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Abstract

We propose a new specification framework for information hiding properties such
as anonymity and privacy. The framework is based on the concept of a function
view, which is a concise representation of the attacker’s partial knowledge about a
function. We describe system behavior as a set of functions,and formalize differ-
ent information hiding properties in terms of views of thesefunctions. We present
an extensive case study, in which we use the function view framework to system-
atically classify and rigorously define a rich domain of identity-related properties,
and to demonstrate that privacy and anonymity are independent.

The key feature of our approach is its modularity. It yields precise, formal specifi-
cations of information hiding properties foranyprotocol formalism andanychoice
of the attacker model as long as the latter induce an observational equivalence rela-
tion on protocol instances. In particular, specifications based on function views are
suitable for any cryptographic process calculus that defines some form of indistin-
guishability between processes. Our definitions of information hiding properties
take into account any feature of the security model, including probabilities, ran-
dom number generation, timing,etc., to the extent that it is accounted for by the
formalism in which the system is specified.

Keywords: security, information hiding, logic, knowledge, Kripke structure, ver-
ification, anonymity, privacy

1 Introduction

Security requirements for computer systems often involve hiding information from an
outside observer. Secrecy, anonymity, privacy, and non-interference each require that it
should be impossible or infeasible to infer the value of a particular system attribute —
a transmitted credit card number, the identity of a website visitor, the sender and recip-
ient of an email message — by observing the system within the constraints of a given�Computer Science Department, Stanford University, Stanford, CA 94305 U.S.A. Email address:
dominic@cs.stanford.edu .ySRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025 U.S.A. Email address:
shmat@csl.sri.com . Partially supported by ONR grants N00014-02-1-0109 and N00014-01-1-0837
and DARPA contract N66001-00-C-8015.
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observer model. If formal analysis techniques are to be usedfor the analysis and veri-
fication of computer security, they must provide support forthe formal specification of
information hiding properties as well as formal reasoning about information leaked to
the attacker by various events and actions occurring in the system.

In this paper we adopt an epistemological tradition that canbe traced back to the
seminal works of Kripke [Kri63] and Hintikka [Hin62]: hiding information, modeled as
the attacker’s lack of knowledge about the system, corresponds to indistinguishability
of system states. As the starting point, we assume that we aregiven a set of system
configurationsC equipped with an observational equivalence relation�. Consequently,
our methods apply toanycomputational model of the attacker that partitions the space
of all possible system configurations into observational equivalence classes. A typical
example is the specification of a security protocol in a cryptographic process calculus
whose notion of equivalence� is testing equivalence of processes in some attacker
model.

The following informal example illustrates the way in whichwe shall obtain formal
definitions of security properties, parametrically in�. For ease of presentation, in this
example we restrict to the case where a communication or exchange between agents
consists of a single message (for example, an email). Thus wehave in mind a Kripke
structure whose possible worlds (states) are all possible email exchanges, and for whichC � C 0 represents the attacker’s inability to distinguish between possible worldsC
andC 0. Below is a natural-language expansion of the predicate we shall later obtain (in
Table 2) for defining absolute sender anonymity:

ABSOLUTE SENDER ANONYMITYholds if:
for every possible worldC of the Kripke structure,

for every messagem sent inC,
for every agenta,

there exists a possible worldC 0 indistinguishable fromC (i.e., C 0 � C)
such that inC 0, a is the sender ofm.

Thus, from the attacker’s perspective, the lineup of candidates for the sender of any given
message is the entire set of agents. (More generally,m would denote a full exchange
or ‘conversation’ between agents, potentially consistingof more than one message, and
transmitted through any medium.) This example, though informal, should convey the
idea behind our formulation of security properties parametrically in �.

A key advantage of this modularity with respect to� is the resulting leveraging of
the expressive power of the underlying formalism (e.g., process calculus) in which a
protocol is specified. Depending on the formalism, the� equivalence relation, which
represents the attacker’s inability to distinguish certain system states, may take into ac-
count features such as probability distributions, generation of nonces and new names,
timing, etc. In this case, our framework and the formal specifications of information
hiding properties derived using it will also take these features into account.

Our framework. Information hiding properties can be formalized naturallyusing
modal logics of knowledge [FHMV95, SS99]. Such logics can beused to formulate di-
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rect statements about the limits of an observer’s knowledge. Verifying whether a system
satisfies a given information hiding property is more difficult, since in order to reason
about information flows, it is necessary to formalize the behavior of all agents com-
prising the system as “knowledge-based programs.” This is often a non-trivial exercise,
requiring expertise in the chosen logic.

On the other end of the formal methods spectrum, approaches based on process
algebras [Sch96, AG99, LMMS99, BNP99] are well suited to formalizing concurrent
systems. A process algebra may include a formal model of cryptographic primitives —
needed,e.g., for the analysis of cryptographic protocols — and typically comes equipped
with an equivalence relation such as bisimulation or testing equivalence that models an
observer’s inability to distinguish between certain processes. Process algebras also pro-
vide proof techniques for process equivalence. The disadvantage of the process algebra
approach is that stating information hiding properties in terms of process equivalence
is very subtle and error-prone, especially for complicatedproperties such as anonymity
and privacy.

We introduce a modular framework for reasoning about information hiding prop-
erties, independent of any particular system specificationformalism or epistemic logic
(see Figure 1). The cornerstone of our approach is the concept of a function view. A
function view is a foundational domain-theoretic notion. It represents partial informa-
tion about a function, and thus models an observer’s incomplete knowledge thereof.
Remarkably, just the three attributes of a function view — graph, kernel, and image —
suffice to model many kinds of partial knowledge an observer may have about the func-
tion of interest. We demonstrate how any system specification formalism that provides
an equivalence relation on system configurations induces function views, and how in-
formation hiding properties can be stated naturally in terms of opaquenessof this view.
Therefore, security properties specified in our framework may be amenable for formal
verification using a wide variety of formal methods and techniques.

Applications to anonymity and privacy. The application of our specification frame-
work to anonymity and privacy is especially significant. Identity protection is an active
area of computer security research. Many systems have been proposed that implement
different, and sometimes even contradictory, notions of what it means to be “anony-
mous.” Instead of a single “anonymity” or “privacy” property, there are dozens of dif-
ferent flavors of anonymity, and understanding them in a systematic way is a major
challenge in itself. There is also a need for rigorous formalspecification and verification
of identity-related security properties since such properties are often difficult to model
using conventional formal analysis techniques.

Structure of paper. The structure of the paper is as follows. In section 2, we introduce
function views. In section 3, we show how opaqueness of function views can be used
to formalize information hiding properties. In section 4, we use our theory of function
views and opaqueness to demonstrate how most notions of anonymity proposed in the
research literature can be formalized in a uniform way and represented as predicates
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Figure 1: Modular approach to formalizing information hiding properties. See sec-
tion 3.6 for a detailed explanation.
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on observational equivalence classes, thus facilitating their verification in any crypto-
graphic process algebra. Perhaps our most important practical result is a crisp distinc-
tion between anonymity and privacy (the latter understood as “relationship anonymity”),
which has implications for public policy.

2 Theory of Function Views

What can oneknowabout a functionf : X ! Y ? One might know its outputf(x) on a
certain inputx, or that a certain pointy of Y lies in the image off but that another pointy0 does not. One may know distinct inputsx andx0 such thatf(x) = f(x0), without
necessarily knowing the valuef(x).

One approach to modeling partial knowledge of a function is to use domain theoretic
ideas [Sco72, AJ94], defining an approximationa of a functionf : X ! Y to be any
partial functiona � f (� X � Y ). This traditional notion of an approximation as a
subset of input-output behavior has been very successful inresearch into semantics of
programming languages [Sto77, Gun92].

In this paper we introduce a new notion of partial knowledge of a function. Aview
of a functionf comprises a non-deterministic approximation of its graph (a binary re-
lation containingf ), a subset of its image, and an equivalence relation contained in its
kernel. Function views form a distributive lattice whose maximal consistent elements
correspond to fully determined functions and whose bottom element represents absence
of any knowledge. In section 2.1 we define three primitive forms ofopaqueness, one for
each of component of a view, each formalizing an observer’s inability to discern certain
information aboutf .

In section 3 we show how to formalize information hiding properties in terms of
opaqueness of functions defining system behavior. The most important aspect of this
formalization is thatany Kripke structure representing an observer gives rise to func-
tion views. In sections 3.2 and 3.4, we show how function views are constructed auto-
matically from the equivalence relation of a Kripke structure. We then show how any
opaqueness property can be formalized as a predicate on equivalence relations, hence
on Kripke structures.

In particular, if the system is specified in a process algebrathat supports a notion of
observational equivalence�, we demonstrate how opaqueness-based security properties
of the system can be expressed as predicates on�. This conversion is parametric in�
in the sense that it works for any computational model of the attacker that partitions
the space of all possible system configurations into observational equivalence classes.
Therefore, we do not require technical machinery for reasoning about how the partial
knowledge represented by function views is obtained. This knowledge is implicit in the
equivalence relation induced by the attacker model. Since opaqueness properties can
be expressed as predicates on the equivalence classes ofanyprocess algebra, a user is
free to employ his or her favorite algebra and preferred technique for verifying such
predicates.

Our chosen definition of function view is simple yet expressive enough to formalize
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a host of security properties and the relationships betweenthem, as shown in section
4. It is interesting and surprising that attacker knowledgein this complex setting can
be reduced to triples consisting of an approximation of the graph, image and kernel of a
function. In section 2.5, we discuss the scope of our framework, including its limitations
and possible extensions.

2.1 Partial knowledge of functions

We re-examine our original question: what can oneknowabout a function? Consider
the following properties of a functionf : X ! Y .� Its graph. The input-output behavior off , typically coded as a subset ofX � Y .� Its image.The subsetim f = ff(x) jx 2 Xg of Y .� Its kernel. The quotient induced byf , i.e., the equivalence relationker f on X

given byhx; x0i 2 ker f iff f(x) = f(x0).
This list is by no means exhaustive. These three properties suffice, however, for formal-
izing many information hiding properties such as anonymityand privacy, and we focus
on them for the rest of this paper. We define the following corresponding notions of
knowledge of a functionf : X ! Y .� Graph knowledge.A binary relationF � X � Y such thatf � F . ThusF

is a non-deterministic approximation off : F (x) = f y 2 Y jxFy g is a set of
candidates for the output off onx, andf(x) is always a candidate.� Image knowledge.A subsetI of Y such thatI � im f . The fact thaty 2 I is an
assertion thaty is an output off , without necessarily knowing any specific input
that producesy.� Kernel knowledge.An equivalence relationK onX such thatK � ker f , i.e.,xKx0 only if f(x) = f(x0). Thus the edges ofK are assertions about the equality
of f .

Note that the second and third forms of knowledge arepositive in the sense that each
point y 2 I or hx; x0i 2 K is a definite observation of the image or kernel. By contrast,
graph knowledgeF is negative, sincey 62 F (x) is a definite observation thatf(x) 6= y,
whereasy 2 F (x) does not implyf(x) = y (unlessF (x) is a singleton).

DEFINITION 1 Function knowledgeof typeX ! Y is a tripleN = hF; I;Ki where

1. F � X � Y is a binary relation betweenX andY ,

2. I is a subset ofY , and

3. K is an equivalence relation onX.

We say thatN = hF; I;Ki is consistentwith f , denotedN v f , if
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1. F � f ,

2. I � im f , and

3. K � ker f .

From a theoretical or foundational perspective, the choiceof these three particular com-
ponents is somewhatad hoc. The interesting and surprising point is that these three
components alone allowed us to express a rich spectrum of security-related properties:
see Figure 2, and the taxonomy in section 4.3.

A lineup of typeX ! Y is a set of functions of typeX ! Y . Given function
knowledgeN of typeX ! Y , define the associated lineuplin(N) � Y X as the set of
functions with whichN is consistent:lin(N) = f f : X ! Y j N v f g
Under the intuition thatN is an observer’s view of some unknown functionf , lin(N) is
the set of candidates forf .

Given function knowledgeN = hF; I;Ki andN 0 = hF 0; I 0;K 0i of typeX ! Y ,
defineN v N 0 (N approximatesN 0, orN 0 refinesN ), byN v N 0 () 8<: F � F 0I � I 0K � K 0
(conjunction on the right). Upon identifyingf : X ! Y with function knowledgehf; im f; ker fi of typeX ! Y , this extends our earlier definition of consistency. Meet
and join are pointwise:Vj2J hFj ; Ij ;Kji = h Sj2J Fj ;Tj2J Ij ;Tj2J Kj iWj2J hFj ; Ij ;Kji = h Tj2J Fj ;Sj2J Ij ;Wj2J Kj i
where

Wj2J Kj is the transitive closure of[j2JKj . With toph;; Y;X�Xi and bottomhX � Y; ;;=Xi, function knowledge of typeX ! Y thus forms a distributive lattice.

2.2 Knowledge closure

Our motivation for the notion of function knowledgeN = hF; I;Ki is to have a way
to represent the knowledge of an observer who is trying to discern some properties of a
hidden functionf . Ideally, we would useN to formulate assertions about the observer’s
inability to discern certain properties off . For example, if the cardinality ofF (x) is at
least two elements for eachx 2 X, we can assert that “the observer cannot determine
the value off on any input.”

In general, however, we cannot make direct assertions aboutinformation hiding in
terms of a single component of the knowledge triple because the three components are
not independent. For example, in the case above, suppose that K is the whole ofX�X
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(so the observer knows thatf produces the same output value on all inputs), and thatI
is the singletonfyg. Then fromI andK the observer can infer thatf(x) = y for allx, even if the first coordinateF is such thatF (x) is always of size at least 2. In other
words, fromI andK, the observer can refine his or her knowledgeF of the graph off .
In order to make sound assertions about information hiding usingN , we must first take
an appropriate form of deductive or inference closure. The correct definition arises as
the closure operator induced by a Galois connection.

Given a lineupl � Y X of functions fromX to Y , define the associated function
knowledgekn(l) of typeX ! Y by kn(l) = V l. Thuskn(l) is thev-maximal function
knowledge consistent with eachf 2 l. (In making this definition we identify a functionf with function knowledgehf; im f; ker fi.) Therefore ifkn(l) = hF; I;Ki, thenF =S l, I = T fim f : f 2 lg andK = T fker f : f 2 lg.
PROPOSITION1 (GALOIS CONNECTION) The mapsN 7! lin(N) andl 7! kn(l) con-
stitute a contravariant Galois connection between the lattice of function knowledge of
typeX ! Y and the powerset-lattice of lineups of typeX ! Y , i.e., l � lin(N) iffN v kn(l).
Proof. We must show thatl � f f : X ! Y j N v f g (1)

iff N v ^ l (2)

Suppose (1) holds. Then eachf 2 l satisfiesN v f , so (2) follows immediately from
the fact that

V l is a meet.
Conversely, suppose (2) holds. WritingN = hF; I;Ki, (2) is equivalent to the

conjunction of F � [ l (3)I � \ fim f : f 2 lg (4)K � \ fker f : f 2 lg (5)

We must show that for eachf 2 l, we haveN v f , i.e., F � f , I � im f , andK � ker f . These follow from (3), (4) and (5) respectively. �
Given function knowledgeN define theclosureN of N to bekn(lin(N)). Motivated
by the discussion at the start of the section, henceforth we shall only deal with closed
function knowledge. Note that there is no easy equational characterization of closure,
especially in applications that involve additional components in the definition of function
knowledge.
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2.3 Function views and opaqueness

DEFINITION 2 A viewof a functionf : X ! Y is any closed function knowledge of
typeX ! Y that is consistent withf .

To formalize information hiding, we shall require the following predicates on views.

DEFINITION 3 (OPAQUENESS) Let V = hF; I;Ki be a view off : X ! Y . We
define the following forms ofopaquenessof f underV :� Value opaqueness:

– Givenn � 2, V is n-value opaqueif jF (x)j � n for all x 2 X. In other
words, the lack of information in the view is such that there are at leastn
candidates for the output off on any given inputx.

– GivenZ � Y , V is Z-value opaqueif Z � F (x) for all x 2 X. In other
words, the lack of information in the view is such that any element ofZ is a
possibility for the value off on any inputx.

– V is absolutely value opaqueif V is Y -value opaque. In other words, the
view gives away nothing about the input-output behavior off : for all x 2 X,
every y 2 Y is a candidate forf(x).� V is image opaqueif I is empty. In other words, the view is such that for no

elementy 2 Y can one definitely assert thaty lies in the image off .� V is kernel opaqueif K is equality onX. In other words, beyond the trivial casex = x0, with this view off no equalitiesf(x) = f(x0) can be inferred.

PROPOSITION2 Let f be a function of typeX ! Y . The various forms of opaque-
ness of a viewV of f can be characterized logically as follows, with reference to the
corresponding lineupl = lin(V ):Z-Value opaqueness, 8x 2 X: 8z 2 Z: 9g 2 l: g(x) = z:n-Value opaqueness, 8x 2 X: 9g1; : : : ; gn 2 l: i 6= j ) gi(x) 6= gj(x)

Image opaqueness, 8y 2 Y: 9g 2 l: y 62 im g
Kernel opaqueness, 8x1 6= x2 2 X: 9g 2 l: g(x1) 6= g(x2)

For absolute value opaqueness, takeZ = Y .

Proof. Each property is simply a restatement of the corresponding property defined in
Definition 3. �
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2.4 Composition of function views

Compositionality is a notoriously difficult problem in computer security. It is well
known that security properties typically do not compose, and reasoning about what an
observer can learn upon putting together two views of the system is very involved. Al-
though composition of function views is of no particular interest from the perspective of
security property specification (we assume thatall information available in the attacker
is already embodied in the indistinguishability relation that induces his function view),
for the sake of completeness and mathematical curiosity, weremark upon it.

The only sensible definition of composition of function views is in terms of the
underlying lineups:v � w = kn( f f � g : f 2 lin(v); g 2 lin(w) g ). One must take
closure, for in general the pairwise composite of closed lineups does not yield a closed
lineup. Since in composing at typeA! B ! C, image and kernel information inB is
lost, it is not surprising that composition is not associative, as witnessed by the following
example. Let2 = f0; 1g, 3 = f0; 1; 2g, andR = fh0; 0i; h1; 0i; h2; 1ig � 3 � 2.
Then foru = hR; 2;= [fh0; 1i; h1; 0igi : 3 ! 2, v = hR�1; f2g;=i : 2 ! 3 andw = h2 � 2; f0g;=i : 2 ! 2, the constant function�x:1 : 2 ! 2 is in lin(u � (v � w))
but is not inlin((u � v) � w), henceu � (v � w) 6= (u � v) � w.

Since image and kernel information inB is lost upon composingA ! B ! C,
the only route to a compositional notion of function view would be to somehow encode
this information elsewhere, either by enriching the image or kernel components, or by
adding one or more additional components. For example, the above non-associativity of
the composition ofu, v andw arises because in closingw �v we lost the information that0 is in the image ofw. The fact that0 2 imw implies the following condition (C): at
least one of0 and1 is in the image ofw�v. SinceC is lost, the closure ofw�v is “too big,”
including as it does the constant function�x:2, which does not satisfyC. Motivated by
this example, one avenue towards a compositional enrichment of the notion of function
view might begin with extending the definition of the image component from a subset of
the range to asetof subsets of the range, with the semantics that each such setcontains
at least one point of the image. Then the lost conditionC above can be encoded as the
setf0; 1g, and we eliminate the undesirable function�x:2 from the closure ofw � v. A
similar extension may be necessary for the kernel.

2.5 Scope of the framework

Depending on the application, one might consider incorporating additional properties,
for example the cardinality off�1(y) for eachy, or a subset of the complement of the
kernel. Because of our description of “inference closure” between components of func-
tion knowledge as a Galois connection with function lineups(Proposition 1), the theory
of function views extends toany conceivable property of a function. In addition, one
can easily generalize from views of functions to views of partial functions or relations.

As we apply the function view framework to reasoning about information hiding
in systems, we assume that the equivalence relation associated with the observer is
non-probabilistic. For example, we do not consider scenarios where the observer does
not know with 100% certainty the value off(x), but may be able to determine that
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f(x) = y1 with probability 90%, andf(x) = y2 with probability 10%. While it re-
stricts applicability of the framework, this approach is common in formal reasoning
about security properties. It is justified by assuming that cryptographic primitives hide
distributions of the underlying data, and it is therefore sufficient to consider only non-
probabilistic observers such as the so calledDolev-Yaoattacker [DY83]. Any notion
of process equivalence with sound cryptographic semantics[AR02, LMMS99] provides
a non-probabilistic equivalence relation suitable for applying the function view frame-
work. Nonetheless, future extensions may consider probability distributions over func-
tion (and hence attribute) lineups in a manner similar to Halpern and Tuttle [HT93]. In
the current setup, a lineup of typeX ! Y is equivalent to a functionY X ! f0; 1g. This
has an obvious generalization toY X ! [0; 1℄, where[0; 1℄ is the closed unit interval on
the real line.

Our theory of function views does not directly incorporate any temporal features.
We are primarily concerned with reasoning about information that an observer may ex-
tract from the system given a particular static equivalencerelation that models his or
her inability to distinguish certain system configurations. As the system evolves over
time, the observer may accumulate more observations, possibly narrowing the equiva-
lence relation and allowing extraction of more information. This can be modeled in our
framework by the corresponding change in the observer’s function view.

If temporal inferences, such as those involved in timing attacks, can be modeled
in the underlying process specification formalism, they will be reflected in the induced
observational equivalence relation and, in a modular fashion, in the function views rep-
resenting the attacker’s view of the system. Therefore, function views can be used to
reason about time-related security properties. Function views can also be used to rep-
resent partial knowledge about relations between unknown entities. Therefore, they are
sufficiently expressive to model “forward security” of systems. For example, kernel
opaqueness of the mapping from email messages to senders models the attacker’s in-
ability to determine whether two emails originated from thesame source. Even if one
of the messages is compromised, the attacker will not be ableto automatically infer the
sender of the other.

3 Opaqueness and Information Hiding

In this section, we establish the relationship between opaqueness of function views and
observational equivalence of system configurations. We then demonstrate how function
views can be used to formalize information hiding properties and derive verification
conditions stated in terms of observational equivalence.

3.1 Possible-worlds model

We will use the theory of function views developed in section2.1 to reason about infor-
mation hiding properties of systems,i.e., whether the attacker is prevented from know-
ing properties of the functions defining system behavior. Wewill follow the standard
approach of epistemic logic [Hin62, FHMV95] and formalize any system of interestS
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as aKripke structurehC ; �;Ki [Kri63]. HereC is the set of all possibleconfigurations
of systemS (we may also refer to elements ofC aspossible worldsor statesof S), � is
an interpretation that defines configurationsC 2 C by assigning values to all attributes
of S, andK is an equivalence relation onC that models an observer’s inability to dis-
tinguish certain states ofC. In general, Kripke structures can be used to model multiple
observers with their corresponding equivalence relationson C . Since our primary goal
in this paper is to reason about security properties, we willassume a single attacker that
incorporates the abilities of all hostile observers.

In the rest of this section, we demonstrate how any Kripke structure induces function
views. In particular, any computational model of the attacker, including those implicit in
cryptographic process algebras, imposes an equivalence relation onC and thus induces
function views. Any information hiding property can be defined in two ways: as opaque-
ness of the induced function view (following section 2.3), or as a logical predicate on
the underlying equivalence relation. The two definitions are equivalent, as demonstrated
by proposition 3.

3.2 Attribute opaqueness

Let S be a system with a set of configurationsC . An attribute � of S of typeX ! Y
is a function�C : X ! Y for each configurationC 2 C , i.e., a C -indexed family of
functionsh�C : X ! Y iC2C . In general,S may have a variety of attributes. Such a
representation is akin to the object-oriented view of the world, with behavior modeled
by a set of methods.

Security properties of computer systems often involve hiding information about
functions defining the behavior of the system. For example, supposeS is a bank with
a set of customersX. Writing customerx’s bank balance in configurationC 2 C asbalC(x), we have defined an attributebal of S of typeX ! R, whereR is the set of
real numbers. Then the secrecy property of customers’ balances can be formalized as
the requirement that an observer should not be able to infer the value of attributebal. A
richer example is noninterference [GM82], which requires that the observablelow (un-
classified) behavior of the system hide all information about high (classified) functions
inside the system.

Define aview familyV for an attribute� of S to be a function viewVC of �C :X ! Y for eachC 2 C . Opaqueness lifts pointwise to attributes as follows.

DEFINITION 4 LetS be a system with set of configurationsC and an attribute� of typeX ! Y . Let V be a view family for�. For any form of opaqueness� (e.g., �=kernel
or �=image), we say that� is �-opaque underV if, for all configurationsC 2 C ,�C : X ! Y is �-opaque under the function viewVC .

3.3 Observational equivalence

Intuitively, two processes are observationally equivalent if no context can distinguish
them. In formal models of security protocols based on process calculi [AG99, LMMS99,
BNP99], it is common to define security properties such as secrecy and authentication in
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terms of observational equivalence (or related concepts such as may-testing equivalence
or computational indistinguishability) between several instances of the protocol, or an
instance of the protocol and that of an “ideal” protocol which is secure by design and
serves as the specification of the desired property. Proof techniques for observational
equivalence depend on the choice of a particular process calculus and an attacker model.
Some of the formalisms are amenable to mechanized verification (e.g., via trace-by-trace
comparison). A related approach involves behavioral equivalences proved via logical
relations [SP01].

Given system configurationsP andQ, we will say thatP �E Q iff an outside ob-
server (attacker), acting in coalition with all agents fromsetE (e.g., with access to their
secret keys), cannot distinguishP andQ, for whatever notion of indistinguishability is
supported by the chosen formalism and the attacker model.

We emphasize thatany notion of observational equivalence� automatically pro-
vides a relationK for the Kripke structure defining the attacker’s knowledge of the sys-
tem. Therefore, once the system is formalized in a suitable process algebra, there is no
need to reason how function views are obtained or where attacker knowledge “comes
from.” As demonstrated in section 3.4, any observational equivalence relation induces
a particular function view, and its opaqueness can be characterized logically in terms of
predicates on the equivalence classes as described in section 3.5.

3.4 Opaqueness and observational equivalence

Suppose that the set of system configurationsC is equipped with anobservational equiv-
alence�, an equivalence relation whereC � C 0 represents the inability of an observer
to distinguish between configurationsC andC 0. Such an equivalence relation naturally
induces a view family for any attribute, as follows.

DEFINITION 5 Let S be a system with set of configurationsC equipped with an obser-
vational equivalence�, and let� be an attribute ofS of typeX ! Y . Every configu-
rationC 2 C defines a function lineupL��;C = f�C0 : X ! Y j C 0 � C g; hence we
obtain an attribute view familyview�(�) of �, given byview�(�)C = kn(L��;C)
Note thatview�(�)C is indeed a view of�C because�C 2 L��;C andkn(l) is closed
for any function lineupl. Since any observational equivalence induces an attributeview
family, any form of opaqueness lifts to a predicate on observational equivalence.

DEFINITION 6 Let S be a system with set of configurationsC and let� be an attribute
of S of typeX ! Y . Let� be an observational equivalence onC . For any form of
opaqueness�, we say that� is �-opaque under� if the attribute view familyview�(�)
of � induced by� is �-opaque.

3.5 Logical characterization of attribute opaqueness

Proposition 2 generalises to attribute opaqueness in the obvious way.
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PROPOSITION3 Let S be a system with set of configurationsC equipped with an ob-
servational equivalence�, and let� be an attribute ofS of typeX ! Y . Opaqueness
of � under� can be characterized as follows:Z-Value opaqueness, 8C 2 C :8x 2 X:8z 2 Z:9C 0 � C:�C0(x) = z:n-Value opaqueness, 8C 2 C :8x 2 X:9C1; : : : ; Cn�1 2 C : Ci � C^�Ci(x) 6= �C(x) ^ [i 6= j ) �Ci(x) 6= �Cj (x)℄

Image opaqueness, 8C 2 C :8y 2 Y:9C 0 � C: y 62 im�C0
Kernel opaqueness, 8C 2 C :8x1 6= x2 2 X:9C 0 � C:�C0(x1) 6= �C0(x2)

For absolute value opaqueness, takeZ = Y .

Proof. An immediate corollary of Proposition 2, since attribute opaqueness is defined
pointwise. �
3.6 Formalization of information hiding properties

We now present a modular two-step approach to formalizing information hiding prop-
erties, illustrated with a case study in section 4. The first step is to represent the system
in question as a set of configurations parameterized by the relevant attributes. Given
an intuitive notion of a security property, we specify the property in terms of attribute
opaqueness (see Table 1 in the case study for examples).

The second step is to define an observational equivalence relation� on configura-
tions: C � C 0 if and only if an observer cannot distinguish betweenC andC 0. If the
system is specified in a suitable cryptographic calculus,e.g., [AG99, BNP99, SP01],
the calculus will provide such a relation. Definition 6 then immediately yields a formal
equivalence-based definition of the security property, which can be written as a logical
predicate on� following Proposition 3 (see Table 2 for examples).

Our method applies to any formalism that induces an equivalence relation on the
space of all possible system configurations. In particular,it applies to any cryptographic
process algebra formalism and any notion of process indistinguishability associated with
the chosen attacker model. It permits formalization of security properties which would
otherwise be difficult to model directly in process calculus. A key advantage of the
approach is that our formalization of security properties is independent of the compu-
tational model of the observer, since it is based on functionviews. In many cases, the
obtained observational equivalence properties can be verified using proof techniques of
the underlying calculus.

Figure 1 summarizes the difference between conventional approaches to formalizing
information hiding and the modular approach proposed in this paper. Any approach re-
quires formalization of both the system (e.g., a communication protocol) and the desired
property, as represented by the downward arrows in each of the three sub-figures. Sub-
figures (1) and (2) depict conventional approaches. In (1), aparticular process algebra
naturally models the system. However, reasoning about the knowledge an observer can
extract from the system is fairly complicated (e.g., [SS96]). Dually, in (2), a particular
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logic of knowledge is used to naturally model the knowledge available to an observer,
but the system may no longer be specified in a standard processalgebra (e.g., [SS99]).
Process algebras and epistemic logics are typically results of years of evolution specific
to their respective domains of application. In an approach based on one of the two, the
other is pushed beyond its natural boundaries.

Our goal is to leverage the best of both approaches, with an interface between the
two. Sub-figure (3) depicts the modular approach introducedin this paper. Technically,
we achieve modularity by combining our theory of function views (section 2) and the at-
tacker’s observational equivalence relation implicit in the process algebra (section 3.3).
In fact, the interface layer is designed so thatany process algebra or logic can be em-
ployed — in our framework, specification of information hiding properties is not linked
to a particular choice of either. This may not always be sufficient to ensure that the
property can be verified using the proof techniques of some algebra, since the specifica-
tion is in terms of a predicate on the observational equivalence relation�, which may
be difficult to verify directly. Nevertheless, it is a usefulstep towards bridging the gap
between logic-based specification of desired information hiding properties and process
algebra-based specification of system behavior.

4 Case Study: Anonymity and Privacy

Protection of personal information is one of the most important security goals of com-
munication protocols on public networks. This goal can often be characterized as a
set of secrecy properties that must be satisfied by the protocol. Properties that relate
to the secrecy of data (credit card numbers, medical records, etc.) have been exten-
sively researched in the literature on security protocol analysis. In this study, we are
concerned withanonymityand privacy, that is, the secrecy of the identities of com-
municating agents as well as the secrecy of relationships between agents, such as the
patient-doctor or sender-recipient relationship. Note that relationship secrecy is differ-
ent from the conventional notion of data secrecy. For example, if an observer can find
out that a particular person is a patient at an HIV clinic, this may violate privacy even if
the actual contents of communication remain secret.

In sections 4.1 and 4.2, we formalize systems of communicating agents as protocol
graphs. When modeling a specific system configuration, an edge in the protocol graph
represents the fact that a certain pair of agents are engagedin a conversation, while
abstracting away from the details of the actual data exchange (an edge is an abstraction
for any number of messages that may flow between the communicating agents as part
of the protocol). Protocol graphs can be used to model communication in any medium,
including pairwise channels, broadcast, connectionless communication,etc.

Each protocol graph can be fully defined as a collection of functions, enabling us to
apply the function view framework developed in section 2 andformally state information
hiding properties as opaquenesses of certain function views. In section 4.3, we present a
taxonomy of anonymity and privacy properties, followed by arelated discussion in sec-
tion 4.4. In section 4.5, we demonstrate how properties provided by existing anonymity
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systems can be expressed as opaquenesses of certain functions and, therefore, as predi-
cates over the observational equivalence classes of the system. In section 4.6, we show
how to define privacy as relationship anonymity, and in section 4.7 demonstrate that
anonymity and privacy (expressed as relationship anonymity) are independent. Finally,
in section 4.8 we show how the protocol graph model can be extended so that function
views can be applied to model richer anonymity properties such as pseudonymity.

Related work. Syverson and Stubblebine proposed a special-purpose epistemic logic
for reasoning about anonymity in [SS99]. In general, the main advantage of modal log-
ics of knowledge is that even fairly complex information hiding properties can be stated
directly as formulas in the logic. To verify whether a given system satisfies a partic-
ular anonymity property, it is necessary, however, to formalize the behavior of system
agents as knowledge-based programs [FHMV95], which is non-trivial and requires ex-
pert knowledge of the chosen logic.

On the other end of the spectrum, Schneider and Sidiroupoulos [SS96] give a defini-
tion of anonymity using CSP process calculus, a well-understood process specification
formalism. In general, using a process algebra greatly facilitates the task of formally
specifying the behavior of system agents. Unfortunately, formally stating information
hiding properties is quite difficult. The paper considers only one form of anonymity, and
it is not immediately clear how it can be extended to cover other forms of anonymity and
privacy such as untraceability or relationship anonymity.

Our modular approach allows us to develop formal definitionsof a wide range of
anonymity and privacy properties in a manner that does not depend on the choice of
a particular formalism, and is therefore complementary to both modal logics such as
that of [SS99] and process algebras such as that of [SS96]. Logical formulas describing
the desired information hiding properties can be easily characterized as opaquenesses of
certain function views, converted into predicates over observational equivalence classes,
and verified, when possible, using the proof techniques of the chosen process formalism
without the need to specify the system as a collection of knowledge-based programs. In
fact, even CSP can be used as such a formalism. Our technique combines the benefits
of the knowledge-based approach, namely, natural specification of information hiding
properties, with those of the process algebra-based approach, namely, natural specifica-
tion of system behavior. It is also sufficiently expressive to model many different flavors
of anonymity and privacy, as demonstrated by section 4.3.

4.1 Protocol graphs

Let A be a finite set ofagentsfa; b; : : : g. Given a setT of relationship types, let� : A�A!T be an assignment of types to ordered pairs of agents. For example, in
a protocol for mobile phone communications, we can letT = fsubsriber, roaming,unauthorisedg, and interpret�(ph149 ;GSMnet) = roaming as “mobile phoneph149
has roaming rights on networkGSMnet .” In general,� helps model protocols where
a participant’s behavior varies depending on the identity of the counterparty. A more
general framework might express a dynamically changing�, or even� that is an arbitrary
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program.
Given any two-party communication protocolP, let �P(a; b; �;m) be the term in

a suitable process calculus representing a single instanceof P between agentsa andb, parameterized by the relationship typing�, and withm a unique identifier marking
the instance. The process�P(a; b; �;m) is parameterized by� because, in general, the
protocol executed betweena andb will depend on the value of�(a; b). For example, ifb is the website of a medical clinic, andT = fpatient; nonpatientg, then�P(a; b; �;m)
will depend on whether or nota is a patient ofb.

Consider a concurrent execution of one or more protocol instances:P = �P(a1; b1; �;m1) j � � � j �P(ak; bk; �;mk) j SP
Each identifier or markermi is distinct since we make the standard assumption that
the attacker can observe the communication medium and distinguish different instances
of communication taking place, without necessarily knowing the identities of the com-
municating agents.SP represents the unobservable system process, if any (e.g., SP
may model the behavior of a secure anonymous remailer). We refer to each term�P(ai; bi; �;mi) as aconversationbetweena andb. Although unnatural from a linguis-
tic point of view, we speak ofa as thesenderandb as therecipientof the conversation,
since this makes our subsequent definitions of anonymity properties consistent with the
standard terminology (e.g. [PKS01]). Sendera and recipientb are treated asymmet-
rically because, in general, the protocol specification mayprescribe different behavior
depending on whether a participant is playing the sender or the recipient role. Note that,
in the process displayed above, we do not preclude the possibility that ai = aj or bi = bj
for somei 6= j, or ai = bj for somei andj. In other words, the same agent may be
involved in several conversations, either as sender or recipient.

Any observable communication based onP can be represented by a protocol graph,
defined below. First, we require two auxilary graph-theoretic definitions.

DEFINITION 7 A multigraph (V;E; s; t) consists of a setV of vertices, a setE of
edges, a source functions : E ! V , and a target functiont : E ! V .

There is an important distinction between multigraphs and classical graphs. In a classical
graph, consisting of a vertex setV and set of edgesE � V � V , each edgeimplicitly
determines its endpoints. By contrast, a multigraph is a setE of “abstract edges” and
a set ofV of vertices together with functionss; t : E ! V assigning a source and
target vertex to each edge. It is quite possible that two edges have the same source and
target. This, for example, will allow for the possibility oftwo concurrent conversations
between a clinic and a patientp, modeled by two edgese; e0 2 E each with sources(e) = s(e0) =  and targett(e) = t(e0) = p.

DEFINITION 8 A colored multigraph(G;K; k) is a multigraphG = (V;E; s; t) to-
gether with a setK (of colors) and an assignmentk : V � V ! K of colors to pairs of
vertices.
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Note that here we are coloringordered pairsof vertices, and not vertices or edges, as is
usual for colored graphs. This allows us to represent relationship types as colors (e.g.,
clinic-patient, network-subscriber). Simply coloring vertices would not be sufficient.
Suppose we have three vertices, a clinic, a clinic 0, and a personp. To express the
fact thatp is a patient of, but not a patient of0, we need to color ordered pairs:k(; p) = patient andk(0; p) = non-patient.

For convenience and brevity, we shall denote a colored multigraph(G;K; k), withG = (V;E; s; t), by the associated diagram of functions:E hs;ti�! V k�! K
Here, given functionsf : X ! Y and g : X ! Z, we usehf; gi to denote the
canonically associated function of typeX ! Y � Z (i.e., hf; gi(x) = hf(x); g(x)i 2Y � Z). Now we are ready for the main definition in this section.

DEFINITION 9 A protocol graphC = (sC ; rC ; �C) over M , A and T is a colored
multigraph with edge setM , vertex setA, and set of colorsT , as follows:M hsC ;rCi�! A�A �C�! T
We writeCM;A;T for the set of protocol graphs overM , A andT .

We refer to the edges ofM as abstract conversations, the vertices ofA as agents,
the colors ofT as relationship types, the source functionsC as thesenderfunction,
the targetrC as therecipient function, and�C as therelationship typing(or typing)
function. We shall writesrC : M ! A � A as shorthand for thesender-recipient
functionhsC ; rCi : M ! A�A.

The communication medium is by assumptionobservable, i.e., an observer can de-
tect that some communication has occurred (e.g., by overhearing an encrypted message
on a broadcast network), even though its origin and destination may be unobservable.
Therefore, each member ofM is literally an “abstract conversation,”i.e., a conversation
with unknown endpoints. A typical goal of the attacker is to find the mappingssC andrC from the conversations to their senders and recipients.

Depending on the protocol, the attacker may also be able to observe� def= �C Æ srC .
For example, in a medical clinic example, if the protocols for patients and nonpatients
are observably different, the attacker may able to determine whether a particular instance
of communication with the clinic originates from a patient or a nonpatient, without nec-
essarily knowing the originator’s identity.

Given a two-party communication protocolP, as described at the beginning of sec-
tion 4.1, every observable communicationP = �P(a1; b1; �;m1) j � � � j �P(ak; bk; �;mk) j SP
determines a protocol graphC(P ) in the obvious way, overM = fmi j i = 1; : : : ; k gA = f ai j i = 1; : : : ; k g [ f bi j i = 1; : : : ; k g
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andT the set of relationship types specified as part ofP: define sendersP (C)(mi) = ai,
recipientrP (C)(mi) = bi, and typing�P (C) = � (recall that�, as part of the data ofP,
is a priori a coloring of agent pairs). NaturallyP (C) is also a protocol graph overM ,A0 andT 0 for anyA0 � A andT 0 � T .

Conversely, given a protocol graphC overM , A andT , the corresponding protocol
instances can be reconstructed asP (C) = �P(sC(m1); rC(m1); �C) j � � � j �P(sC(mn); rC(mn); �C) j SP
wheremi 2M are the abstract conversations (edges).

We emphasize that an edge in the protocol graph represents anentireconversation
between two agents, not just a single message. The protocol graph model abstracts
away from the details of the underlying communication medium. The presence of an
edge in the graph with sendera and recipientb doesnot indicate that there is an es-
tablished pairwise channel between agentsa andb; it models only the fact thata andb are communicating,i.e., are engaged in an instance of the communication protocol.
The actual communication may be conducted (for example) viaa broadcast medium,
and may involve a sequence of messages, each of which may require generating new
nonces, computing encryptions,etc. So long as the actual message exchange is mod-
eled in a process calculus that gives rise to observational equivalence classes on system
configurations, the function view framework from section 2 is applicable.

4.2 Observational equivalence of protocol graphs

Observational equivalence on processes induces observational equivalence on protocol
graphs as follows. For protocol graphsC;C 0 overM , A andT (i.e., C;C 0 2 CM;A;T ),
definegraph equivalenceC P� C 0 � P (C) �Anatv(C;C0) P (C 0)
whereatv(C;C 0) is the set of agents who communicated inC orC 0:atv(C;C 0) = sC(M) [ rC(M) [ sC0(M) [ rC0(M)
The intuition behind the restrictionA n atv(C;C 0) is that an agent can always observe
the difference between two instances of the protocol if, forexample, he communicated in
one instance but not the other. The instances (modeled as protocol graphs) are equivalent
if any coalition of agentsnot involved in conversations in either instance cannot observe
any difference.

4.3 Taxonomy of atomic anonymity and privacy properties

Given our abstract representation of observable communication as a protocol graphC
overM , A andT , i.e., M srC�! A�A �C�! T
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we systematically obtain a space of anonymity and privacy properties by considering
opaqueness of the following attributes (families of functions indexed byC):s : M ! Ar : M ! Asr : M ! A�A� : A�A! T�a : A! T�a Æ s : M ! T�a Æ r : M ! T� Æ sr : M ! T
Here�a denotes the curried typing function given by�a(b) = �(a; b). For each function,
we obtain a security property corresponding to each of the basic forms of opaqueness:� k-value opaqueness;� absolute value opaqueness;� Z-value opaqueness (for subsetsZ arising canonically in the function range);� image opaqueness;� kernel opaqueness.

Sender functions : M ! A
1. k-value opaqueness of sender functions : M ! A. Attacker can only discern

the originator of any given conversation up to a lineup of size k. This property
is sometimes referred to as (sender)k-anonymity or lineup anonymity [SS98,
Mal01].

2. absolute value opaqueness of sender functions : M ! A. Attacker cannot in-
fer the identities of the senders since every agent is a plausible sender for every
observed conversation. This property corresponds toabsolute sender anonymity,
and is implemented,e.g., by persistent pseudonyms such as those provided by
Web-based email. While messages sent from a Web-based emailaccount can be
traced to that account, the real identity of the person behind the account remains
absolutely anonymous since every person in the world with Internet access is in
the lineup of potential senders. Chaum’s DC-nets [Cha85, Cha88] can also pro-
vide absolute sender anonymity but only if every potential sender in the world uses
the DC-net for communication; otherwise, the attacker can eliminate agents not
participating in the protocol from the lineup, and the strongest property provided
is type-anonymity(see below).

The attacker is still permitted to discern other information such as whether two
conversations originated from the same (unknown) sender. This has implications
for forward security. If persistent pseudonyms have been used to ensure absolute
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sender anonymity, and the mapping from the pseudonym to the real identity is
compromised even for a single conversation, the attacker can automatically infer
the identity of the sender for all other conversations originating from the same
pseudonym. In section 4.8, we describe an extension to the protocol graph model
of section 4.1 that allows direct specification of unlinkability of pseudonyms and
real identities.

3. (�a)�1(t)-value opaqueness of sender functions : M ! A. The attacker may
learn the type of the sender with respect to the recipient, but not the sender’s iden-
tity. We will call this flavor of anonymitytype-anonymity. For example, if the
communication tower of a mobile phone network executes observably different
protocols with subscribers and roaming users, the attackermay learn that a partic-
ular phone is a subscriber of the network without learning the phone’s identity.

Type-anonymity effectively reduces the lineup of plausible senders to an entire
type. Therefore, the system is vulnerable if the type is small. For example, if
there are only two people in the world using a particular secure email protocol,
then observing an instance of the protocol is sufficient to reduce the sender lineup
to 2.

All anonymity systems that involve routing messages through specialized servers
such as those based on Chaum’s MIX-nets [Cha81, Ano], onion routing [SGR97],
Crowds [RR98],etc.provide type-anonymity, since they require users to engage
in an observably distinct communication protocol. This is also true for approaches
based on DC-nets [Cha85, Cha88].

4. (im s)-value opaqueness of sender functions : M ! A. Session-level sender
anonymity. The attacker may know the entire set of senders, but is unable to
link conversations to the identities of the senders. This flavor of anonymity is
provided,e.g., by online chatrooms. An observer may be able to see the list of
all users logged on at the time a particular message appeared, but cannot find out
who actually posted the message.

Since in this case the attacker is able to observe whether a particular agent is
engaged in communication or not, this form of anonymity reduces the lineup to the
set of session participants and is thus vulnerable if the setis small. For example,
if only one person was logged on at the time a message appeared, the attacker can
infer the identity of the sender.

5. image opaqueness of sender functions : M ! A. This flavor of anonymity
is required (but is not sufficient) forunobservability[PW87, PPW91, PKS01].
For image opaqueness to hold, there should be no agent whom the attacker can
pinpoint as one of the senders. This implies that for every configuration in which
some agent sent something, even if the contents and the destination of the message
are protected, there should be another, observationally indistinguishable configu-
ration in which the same agent didnot send anything. In other words, the act
of sending a message should be unobservable: an observer should not be able to
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determine whether a particular agent is engaged in an anonymizing protocol or
not.

Note that even MIX-nets with dummy traffic are insufficient toguarantee this
property, unless users access MIX-nets via secure “nymservers” [GWB97] that
create online identities for them which are unlinkable to their real identities.

6. kernel opaqueness of sender functions : M ! A. This type of anonymity is re-
quired (but not sufficient) foruntraceability [SMA95]. An observer should not be
able to determine whether two conversations have the same sender. This prevents
the attacker from linking multiple instances of communication as originating from
the same source and/or tracing an agent through multiple conversations. Forward
security requires kernel opaqueness so that if one conversation is compromised,
others are not affected.

To implement this form of anonymity, it is necessary to create a new identity each
time a user engages in a conversation on an observable network link.

Recipient function r : M ! A
Recipient anonymity properties are symmetric to sender properties enumerated above.

Sender-recipient functionsr : M ! A�A
1. k-value opaqueness of sender-recipient functionsr : M ! A�A. Fork = 2, this

form of anonymity means that the attacker may be able to determine the sender
or the recipient, but not both at the same time. Fork > 2, the lineup of plausible
sender-recipient pairs should contain at leastk candidates. No system that we
are aware of provides this form of anonymity alone. There aresystems,e.g.,
Mixmaster-type remailers [Cot96], that provide stronger anonymity guarantees,
which implyk-value opaqueness forsr, among other properties.

2. absolute value opaqueness of sender-recipient functionsr : M ! A�A. Equiv-
alent to absolute sender and absolute recipient anonymity.

3. ��1(t)-value opaqueness of sender-recipient functionsr : M ! A � A. It is
possible to observe the type of communication (i.e., relationship between com-
municating agents), but not their identities. For example,the attacker may be able
to determine that a particular email is sent by some clinic tosome patient without
being able to tell who the clinic or the patient is. This property is dual to rela-
tionship anonymity, in which the attacker is permitted to learn the identities of
communicating agents but not their relationship.

4. (im sr)-value opaqueness of sender-recipient functionsr : M ! A�A. Session-
level relationship anonymity. This is provided by MIX-netswithout dummy traf-
fic. The attacker can observe whether communication occurred, and who par-
ticipated in it, but cannot link senders with recipients. For each message on an
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incoming link, an observer can determine the sender, and foreach outgoing mes-
sage, the recipient, but since messages are re-encrypted bythe MIX, an observer
cannot determineboth the sender and the recipient for any message.

5. image opaqueness of sender-recipient functionsr : M ! A � A. Universal
relationship anonymity. Any observation of the system by the attacker should be
consistent with any given pair of agents communicating or not communicating.
This form of anonymity can be implemented by MIX-nets with constant dummy
traffic and pseudonyms for all participants.

6. kernel opaqueness of sender-recipient functionsr : M ! A�A. It should not be
possible to observe whether two conversations followed thesame path (i.e., went
from the same sender to the same recipient) even if the identities of the sender and
recipient are unknown. Implementation requires randomly generated identities.

Curried typing function �a : A! T
Fixing a particular agenta, opaqueness properties of the curried typing function�a :A! T model hiding information about relationships betweena and other agents.

1. k-value opaqueness of curried typing function�a : A ! T . The lineup of possi-
ble relationships has at leastk candidates. For example, letT = fDanish, Duth,Spanish,Italiang, with �(a; b) = l denoting the fact that agenta talks to agentb in
languagel 2 T . Use of a primitive cipher may result in the attacker being able
to discern whethera talks tob in a Germanic language (Danish or Dutch), or in a
Romance language (Spanish or Italian). Thus�a is 2-value opaque.

2. absolute value opaqueness of curried typing function�a : A ! T . A form of
privacy: observations of the system are consistent with anypossible relationship
betweena and any other agent.

3. (im �a)-value opaqueness of curried typing function�a : A ! T . The lineup
of possible relationships can be reduced to those that manifested themselves in
actual communication. Consider an online chatroom where messages are posted
in different languages. An observer may be able to tell that there are posters who
communicate in French and German, but not who they are. An observer can also
determine that there are no posters communicating in Russian.

4. image opaqueness of curried typing function�a : A ! T . For any type of
relationship, it should not be possible to determine whether there exist any agents
that have this relationship witha. For example, ifa is a clinic treating various
illnesses, it should not be possible to infer whether it has patients suffering from
a particular illness.

5. kernel opaqueness of curried typing function�a : A ! T . Inability to deter-
mine whether two agents have the same relationship witha. Required for forward
security.
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Typing function � : A�A! T
These properties are similar to those for�a. The main difference is that they are not
defined with respect to a particular agent, but range over allrelationships existing in the
world.

1. k-value opaqueness of typing function� : A�A! T . Any observed relationship
between agents can plausibly belong to any ofk types.

2. absolute value opaqueness of typing function� : A�A! T . A form of privacy:
an observer cannot determine the relationship between any two agents.

3. (im �)-value opaqueness of typing function� : A � A ! T . An observer can
tell which types are empty (e.g., there are no smallpox patients in the world) and
which are not (e.g., there exist malaria patients), but no more. For example, even
if he observes an agent communicating with a clinic, he cannot tell whether the
agent is a patient or not, or what he is being treated for.

4. image opaqueness of typing function� : A�A! T . It is impossible to determine
which relationships exist (i.e., the type is non-empty) and which do not.

5. kernel opaqueness of typing function� : A � A ! T . Inability to determine
that two pairs of agents have the same relationship. For instance, this prevents
the attacker from learning that two pairs of (unknown) agents are communicating
in the same (unknown) cipher. If the cipher is broken for one pair, it will not be
automatically broken for the other.

Composite functions� Æ sr; �a Æ s; �a Æ r : M ! T
Atomic opaqueness properties of the three composites� Æ sr, �a Æ s, and�a Æ r can
be defined in a similar manner. We mention explicitly only value opaqueness of the
composite� = � Æ sr : M ! T , as it is important for our analysis of the distinction
between anonymity and privacy (see section 4.7). Each form of value opaqueness of� asserts the observer’s inability to discern the type of the conversations for which he
knows the sender and the recipient,or inability to determine the sender and the recipient
of the conversations for which he knows the type. For example, privacy (defined as
relationship anonymity) is guaranteed even if the attackerintercepts a message from a
known agent to a known clinic as long as he cannot determine whether the message is
from a patient or a non-patient.

One of the more subtle distinctions in the above taxonomy is that between (im s)-value
opaqueness and image opaqueness of sender functions. This distinction models the dif-
ference between session-level and universal anonymity. (The latter is sometimes called
unobservability[PKS01]). With session-level anonymity, an observer can determine the
identities of the agents who are actually engaged in conversations, but not link these
identities to specific conversations. This is an “Agatha Christie” form of anonymity:
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there is a finite set of suspects who were in the house at the time of the murder. Univer-
sal anonymity (unobservability) is a stronger property. Anobserver cannot determine
whether or not any given agent was engaged in communication.This is a “Georges
Simenon” form of anonymity: a body is found, and any of the several million city resi-
dents may or may not have been involved.

4.4 Hiding identities vs. hiding relationships

In section 4.3, we gave a taxonomy of atomic anonymity and privacy properties. Each
one of them deals with what is sometimes calledlinkability [PKS01] of various system
elements such as conversations and their senders and recipients. Opaqueness of the
corresponding function models the attacker’s inability tolink the items, that is, to obtain
knowledge about their relationship. In section 4.5, we showhow properties provided by
many proposed anonymity systems can be characterized as oneof the atomic properties
from section 4.3 or a combination thereof. Following the methodology of section 3.6,
each combination of opaqueness-based properties can be converted into a compound
logical predicate over the observational equivalence classes of the underlying calculus,
which may then be amenable to verification.

Properties defined in section 4.3 fall naturally into two general classes: those deal-
ing with the unlinkability of conversations and agents (e.g., “did this phone make this
call?”), and those dealing with the unlinkability of agents(e.g., “is this phone a sub-
scriber on this network?”). Roughly, the former can be interpreted asanonymityprop-
erties since they are concerned with hiding identities of agents who performed certain
actions. The latter can be interpreted asprivacyproperties since they are concerned with
hiding relationships between agents. Our formalization provides a crisp mathematical
boundary between the two classes of properties. In section 4.7 below, we discuss this
distinction in more detail, and argue that, contrary to popular belief, anonymity is neither
necessary, nor sufficient for privacy. It is possible for a communication protocol to guar-
antee privacy of relationships without hiding identities,and vice versa: some anonymous
protocols may be exploited to learn protected information about relationships between
agents.

While the protocol graphs defined in section 4.1 are sufficient to reason about many
flavors of anonymity and privacy, some forms of anonymity require a richer data struc-
ture in order to model them correctly. In section 4.8, we demonstrate how pseudonymity
can be modeled by extending protocol graphs with mappings from pseudonyms to real
identities. The function view framework and opaqueness-based definitions of informa-
tion hiding properties are still applicable, but the functions to which they are applied
must be chosen differently.

4.5 Existing systems

Anonymity is an active area of computer security research, and dozens of protocols
and systems have been proposed to implement various notionsof anonymity. Unfortu-
nately, there is no universally accepted terminology in thefield, and different authors

25



Property Informal definition Opaqueness definition

Sender
untraceability

Attacker may not know anything
about senders (e.g., MIX-net
[Cha81, Dai95] with nymservers
and dummy traffic, [SMA95])

s is absolutely value opaque
and kernel opaque

Absolute sender
anonymity

Attacker may not know who the
senders are but may know whether
2 conversations originate from the
same (unknown) agent (e.g., Web-
based email)

s is absolutely value opaque

Senderk-anonymity
Attacker may only know senders up
to a lineup of sizek (e.g., [SS98,
Mal01])

s is k-value opaque

Recipient properties are obtained from the above by substituting r for s
Blender anonymity Attacker may know which agents

sent and received communications,
but any sender (recipient) is a plausi-
ble source (destination) for any con-
versation (e.g., MIX-nets [Cha81,
SGR97] without dummy traffic)

s is im s-value opaque;r is im r-value opaque

Conversation-agent
2-unlinkability

Attacker may not know both sender
and recipient for any conversation

sr is 2-value opaque

Privacy
(relationship
anonymity)

Attacker may not determine the rela-
tionship between any 2 agents (e.g.,
[SMA95, Aba02])

� is 2-value opaque

Table 1: Definitions of anonymity and privacy based on opaqueness.
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invest terms such asunlinkability, unobservability, privacy, etc.with different meaning.
Our descriptions are not intended to be a definitive dictionary of anonymity terms (cf.
[PKS01]), but rather an intuitive explanation of how they are interpreted for the pur-
poses of our case study. Since our framework is non-probabilistic, we do not attempt to
model probabilistic notions of anonymity and/or quantify the level of identity protection
provided by systems such as Crowds [RR98] and Freenet [CSWH00]. Nonetheless, as
remarked in section 2.5, our technique is still applicable if the chosen process specifica-
tion formalism provides a suitable observational equivalence relation that abstracts away
from probabilities.

We give brief informal descriptions of several common anonymity properties with
references to relevant protocols in Table 1. We also show howthey correspond to atomic
properties (or combinations thereof) from the taxonomy of section 4.3, by defining each
property formally in terms of opaqueness of the underlying system attributes. Since the

equivalence relation
P� on protocol graphs partitionsCM;A;T into equivalence classes,

we can apply Proposition 3 and derive the predicates that theclasses must satisfy in
order for the protocol to satisfy the corresponding property. The predicates are listed in
Table 2. Figure 2 shows implications between the various anonymity properties. A solid
arrow denotes implication, a dashed arrow conjunction.

A common design is based on Chaum’s MIX-nets [Cha81] and involves a network
of anonymizing servers [Dai95, Cot96, SGR97]. This approach provides identity pro-
tection in a situation where the “Big Brother” attacker may observe traffic on the wires
connecting everyone’s computer to the network, but all communications are encrypted
and travel through a secure server(s) which blends them together and distributes to their
respective destinations in a manner which prevents the attacker from linking the origin
and destination of any given message. Without constant dummy traffic to make all con-
versations unobservable, MIX-nets only provide blender anonymity: the attacker is able
to observe all senders and all recipients, but cannot determine both the sender and the
recipient for any message.

Note that even if the mapping from conversations to sender-recipient pairs is secure,
i.e., sr is opaque, the attacker may still be able to infer who is conversing with whom.
Consider, for example, a protocol employing a central anonymizing blender and the
following protocol graph: a -mb d-n��������p q

If the attacker is permitted to observe the senders and the recipients, he can infer
that b is conversing with by observing thatb is involved in 2 conversations, whiled
is involved in only 1 conversation. Therefore, one ofb’s conversations must be with.
Even though the attacker’s ability to obtain this knowledgecould be considered an attack
on anonymity, it isnot a violation of blender anonymity. For any given conversation,
the attacker cannot determine the sender or the recipient. He knows thateitherp, or q is
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Sender k-Anonymity

Sender 2-Anonymity

Recipient k-Anonymity

Recipient 2-Anonymity

Sender Untraceability Recipient Untraceability

&

Absolute Sender Anonymity Absolute Recipient Anonymity

Conversation-Agent 2-Unlinkability

Blender Anonymity

Figure 2: Hierarchy of anonymity properties

an instance ofb conversing with, but if communication is routed through a blender, he
cannot know which one.

This illustrates the importance of posing the correct anonymity requirement. To
hide the fact that two agents are communicating, the needed property is relationship
anonymity, where relationship can be modeled by�(x; y) = true iff x andy are com-
municating. This is a stronger property than simple blenderanonymity. In particular,
it requires that an agent’s participation in communicationbe unobservable, in order to
prevent the attacker from counting conversations with the MIX on each link. Typically,
this is implemented by adding dummy traffic to the system. Even in this case, unless
the MIX is accessed through a nymserver, the strongest property that can be guaranteed
is type-anonymity, where the type is the set of all people using the anonymous commu-
nication software, since the attacker can observe which agents are running the software
(e.g., by observing traffic to the MIX from their computers, without knowing whether
the traffic is dummy or real).

4.6 Privacy as relationship anonymity

Many definitions of privacy, often contradictory, can be found in the literature [CB95,
SMA95, STRL00]. The colloquial meaning of privacy concernseither the secrecy of
personal data (which is beyond the scope of this research), or the secrecy of relation-
ships between agents. In the context of secure communication systems, the latter is of
paramount importance. For example, it should not be possible for an observer to infer
that a particular person is patient of a certain medical clinic, that the user of a particular
mobile phone has an account with a certain bank,etc.

In the protocol graph framework described in section 4.1, relations between agents
are formalized as a type assignment� : A � A ! T . While anonymity properties
have to do with hiding information aboutsr (i.e., protecting identities of the endpoints
of conversations), privacy has to do with hiding information about�. In Table 1, privacy
is formally defined as the requirement that� is 2-value opaque. The corresponding
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Absolute sender anonymity
8C 2 CM;A;T :8m 2M:8a 2 A: 9C 0 2 CM;A;T :C 0 P� C ^ sC0(m) = a

Sender untraceability
Absolute sender anonymitŷ8C 2 CM;A;T :8m 2M:8n 2M: sC(n) = sC(m):9C 0 2 CM;A;T :C 0 P� C ^ sC0(m) 6= sC0(n)

Senderk-anonymity
8C1 2 CM;A;T :8m 2M: 9C2; : : : ; Ck 2 CM;A;T :Ci P� Cj ^ [i 6= j ) sCi(m) 6= sCj (m)℄

Recipient properties are obtained from the above by substituting r for s
Blender anonymity

8C 2 CM;A;T :8m 2M:[8a 2 im sC : 9C 0 2 CM;A;T :C 0 P� C ^ sC0(m) = a℄ ^[8a 2 im rC : 9C 0 2 CM;A;T :C 0 P� C ^ rC0(m) = a℄
Conversation-agent
2-unlinkability

8C 2 CM;A;T :8m 2M: 9C 0 2 CM;A;T :C 0 P� C ^ srC0(m) 6= srC(m)
Privacy

8C 2 CM;A;T :8m 2M: 9C 0 2 CM;A;T :C 0 P� C ^ �C0(m) 6= �C(m)
Table 2: Predicates on equivalence classes for anonymity and privacy.

predicate on observational equivalence is listed in Table 2.
In some situations,�(a; b) may influence which protocol is executed betweena andb when they communicate on an observable network. Opaquenessof � doesnot require

that the protocols be observationally equivalent for all values of�(a; b). Consider the
following protocol between an agentA and a medical clinic websiteC (pubk(X) is
agentX ’s public key,NX is a fresh random number generated byX):A! C : f\hi"; A;NAgpubk(C)C ! A (patient): f\ok"; C;NCgpubk(A)C ! A (nonpatient): N 0CA! C (patient): fNCgpubk(C)
In this protocol, the attacker can tell the difference between the clinic-patient and clinic-
nonpatient protocols (the former has 3 messages, the latter2). In the language of sec-
tion 4.3, the property provided by the protocol is(im � lini)-value opaqueness.

The attacker cannot, however, determine the identity of theperson communicating
with the clinic, even though he knows whether this unknown person is a patient or not.
There is, therefore, no agenta—other than the attacker himself and his allies—for which
the attacker can determine the value of�(a; lini). The protocol preserves relationship
anonymity, and thus privacy.

4.7 Independence of anonymity and privacy

Contrary to the popular idea that anonymity is necessary forprivacy [GWB97, Hug93],
our formalization demonstrates that privacy of communications requireseither hidingsr : M ! A � A (i.e., anonymity), or hiding � = � Æ sr. If neither is hidden,
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then privacy fails (the converse is not true: even when bothsr and� are hidden, re-
lationship anonymity may still fail). For example, if the attacker can establish thatsr(m) = ha; linii for some conversationm and agenta (i.e., the protocol is not
anonymous in any sense) and�(m) = patient (i.e., the protocols executed by the clinic
with patients and nonpatients are observably different), then the attacker can infer that�(a; lini) = patient, thus violatinga’s privacy.

For some simple relationships anonymity may be sufficient toguarantee privacy.
For example, if�(a; b) = true whena andb are conversing,i.e., 9m 2 M s.t.sr(m) =ha; bi, and false otherwise, then sender anonymity will ensure relationshipanonymity
for a. In general, however, anonymity does not guarantee privacyeven if� is opaque,
nor does privacy require anonymity. Consider two artificialprotocols between agentA
and clinicC (KA is a fresh key generated byA):

Protocol 1A! C : f\hi"; Agpubk(C)C ! A (patient): f\ok"; N 0Cgpubk(A)C ! A (nonpatient): NC Protocol 2f\hi"; A;KAgpubk(C)f\ok"gKANC
If the public-key encryption function happens to be deterministic, Protocol 1 provides
relationship anonymity without sender or recipient anonymity. The attacker can pre-
compute a table with all possible values of theA ! C message using all agent names
he knows. Whenever he observes a message on the network, he can infer who the
sender is by looking up the message in the table. Still, thereis no way for the attacker to
determine whetherA (or any other agent except the attacker and his allies) is a patient
of C. Note that� = � Æ sr is opaque in Protocol 1.

Protocol 2 provides absolute sender anonymity (untraceability, in fact) and keeps� opaque, but does not guarantee privacy. The attacker cannotdetermine whoA is by
observing the protocol, nor can he figure out whether the unknown sender is a patient
or not. At the same time, due to the lack of authentication, the attacker can exploit
the protocol to find out whether any given agentA0 is a patient by creating a messagef\hi"; A0;Kegpubk(C), whereKe is known to the attacker, and sending it toC pretend-
ing to beA0. Since the attacker can tell the difference betweenf\ok"gKe andNC , he
can infer fromC ’s response whetherA0 is a patient. The attack on Protocol 2 is similar
to the attack described by Abadi in the context of private authentication [Aba02].

4.8 Pseudonymity

We have already remarked in section 2.5 how the notion of function view can be ex-
tended to express a larger class of information hiding properties. For example, one
could add a fourth component to the function knowledge triple to record information
about the cardinality of inverse images of points in the range. Correspondingly, one
would obtain an additional form of opaqueness.

Another form of extension arises at the level of the data structure over which we
express our forms of opaqueness. In the case study we used a specific protocol graph
with three functions (sender, recipient, and type) to systematically generate a space of
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anonymity and privacy properties. By design, this space included many of the properties
found in the literature. The underlying graph, however, limits the set of properties that
can be arrived at in this manner.

Other security situations may demand a different protocol graph. For example, con-
siderpseudonymity[ISO99, PKS01]. In a pseudonymity system, agents employ inter-
mediate identities orpseudonymsfrom which they send and receive communications.
Each agent may own multiple pseudonyms,e.g., numerous free Web-based email ad-
dresses. This richer setting admits a richer class of anonymity and privacy properties.
Following the same general methodology as in section 4.3, wecan explore the class sys-
tematically using opaqueness of the functions in the data structure associated naturally
with this setting: M srC! P � P �C! TP !C! A
whereM , A and T are as before (conversations, agents, and types),P is a set of
pseudonyms,srC assigns sender-recipient pairs of pseudonyms to conversations, �C is
a typing, and!C determines ownership of pseudonyms. Now in order to systematically
generate a space of anonymity and privacy properties, one has a richer basis of func-
tions than in our original case study. In addition to the familiar s, r, sr and�, one has! : P ! A, ! Æ s : M ! A, ! : M ! A, and(!�!)Æ sr : M ! A�A. A systematic
exploration of the various forms of opaqueness of these functions, in the manner of sec-
tion 4.3, yields an array of formal anonymity and privacy properties for pseudonymity
systems.

The pseudonymity example complements our original case study by emphasizing
our general methodology. For any security scenario, an appropriate choice of the un-
derlying abstract data structure (above, protocol graphs)automatically yields a range
of atomic information hiding properties as opaquenesses ofthe functions (attributes)
comprising the data structure.

5 Conclusion

We developed a modular framework for formalizing properties of computer systems in
which an observer has only partial information about systembehavior. Figure 1 summa-
rizes the difference between our approach and conventionalapproaches based on process
algebra or epistemic logic. Our techniques combine the benefits of the knowledge-based
approach, namely, natural specification of information hiding properties, with those of
the process algebra-based approach, namely, natural specification of system behavior.
Furthermore, our framework is parametric, leaving open thechoice of underlying pro-
cess algebra and logic.

We proposed the notion of afunction view, a succinct mathematical abstraction of
partial knowledge of a function. Remarkably, the three attributes of a function view —
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graph, kernel, and image — suffice to model many forms of partial knowledge an ob-
server may have about a function of interest. We demonstrated how any formalism for
system specification that provides an equivalence relationon system configurations in-
duces function views, and how information hiding properties could be stated naturally
in terms ofopaquenessof these views.

In the case study of section 4 we employed our framework to systematically cir-
cumscribe, formalize and classify a range of anonymity and privacy properties. One
important result of this systematic exploration is a crisp mathematical distinction be-
tween anonymity and privacy of communications (the latter interpreted as relationship
anonymity), which were shown to be independent (section 4.7) in a rigorous technical
sense.

The independence of anonymity and privacy has significant implications for pub-
lic policy in the area of personal information protection onthe Internet. It shows that
care must be exercised when deciding on the appropriate mechanism for privacy. In
particular, we conclude that anonymity is neither necessary, nor sufficient to ensure that
personal information about one’s relationships with otherpeople and organizations is
protected in online communications.
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