rules for exponentials, as shown in
Figure 4. The rules of Figure 4 were shown in [MN02] to lead to unique normal forms up
to associativity and commutativity of the � operator.

In this paper, we consider only protocols in which all exponentiation is ultimately from
a constant base, that is, the normal form of every exponential ground term is + � where + is a
public constant. For purposes of specification and analysis, exponentials are regarded as a
separate type. If a variable � is of type exponential, we replace it with a term + �

�

where ��

is a new variable that cannot be an exponential or have an exponential subterm. Products
of exponents arise from reductions of the form �+ ��� � +��.

In GDH, exponential terms are integers mod � for some prime �. The multiplicative
subgroup of �� has order � � �. The base + is chosen to generate the cyclic subgroup of
some prime order ' that divides � � �. Since + � � � � +� mod �, exponents of + are
effectively reducible mod '. Thus, non-zero exponents lie in the multiplicative subgroup
of �� .

For protocols with exponentials, we apply the basic constraint solving procedure of
Section 6 with a modification. We begin as usual with�, but when we arrive at� � we find
some constraints of the form

��� � � � � �� � +
 (9)

Under the Computational Diffie-Hellman Assumption (it is not feasible to compute + ��

from +� and +�), the only way the attacker can compute the needed exponential +
 is to
take one (and no more than one!) of the exponentials at his disposal, i.e., some � � � +� (at
least one such term is available, since + � +� is the publicly known base) and raise it to a
power * such that �+��� � +
, provided that * is derivable from ��� � � � � ��. In particular,
we may write * � ��� � �.

Hence, every time we encounter a constraint of form (9), we nondeterministically
choose one of the exponential terms � � � +� from the term set available to the attacker,
and replace the constraint (9) with

��� � � � � �� � ��� � �� (10)

This gives us a constraint sequence ��
� with no exponential target terms, and we con-

tinue with� and solving linear Diophantine equations as in Section 6.

7.1 Pereira-Quisquater example

In [PQ01], Pereira and Quisquater find an attack against key authentication in an authen-
ticated group Diffie-Hellman (A-GDH.2) protocol of [STW96]. In this section, we sketch
how to discover this attack using our approach.

The attack involves two key distribution sessions. The first session has four parties, one
of which is compromised. The second session occurs among three of those parties after

36

the compromised party has been removed from the group. The attacker, who knows the
secret shared keys of the compromised party, causes one of the legitimate parties to accept
a non-authentic, compromised key in the second session.

In a decidable finite-session context, the analyst chooses how many strands of each role
to put in the semibundle. In this example, involving a four-party group of , ��,��,� and
,, it is sufficient to choose two instances of role ,� and one of ,. The behavior of ,�

is ignored (it does not matter for the purposes of discovering the attack), , � is the party
being attacked, and ,� is the compromised party, whose role is taken over by the attacker.

The object of the protocol is to construct a group key of the form + �������� where + is a
constant and the %� are secret random contributions from the group members. In the second
session, the group key should be + �

�

��
�

��
�

� , where each %�� is a new random contribution of the
�th group member. In each session, partial exponentials are passed up the chain to the last
party, who multicasts a message whose �th component is used by the �th party to construct
the common key.

The role of the intermediate party ,� is this:

��+� +���� � �+�� � +��� � +������ � ����� +
������ � ���

where ��� is a long-term secret key shared by ,� and ,� , and ��� are variables used in the
specification of the ,� role (i.e., values that are not known to , � in advance). ,� assumes
that +��� � +������ and computes the group key as �+��������

��
�� �� .

The role of the last party , in the first (four-party) session is this:

��+��� � +��� � +��� � +���� � �+�������� � +�������� � +���������

Our analysis procedure considers all possible event sequences consistent with the semi-
bundle (there are a finite number of possibilities), including the one identified by [PQ01],
which yields the following constraint sequence �. Primed random numbers and variables
are those associated with the second session.

+� �� � �+� +����
��� �+�� � +��� � +������ � �+��� � +��� � +��� � +����

��� �+�������� � +�������� � +��������� � �+� +�
�

���
��� �+�

�

� � +�
�

�� � +�
�

���
�

�� � ������ +
������� � ����

��
� +�

�

���
�

�

The ditto mark �� stands for repetition of the source terms from the constraint immedi-
ately above. The source terms in the first constraint are constants known to the attacker.
The first session would normally generate a constraint for the message received by, � from
,, but this message reception is omitted because it is not necessary for the attack. The
last constraint is the security objective: it says that the term +�

�

���
�

� , which is computed and
accepted as the secret group key in the second session by ,�, is derivable by the attacker.

�� is derived from � by guessing subterms that will be unified. The only subterms
appearing in � are exponentials. We can identify unifiable exponentials at this stage, but
we do not need to because those unifications will occur as a byproduct of solving the
multiplication-only constraints generated later.

To derive��, we note that all exponential subterms can be derived simply by extracting
them from the concatenated messages in which they appear. � � will then discard the

37

concatenations and retain only the exponentials. The variables � �
�� and ��� are not used

and we have dropped the constraints on them.

+� �� � +���
��� +�� � +��� � +����� � +���

��
� +���

��
� +���

��
� +���

��� +�������� � +�������� � +�������� � +�
�

��

��� +�
�

� � +�
�

�� � +�
�

���
�

� � +�
�

�����

��
� +�

�

���
�

�

To obtain ��
�, for each of the target exponentials we find, by exhaustive search, the

exponential in the source set from which it is computed. For example, the second constraint
is solved by computing +��� from +�� . With the correct choices, the exponential removal
step leads to the following product-only constraints. Exponential terms have been removed
from the source sets because exponential terms cannot occur in exponents.

�� � ���
�� � %��� ��
�� � %��� ��
�� � %��� ��
�� � %��� �
�� � ���� %

��
 ���� �

�
��

�� � ���� %
��
 ����

�� � ������ �
�
��

The last step is to introduce variables ���, etc. so that each target term contains at most
one variable. This leads to substitutions

��
� %���� � � �� �� �� �
����
� %����%����

�
��

����
� %����%��
�
��

and constraints
�� � ���� ���� ��

�
��� ��

�
��

�� � ����
���
��

�� ��
�
��

In general, we would have to convert these to Diophantine equations by expressing
each variable as a product of powers of non-variable subterms. This particular system can
be solved by inspection; we can set every variable in the constraints to 1, so that after
substitution we have the solution ��� � �, �� � %� for � � �� �� �� �, ���� � %�%��, and
���� � %�%. This solution is slightly simpler than the solution in [PQ01].

8 Conclusions

We have presented a constraint solving technique that reduces the problem of symbolic
protocol analysis in the presence of an Abelian group operator to a finite set of systems of
quadratic Diophantine equations. Each system has a solution if and only if a certain linear

38

subsystem has a solution. Since linear Diophantine equations are decidable, the problem
of symbolic protocol analysis with Abelian groups is thus decidable. The significance of
this result is that it enables fully automated formal analysis of a wide class of protocols that
cannot be analyzed in a free-algebra model.

Results presented in this paper are but the first step towards reducing the gap between
formal methods and mathematical proofs typically employed in cryptographic analysis of
security protocols. Even though we take into account some mathematical properties of the
underlying cryptographic primitives, we are still analyzing an abstract model, and thus pos-
sibly missing attacks due to our idealized treatment of cryptography. It would be interesting
to know whether the results of this paper, especially the existence of conservative solutions,
can be extended to algebraic theories other than Abelian groups, or to richer equational the-
ories that more accurately represent properties of the relevant cryptographic functions. At
the same time, recent undecidability results for equational unification [KNW02, KNW03]
suggest that the symbolic constraint solving problem is undecidable in the presence of
rich equational theories. Therefore, it is very likely that symbolic analysis can be fully
automated only for abstract protocol models, or for protocols that employ cryptographic
primitives without visible mathematical properties.

References

[AL00] R. Amadio and D. Lugiez. On the reachability problem in cryptographic pro-
tocols. In Proc. 11th International Conference on Concurrency Theory (CON-
CUR ’00), volume 1877 of LNCS, pages 380–394, 2000.

[AR02] M. Abadi and P. Rogaway. Reconciling two views of cryptography. J. Cryp-
tology, 15(2):103–127, 2002.

[BB03] M. Boreale and M. Buscemi. On the symbolic analysis of low-level crypto-
graphic primitives: modular exponentiation and the Diffie-Hellman protocol.
In Proc. Workshop on the Foundations of Computer Security (FCS), 2003.

[BDSV03] I.C. Bertolotti, L. Durante, R. Sisto, and A. Valenzano. Introducing commu-
tative and associative operators in cryptographic protocol analysis. In Proc.
23rd International Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE ’03), volume 2767 of LNCS, pages 224–239, 2003.

[BMV03] D. Basin, S. Mödersheim, and L. Vigano. Constraint differentiation: a new re-
duction technique for constraint-based analysis of security protocols. In Proc.
10th ACM Conference on Computer and Communications Security (CCS ’03),
pages 335–344, 2003.

[Bor01] M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proc.
28th International Colloquium on Automata, Languages and Programming
(ICALP ’01), volume 2076 of LNCS, pages 667–681, 2001.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume 1, chapter 8, pages 445–
532. Elsevier Science, 2001.

39

[CCM01] H. Comon, V. Cortier, and J.C. Mitchell. Tree automata with one memory, set
constraints, and ping-pong protocols. In Proc. 28th International Colloquium
on Automata, Languages and Programming (ICALP ’01), volume 2076 of
LNCS, pages 682–693, 2001.

[CD94] E. Contejean and H. Devie. An efficient algorithm for solving systems of Dio-
phantine equations. Information and Computation, 113(1):143–172, 1994.

[CE02] R. Corin and S. Etalle. An improved constraint-based system for the verifica-
tion of security protocols. In Proc. 9th International Static Analysis Sympo-
sium (SAS ’02), volume 2477 of LNCS, pages 326–341, 2002.

[CJM00] E.M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Bru-
tus. ACM Transactions in Software Engineering Methodology (TOSEM),
9(4):443–487, 2000.

[CKRT03a] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the
security of protocols with Diffie-Hellman exponentiation and products in ex-
ponents. Technical Report IFI-Report 0305, CAU Kiel, 2003.

[CKRT03b] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision
procedure for protocol insecurity with XOR. In Proc. 18th Annual IEEE Sym-
posium on Logic in Computer Science (LICS ’03), pages 261–270, 2003.

[CLS03] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving
and insecurity decision in presence of exclusive or. In Proc. 18th Annual IEEE
Symposium on Logic in Computer Science (LICS ’03), pages 271–280, 2003.

[DLMS99] N. Durgin, P. Lincoln, J.C. Mitchell, and A. Scedrov. Undecidability of
bounded security protocols. In Proc. FLOC Workshop on Formal Methods
in Security Protocols, 1999.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, 29(2):198–208, 1983.

[FA01] M. Fiore and M. Abadi. Computing symbolic models for verifying crypto-
graphic protocols. In Proc. 14th IEEE Computer Security Foundations Work-
shop, pages 160–173, 2001.

[KNW02] D. Kapur, P. Narendran, and L. Wang. A unification algorithm for analysis
of protocols with blinded signatures. Technical Report 02-5, SUNY Albany,
2002.

[KNW03] D. Kapur, P. Narendran, and L. Wang. An e-unification algorithm for analyz-
ing protocols that use modular exponentiation. In Proc. 14th International
Conference on Rewriting Techniques and Applications (RTA ’03), volume
2706 of LNCS, pages 165–179, 2003.

[Lam78] L. Lamport. Time, clocks and the ordering of events in a distributed system.
Comms. ACM, 21(7):558–565, 1978.

[LC89] P. Lincoln and J. Christian. Adventures in associative-communtative unifica-
tion. J. Symbolic Computation, 8(1-2):217–240, 1989.

40

[Mil03] J. Millen. On the freedom of decryption. Information Processing Letters,
86(6):329–333, 2003.

[MN02] C. Meadows and P. Narendran. A unification algorithm for the group Diffie-
Hellman protocol. In Proc. Workshop of Issues in Theory of Security (WITS),
2002.

[MS01] J. Millen and V. Shmatikov. Constraint solving for bounded process crypto-
graphic protocol analysis. In Proc. 8th ACM Conference on Computer and
Communications Security (CCS ’01), pages 166–175, 2001.

[Pau97] L. Paulson. Mechanized proofs for a recursive authentication protocol. In
Proc. 10th IEEE Computer Security Foundations Workshop, pages 84–95,
1997.

[Pau98] L. Paulson. The inductive approach to verifying cryptographic protocols. J.
Computer Security, 6(1/2):85–128, 1998.

[PQ01] O. Pereira and J.-J. Quisquater. A security analysis of the Cliques protocols
suites. In Proc. 14th IEEE Computer Security Foundations Workshop, pages
73–81, 2001.

[RS98] P. Ryan and S. Schneider. An attack on a recursive authentication protocol: A
cautionary tale. Information Processing Letters, 65(1):7–10, 1998.

[RT01] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of
sessions is NP-complete. In Proc. 14th IEEE Computer Security Foundations
Workshop, pages 174–190, 2001.

[Shm04] V. Shmatikov. Decidable analysis of cryptographic protocols with products
and modular exponentiation. In Proc. 13th European Symposium on Pro-
gramming (ESOP ’04), volume 2986 of LNCS, pages 355–369, 2004.

[Son99] D. Song. Athena: a new efficient automatic checker for security protocol anal-
ysis. In Proc. 12th IEEE Computer Security Foundations Workshop, pages
192–202, 1999.

[SS89] M. Schmidt-Schauss. Unification in a combination of arbitrary disjoint equa-
tional theories. J. Symbolic Computation, 8:51–99, 1989.

[STW96] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman key distribution ex-
tended to group communication. In Proc. 3rd ACM Conference on Computer
and Communications Security (CCS ’96), pages 31–37, 1996.

[THG99] F. Thayer, J. Herzog, and J. Guttman. Strand spaces: proving security proto-
cols correct? J. Computer Security, 7(1), 1999.

41

A Checking whether a constraint sequence is well-defined

Our “well-definedness” condition on constraint sequences formalized in Definition 3.5
quantifies over all possible substitutions, and may be difficult to check directly. In this
section, we give a finite procedure for checking whether a constraint sequence is well-
defined. We start by considering substitutions which may cause a variable to disappear
from a term without explicitly substituting it. For example, substitution � � ��
� ����
causes � to disappear from �� � ���, even though � does not substitute �. Recall that ����
is the domain of substitution �.

Lemma A.1 Suppose � 	 ����� in some term �, and let � be some substitution such that
� �	 ����. If � �	 ������, then, for every occurrence of � in �, there exists a subterm �

such that � � � �� � � � � �� � � � 	 �	���, the occurence of � is contained in ��, and ��� � ����
��.

Proof: The only rule in Fig. 2 that can cause a variable to disappear is the cancellation rule
for the Abelian group operator: � ���� � �. Therefore, for every occurrence of � in �, there
must be a superterm �� such that � � � �� � � � � � � � � � 	 �	��� for some �, and ��� � �� � �.
Therefore, ��� � ����

��. �

Lemma A.1 says that a variable � can disappear from a term when another variable is
substituted only if every occurrence of � is contained in a subterm � � which is multiplied
with another subterm � which the substitution turns into the inverse of ��. We will call such
substitutions eliminators of �.

In the rest of this section, we will use ���� notation to distinguish different occur-
rences of �. Recall from Section 2.3 that terms ��� �� have a set of most general unifiers
���������� ��� (if the terms cannot be unified, the set is empty).

Definition A.2 (Eliminators) Let � be a term such that � 	 �����. For each occurrence
���� in �, define the set of eliminators ������� �� � �� � � �	 ���� and for some ��� �,
� 	 ���������� �

�����, where � � � �� � � � � � � � � � 	 �	���, and the occurrence ���� is
contained in ��.

Observe that for any term � and any occurrence � ���, the set ������� �� is finite. There
are only a finite number of possibilities for subterms �� containing this occurrence of �,
each �� is multiplied with at most a finite number of terms �, and unification produces a
finite number of most general unifiers (see Section 2.3), of which the subset that does not
substitute � is selected.

For example, consider the following term: � � ������� ��� ����� �)�� � ����
���. For

the first occurrence of �, there is no superterm �� which is multiplied with another term,
therefore, ������� �� � �. For the second occurrence �, there are two superterms which are
multiplied with another term. The first superterm is � itself, which is multiplied with). The
unifier which does not substitute � but will cause � to disappear is �)
� ����. The second
superterm is ����� �)��, which is multiplied with ����

��. The unifier which will cause � to
disappear is ��
� � � ��)
� ��. Therefore, ������� �� � ��)
� ����� ��
� � � ��)
� ���.

We now describe how to merge two substitutions -� and -�, producing a finite set of
their most general common instances.

42

Definition A.3 Let ��-�� � ��-�� � ���� � � � � ���. Define

������-�� -�� � ������� �-������ �-������ �� � � � -������ � � ����
�-������ �-������ �� � � � -������ � � ��� �

Of course, substitutions -� and -� may disagree on some variables, in which case
������-�� -�� � �. We now extend Definition A.3 to any finite number of substitutions in
the obvious way.

Definition A.4 Define ����� ��� inductively as follows:
- For � � �-�� -�������� ��� � ������-�� -��;
- For ��� � � and - �	 ������� ��-� ��� �

�
��������-� -�� � -� 	 ����� ����.

This definition enables us to extend the notion of eliminators to entire term sets rather
than single occurrences.

Definition A.5 Let � be a set of terms such that � 	 ���� �, let ����� � � � � ���� be all
occurrences of � in � , and let ��� � � � � �� 	 � be the respective terms in which � occurs
(since � may occur in a term more than once, it is possible that � � � �� for some � �� �).
Define ���� � � �

�
�������� ��� � ����� ! ������� ���� � ��.

By construction, ���� � � is a finite set of substitutions that eliminate all occurrences of
� from term set � , but don’t substitute � explicitly. Each element of ���� � � is the result
of merging a set of substitutions with one representative from each ��� ���� ���.

Of course, for some term sets ���� � � may be empty. In particular, if there is even one
occurrence ���� such that ������� �� � � for some � 	 � (e.g., if � is not contained within
any products), then ���� � � � � because there is no most general common substitution
produced by����� .

The set ���� � � is complete in the following sense.

Lemma A.6 Suppose� 	 ���� � for some set of terms � . If � �	 ����, and � �	 ������,
then there exists a partial substitution - 	 ���� � � such that � � - Æ - � for some -�.

Proof: According to Lemma A.1, every occurrence � ��� of variable � must be contained
within some subterm �� such that � � � �� � � � � �� � � � 	 �	��� where � 	 � , and ��� � ����

��.
Therefore, � is an instance of one of the most general unifiers of � � and ���, or, more
precisely, for every occurrence ����, � � -� Æ -�� for some -� 	 ���������� �

���. By
Definition A.2, this implies that -� 	 ������� �� for all �. Therefore, � must be compatible
with at least one -� from each set ������� ��. By Definition A.5, this means that � � - Æ - �

for some - 	 ���� � �. �

We are now ready to prove that it is possible to check whether a constraint sequence
satisfies Definition 3.5 by considering only a finite number of substitutions.

Lemma A.7 Let � be the constraint sequence generated from a protocol, and suppose
there exists a substitution � such that �� does not satisfy the property in Definition 3.5,
or, more precisely, there exists a variable � and constraint �� � �� 	 � such that � 	
��������������, but � �	

�
�� �������. Then � � -Æ-� for some - 	 ���� ��� �� � ���.

43

Proof: First, observe that � �	 ���� because � 	 ������ � �������. Then note that
� 	

�
�� ������ because � satisfies the origination property, but � �	

�
�� �������.

By Lemma A.6, this means that � � - Æ - � for some - 	 ���� ��� �� � ���. �

Theorem A.8 Suppose � is a constraint sequence generated from a protocol. Checking
whether� is well-defined according to Definition 3.5 is decidable.

Proof: We construct a decision procedure as follows. For every variable � 	 �����, every
constraint �� � �� 	 � such that � 	 ����� � �����, compute ���� ��� �� � ���. Then,
for every - 	 ���� ��� �� � ���, check whether�- satisfies the property in Definition 3.5,
that is, check whether � ������ � �����-� �

�
�� �����-�.

If there exists a variable �, index �, and substitution - such that the property is violated,
then� is not well-defined. Set � � -.

If the property is satisfied for all �, � and -, then � is well-defined. We prove this
by contradiction. Suppose � is not well-defined. Then there exist �, � and � such that
� 	 ������ � �������, but � �	

�
�� �������. By Lemma A.7, � � - Æ - � for some

- 	 ���� ��� �� � ���. By definition of ���� ��� �� � ���, � �	
�
�� �����-�. Because �

is a refinement of - and � 	 ������ � �������, � 	 ������ � �����-�. This contradicts
our assumption that �� �� - 	 ���� ��� �� � ��� ������ � �����-� �

�
�� �����-�.

This concludes the proof. �

44

