
Fast Dictionary Attacks on Passwords Using Time-Space
Tradeoff

Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin

{arvindn,shmat}@cs.utexas.edu

ABSTRACT
Human-memorable passwords are a mainstay of computer
security. To decrease vulnerability of passwords to brute-
force dictionary attacks, many organizations enforce com-
plicated password-creation rules and require that passwords
include numerals and special characters. We demonstrate
that as long as passwords remain human-memorable, they
are vulnerable to “smart-dictionary” attacks even when the
space of potential passwords is large.

Our first insight is that the distribution of letters in easy-
to-remember passwords is likely to be similar to the distribu-
tion of letters in the users’ native language. Using standard
Markov modeling techniques from natural language process-
ing, this can be used to dramatically reduce the size of the
password space to be searched. Our second contribution is
an algorithm for efficient enumeration of the remaining pass-
word space. This allows application of time-space tradeoff
techniques, limiting memory accesses to a relatively small
table of “partial dictionary” sizes and enabling a very fast
dictionary attack.

We evaluated our method on a database of real-world
user password hashes. Our algorithm successfully recovered
67.6% of the passwords using a 2×109 search space. This is
a much higher percentage than Oechslin’s “rainbow” attack,
which is the fastest currently known technique for searching
large keyspaces. These results call into question viability of
human-memorable character-sequence passwords as an au-
thentication mechanism.

Categories and Subject Descriptors:
K.6.5[Security and Protection]: Authentication;
D.4.6[Security and Protection]: Authentication;
E.3[Data Encryption]: Code breaking

General Terms: Security

Keywords: Passwords, Dictionary Attack, Time-Space
Tradeoff, Cryptanalysis, Markov Models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’05, November 7–11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0011 ...$5.00.

1. INTRODUCTION
It is often said that humans are always the weakest link

in the security chain. Social engineering is more frequently
successful in penetrating a system than buffer overflow at-
tacks. Similarly, cracking a password is rarely accomplished
by breaking the cipher used and more often by exploiting
the circumstance that it was generated by a human.

The problem of guessing human-generated passwords has
been studied for a long time. Morris and Thompson [27]
in their 1979 paper on UNIX password security describe
brute-force and dictionary attacks that are all too familiar to
the modern reader. The former is based on the observation
that short strings are easier for humans to remember, and
the latter on the fact that meaningful words are far more
memorable than random character sequences.

The state of the art in dictionary attacks has not ad-
vanced much since then. Current password crackers such
as John the Ripper [29] use essentially the same two tech-
niques, plus a few rules to turn each dictionary word into a
set of related words (such as suffixing a digit). The brute-
force attack can be made somewhat more efficient by us-
ing a time-space tradeoff such as Oechslin’s “rainbow” tech-
nique [28, 1], which employs precomputation to speed up
the process of cracking individual passwords. A common
defense is the use of password-creation rules, called composi-
tion rules, that require passwords to be drawn from certain
regular languages, and require passwords to include digits
and non-alphanumeric characters. The goal is to increase
the size of the search space, making naive dictionary attacks
infeasible.

We demonstrate that fast, devastating “smart dictionary
attacks” can be staged even on large password spaces that
are not vulnerable to brute-force or straightforward dictio-
nary attacks. Our insight is that passwords, even if long
and sprinkled with extra characters, must still be human-
memorable. Human limitations imply that the entropy of
passwords is rather small: an NIST document [7] estimates
that user-generated 8-character passwords have between 18
and 30 bits of randomness, even when English dictionary
words are filtered out and composition rules are enforced.
In a very general sense, our attacks work by rapidly enu-
merating candidate passwords that can be produced with
a small amount of randomness. For instance, the string
asasasasasasasasasasasasasasasas, at 32 characters, is
far beyond the reach of brute-force attacks using current
hardware. Intuitively, however, this string is not very ran-
dom, and should be easily guessable.

Formally, this can be modeled by saying that the Kol-

mogorov complexity [23] of this string is low. The Kol-
mogorov complexity (a.k.a. K-complexity) of a string is de-
fined as the length of the shortest Turing Machine that
outputs it and then halts. The sequence of instructions
repeat print "as" 16 times in any reasonable encoding
scheme should have a complexity of around 30 bits, which
is in keeping with our intuition that the resulting string is
easily guessable.

An obvious approach would be to try to enumerate all
strings which have a K-complexity smaller than some thresh-
old, and use the result as the dictionary. There are two prob-
lems with this. First, K-complexity is uncomputable. Sec-
ond, human perception of randomness in different from com-
putational randomness. Subjective randomness has been
studied by cognitive scientists Griffiths and Tenenbaum [15,
16], who argue that we need a different way to measure the
perceived information content of a string. What is needed is
a rigorous multidisciplinary study of human password gen-
eration processes, as well as the algorithms for very efficient
enumeration of the resulting password spaces. The existence
of such algorithms would be a strong indicator of vulnera-
bility to fast dictionary attacks.

We take the first steps in both directions. We posit that
phonetic similarity with words in the user’s native language
is a major contributor to memorability. We capture this
property using “Markovian filters” based on Markov mod-
els, which is a standard technique in natural language pro-
cessing [32]. Our other observation is that the way in which
humans use non-alphabetic characters in passwords can be
modeled by finite automata, which can be considered a gen-
eralization of the “rules” used by John the Ripper and other
password cracking tools.

Secondly, we present an algorithm to efficiently enumer-
ate all strings of a given length that satisfy a Markovian
filter, and an algorithm to efficiently enumerate all strings
of a given length accepted by a deterministic finite automa-
ton. More precisely, we give algorithms that, given an index
i, generate the ith string satisfying each of these proper-
ties (without searching through the entire space!). Next,
we combine these two algorithms into a hybrid algorithm
that produces the ith string satisfying both the Markovian
filter and the regular language. Finally, we show how to use
this algorithm to implement a time-space tradeoff over this
search space.

The best-known brute-force attack technique using the
time-space tradeoff was proposed by Oechslin [28]. It uses
a special data structure called the “rainbow table.” Our
hybrid attack has the same precomputation time, storage
requirement and mean cryptanalysis time as the rainbow
attack over a search space of the same size. Yet, compared
to the vanilla rainbow attack over the entire fixed-length
keyspace (e.g., “all alphanumeric strings of length 8”), our
attack has a significantly higher coverage since our search
space is chosen wisely and consists only of “memorable”
strings that have low subjective randomness.

Of course, coverage of a dictionary attack can only be
measured by applying it to “real-world” user passwords.
Results obtained on artifically generated passwords would
not be very convincing, since there is no guarantee that the
generation algorithm produces passwords that are similar to
those users choose for themselves. We evaluated our tech-
niques on a database of 150 real user passwords provided to
us by Passware. Our hybrid attack achieved 67.6% coverage

(i.e., more than two thirds of the passwords were success-
fully recovered), using a search space of size 2×109. Detailed
results are presented in Section 5. The filters we used can
be found in Appendix A. By contrast, Oechslin’s attack
achieves coverage of only 27.5%1.

We believe that with a larger search space (around 3 ×
1012, which is what the passcracking.com implementation
uses), and more comprehensive regular expressions, coverage
of up to 90% can be achieved. A more rigorous and larger
experiment with the rainbowcrack [33] implementation is
in progress.

Defenses against dictionary attacks. Salting of pass-
word hashes defeats offline dictionary attacks based on pre-
computation, and thus foils our hybrid attack.

Using an inefficient cipher slows the attacker down by a
constant factor, and this is in fact done in the UNIX crypt()

implementation. This technique, however, can only yield a
limited benefit because of the range of platforms that the
client may be running. Javascript implementations in some
browsers, for example, are extremely slow.

Feldmeier and Karn [10] surveyed methods to improve
password security and concluded that the only technique
offering a substantial long term improvement is for users to
increase the entropy of the passwords they generate. As we
show, achieving this is far harder than previously supposed.

There is also a large body of work, subsequent to the
above survey, on password-authenticated cryptographic pro-
tocols and session key generation from human-memorable
passwords [3, 24, 2, 6, 19, 14, 13]. The objective of these
protocols is to defeat offline dictionary attacks on protocols
where participants share a low-entropy secret.

One drawback of password-authenticated key exchange
(PAKE) protocols is that they typically rely on unrealistic
assumptions such as multiple noncooperating servers or both
parties storing the password in plaintext (one exception is
the PAK-X protocol of [6]). Storing client passwords on the
server is very dangerous in practice, yet even for “provably
secure” PAKE protocols, security proofs implicitly assume
that the server cannot be compromised.

Furthermore, our attacks apply in a limited sense even
to PAKE protocols protocols because our Markovian filters
also make online dictionary attacks much faster. Thus, our
attacks call into our question whether it is ever meaningful
for humans to generate their own character-sequence pass-
words. The situation can only become worse with time be-
cause hardware power grows exponentially while human in-
formation processing capacity stays constant [25]. Consid-
ering that there is a fundamental conflict between memora-
bility and high subjective randomness, our work could have
implications for the viability of passwords as an authentica-
tion mechanism in the long run.

Organization of the paper. In Section 2, we explain fil-
tering based on Markovian models and deterministic finite
automata. In Section 3, we discuss the time-space tradeoff
in general and Oechslin’s rainbow attack in particular, and
show that it works over any search space as long as there
is an efficient algorithm to compute its ith element. In Sec-

1We used the character set consisting of lowercase alpha-
bets and numerals for Oechslin’s attack. Simple tricks can
improve the coverage, such as running more than one times-
pace tradeoff with different character sets, and using brute
force up to some small length.

tion 4, we present our search space enumeration algorithms
for strings satisfying a Markovian filter, strings accepted by
a DFA and strings that satisfy both conditions. Section 5
consists of our experimental results. Conclusions are in Sec-
tion 6.

2. FILTERING
In the rest of this paper, we will use words key and pass-

word, ciphertext and password hash, and keyspace and dictio-
nary interchangeably. The reason for this is that standard
techniques for brute-force cryptanalysis, such as those de-
scribed in Section 3, typically refer to keys and ciphertexts
even when applied to passwords and their hash values.

2.1 Markovian filtering
An alphabetical password generated by a human, even if

it is not a dictionary word, is unlikely to be uniformly dis-
tributed in the space of alphabet sequences. In fact, if asked
to pick a sequence of characters at random, it is likely that
an English-speaking user will generate a sequence in which
each character is roughly equidistributed with the frequency
of its occurrence in English text. Analysis of our password
database reveals a significant number of alphabetical pass-
words which are neither dictionary words, nor random se-
quences (we used the openwall.com dictionary which con-
tains about 4 million words [30]).

Markov models are commonly used in natural language
processing, and are at the heart of speech recognition sys-
tems [32]. A Markov model defines a probability distribu-
tion over sequences of symbols. In other words, it allows
sampling character sequences that have certain properties.
In fact, Markov models have been used before in the con-
text of passwords. Subsequent to this work, we learned of
the “Extensible Multilingual Password Generator” software,
which was written by Jon Callas in 1991 and used precisely
this technique to generate passwords for users. (We are
also told that a similar method for generating “random, yet
pronounceable” passwords was used at the Los Alamos Na-
tional Laboratory in the late 1980s.) It should come as no
surprise, then, that Markov modeling is very effective at
guessing passwords generated by users.

In a zero-order Markov model, each character is gener-
ated according to the underlying probability distribution
and independently of the previously generated characters.
In a first-order Markov model, each digram (ordered pair)
of characters is assigned a probability and each character is
generated by looking at the previous character. Mathemat-
ically, in the zero-order model,

P (α) = Πx∈αν(x)

while in the first-order model,

P (x1x2 . . . xn) = ν(x1)Π
n−1

i=1 ν(xi+1|xi)

where P (.) is the Markovian probability distribution on char-
acter sequences, xi are individual characters, and the ν func-
tion is the frequency of individual letters and digrams in
English text.

Of course, a dictionary is not a probability distribution,
but a set. Therefore, to create a Markovian dictionary,
we discretize the probabilities into two levels by applying
a threshold θ. This defines the zero-order dictionary

Dν,θ = {α : Πx∈αν(x) ≥ θ}

and the first-order dictionary

Dν,θ = {x1x2 . . . xn : ν(x1)Π
n−1

i=1 ν(xi+1|xi) ≥ θ}

The zero-order model produces words that do not look
very natural, but it can already drastically reduce the size
of the plausible password space by eliminating the vast ma-
jority of character sequences from consideration. Consider
8-character sequences. If θ is chosen so that the dictionary
size is 1

7
of the keyspace (i.e., 86% of sequences are ignored),

then a sequence generated according to the model has the
probability of 90% of belonging to the dictionary. In other
words, 15% of the password space contains 90% of all plausi-
ble passwords. Other interesting points on the curve are: a
dictionary containing 1

11
of the keyspace has 80% coverage,

and a dictionary with 1

40
of the keyspace has 50% coverage,

i.e., only 2.5% of the keyspace needs to be considered to
cover half of all possible passwords! The first-order model
can do even better. The results are shown in Figure 1.

Figure 1: Coverage compression graph

The zero-order model is not obviated by the first-order
model. The zero-order model is better for certain commonly
used password-generation strategies, such as acronyms con-
sisting of first letters of each word in a sentence.

Needless to say, the distribution of letter frequencies used
in keyspace compression via Markovian filtering is language-
specific, and the distribution used in this paper applies only
to passwords chosen by English-speaking users (presumably,
similar distributions can be found for other alphabet-based
languages). There are two ways in which the technique can
be generalized if the user’s native language is not known.
First, it is possible to combine the keyspaces for two or
more languages (Section 4.6). Second, it may be possible
to come up with a distribution that works reasonably well
for multiple languages (e.g., all Germanic or all Romance
languages). We have not tried doing this and don’t know
how well it might work.

2.2 Filtering using a finite automaton
A search space consisting of only alphabetic sequences is

unlikely to have a good coverage of the plausible password
space. Humans often mix upper- and lowercase characters
in their passwords, and system-enforced password-creation
rules often require them to throw in some numerals and
sometimes special characters. Yet, even with these addi-

tions, the distribution of resulting passwords is far from ran-
dom. Below are examples of a few common patterns (this
list is by no means definitive):

• In an alphanumeric password, all numerals are likely
to be at the end.

• The first character of an alphabetic sequence is far
more likely to be capitalized than the others.

• While alphabetic sequences consisting of mostly low-
ercase characters and a few uppercase characters are
common, the converse is not true.

Deterministic finite automata are ideal for expressing such
properties. First, we specify a set of common regular expres-
sions (“all lowercase,” “one uppercase followed by all low-
ercase,” “uppercase characters followed by numerals,” and
so on). We define our dictionary to be the set of sequences
matching the Markovian filter and also accepted by at least
one of the finite automata corresponding to the regular ex-
pressions. Thus Dν,θ,〈Mi〉 = {α : Πx∈αν(x) ≥ θ, and ∃i :
Mi accepts α}. Our complete alphabet consists of 26 lower-
case and 26 uppercase characters, 10 numerals and 5 special
characters (space, hyphen, underscore, period and comma).
We have chosen these five somewhat arbitrarily because we
felt they are the ones that occur most commonly in human-
generated passwords. It is not possible to consider all special
characters without knowing what the actual character set is
for the application.

This gives us a 67-character alphabet. The associated
keyspace of 8-letter sequences is 1015, making brute-force
search infeasible. While it is possible to write regular ex-
pressions for this 67-character symbol set, the resulting al-
gorithms are not very efficient. Therefore, we give up a
little bit of expressivity and group the character set into
four categories (lowercase, uppercase, numerals, and special
characters, which we will denote, respectively, as a, A, n
and s), and consider the input alphabet of our automata to
consist of just these four symbols. The regular expressions
we have used are listed in Appendix A.

3. TIME-SPACE TRADEOFF
The most basic precomputation technique is to compute

and store the hashes of all the passwords in the keyspace
ordered by hash, so that cryptanalysis is almost instanta-
neous. However, this requires storage equal to the keyspace
size. Hellman [17] showed how to decrease storage require-
ments at the expense of attack time in the general context
of cryptanalyzing a cipher. This tradeoff works as follows.

Given a fixed plaintext P , define a mapping f on the
keyspace K as f(k) = R(Ek(P)) where E is the encryption
function and R is a reduction function which maps cipher-
texts to keys. By iterated applications of f , we create a
“chain” of keys. The crucial observation is that by storing
only the first and last elements of a chain, we can determine
if the key corresponding to a given ciphertext belongs to
that chain (and also find the key) in time O(t) where t is
the length of the chain.

Creating a chain works as follows. Given a starting point
k0, we compute k1 = f(k0), k2 = f(k1), . . . , kt = f(kt−1).
The keys k0 and kt are stored, while the rest are thrown
away. When given a ciphertext C to cryptanalyze, we re-
cover the key by computing k = R(C) and ki = f i−1(k) for

i = 1, 2, Observe that if the key k belongs to the chain,
i.e., k = ki for some i, then f t−i(k) = kt. Thus, after at
most t applications of f , we can determine whether or not
the chain contains k. Further i − 1 applications of f suffice
to compute ki−1 from k0. Since ki−1 satisfies the property
that C = Eki−1

(P), it is the key we are looking for.
This does not work with certainty because different chains

may merge. Therefore, we need to use multiple tables with a
different reduction function for each table, with many chains
in each table. The storage requirement as well as the crypt-
analysis time for this algorithm are O(|K|2/3), where K is
the keyspace.

Rivest [9, p.100] suggested an improvement which greatly
speeds up the practical performance of the algorithm by de-
creasing the number of memory accesses during cryptanal-
ysis. This is done using “distinguished points,” which are
keys with some special property (such as the first 10 bits
being zero). The advantage of requiring that the endpoints
of a chain be distinguished points is that during cryptanal-
ysis, a key must be looked up in memory only if it has the
distinguished property. Further papers [11, 21, 5, 22, 34]
presented optimizations and/or better analyses of the dis-
tinguished points algorithm.

A major improvement was made by Oechslin [28] by using
“rainbow chains” instead of distinguished points. Rainbow
chains use a different reduction function for each point in the
chain. It was shown in [28] that rainbow chains achieve the
same coverage as distinguished points with the same storage
requirement but a significantly faster cryptanalysis time.

Experimental results are impressive. The online imple-
mentation of the rainbow attack [1] inverts MD5 hashes of
passwords of length up to 8 over the character set [a-z0-9]
(a keyspace size of 2.8×1012). Its success probability is 0.996
with an amortized cryptanalysis time of under 10 minutes
using precomputed tables of size about 48 GB.

3.1 Generic time-space tradeoff using index
lookup property

We observe that in both Rivest’s and Oechslin’s algo-
rithms, the reduction function can be expressed as a map-
ping from the ciphertext space to {0, 1, . . . |K|−1}, composed
with a mapping from {0, 1, . . . |K|− 1} to K. Neither the re-
duction function, nor any other part of the algorithms makes
any assumptions about the keyspace other than its size. In
Rivest’s attack, the property of being a distinguished point
can be computed from the keyspace index rather than the
key itself. In the case of the rainbow attack, the mapping
from the ciphertext space to keyspace indices is parame-
terized by the choice of the rainbow table, but the mapping
from the keyspace index to the key is the same as in Rivest’s
attack. Therefore, we can implement either attack over the
compressed dictionary of plausible passwords described in
Section 2.

This is not trivial, however. The compressed dictionary
must have have the property that there exists an efficient
enumeration algorithm which takes index i as input and out-
puts the ith element of the dictionary. In the next section,
we present such indexing algorithms for zero-order Marko-
vian dictionaries, first-order Markovian dictionaries, deter-
ministic finite automata (DFA), an arbitrary keyspace with
some indexable superspace, and, finally, for hybrid Marko-
vian/DFA dictionaries.

4. INDEXING ALGORITHMS

4.1 Zero-order Markovian dictionary
The dictionary we use is a slightly modified version of

the zero-order Markovian filter, in which we only consider
fixed-length strings. This is because we want to use different
thresholds for different lengths. The hybrid algorithm in
Section 4.5 will demonstrate how multiple dictionaries can
be combined into one. The modified dictionary is Dν,θ,ℓ =
{α : |α| = ℓ and Πx∈αν(x) ≥ θ}

The key to the algorithm in this section is discretiza-
tion of the probability distribution. To do this, we first
rewrite the filter in an additive rather than multiplicative
form: Dν,θ,ℓ = {α : |α| = ℓ and

P
x∈α µ(x) ≥ λ} where

µ(x) = log ν(x) and λ = log θ.
Next, we discretize the values of µ to the nearest multiple

of µ0 for some appropriate µ0. If we use a larger value for
µ0, we lower our memory requirement, but lose accuracy as
well. In our experiments, we have chosen µ0 such that there
are about 1000 “levels” (see below).

Next, we define “partial dictionaries” Dν,θ,ℓ,θ′,ℓ′ as follows.
Let α be any string such that |α| = ℓ′ and Πx∈αν(x) = θ′.
Then Dν,θ,ℓ,θ′,ℓ′ = {β : αβ ∈ Dν,θ,ℓ}.

Note that Dν,θ,ℓ,θ′,ℓ′ is well-defined because Πx∈αβν(x) =
Πx∈αν(x)Πx∈βν(x) = θ′Πx∈βν(x). Therefore, it doesn’t
matter which α we choose. Intuitively, for any string prefix,
the partial dictionary contains the list of all possible charac-
ter sequences which could be appended to this prefix so that
the resulting full string satisfies the Markovian property.

We now present a recursive algorithm to compute the size
of a partial dictionary

|Dν,threshold, total length, level, current length|

Observe that this algorithm is executed only once and only
during the precomputation stage (rather than once for each
key), and, therefore, its efficiency does not affect the crypt-
analysis time. Here mu refers to the discretized version of
the µ function above.

partial_size1(current_length, level)

{

if level >= threshold: return 0

if total_length = current_length: return 1

sum = 0

for each char in alphabet

sum = sum + partial_size1(current_length+1,

level+mu(char))

return sum

}

Computation of Dν,θ,ℓ,.,ℓ′ depends on Dν,θ,ℓ,.,ℓ′+1. Thus
the partial sizes are computed and stored in a 2-D array
of size ℓ times the number of levels, the computation being
done in decreasing order of ℓ′.

We are not particularly concerned about the efficiency of
this algorithm because it is executed only during precom-
putation. Note, however, that running time (for computing
all partial sizes) is linear in the product of the total length,
number of characters and the number of levels.

The following is another recursive algorithm which takes
as input an index into the keyspace and returns the corre-
sponding key (this algorithm is executed during the crypt-
analysis stage):

get_key1(current_length, index, level)

{

if total_length = current_length: return ""

sum = 0

for each char in alphabet

new_level = level + mu(char)

// looked up from precomputed array

size = partial_size1[

current_length+1][new_level]

if sum + size > index

// ’|’ refers to string concatenation

return char | get_key1(

current_length+1,

index-sum, new_level)

sum = sum + size

// control cannot reach here

print "index larger than keyspace size"; exit

}

The get_key algorithm uses partial_size to determine
the first character (this results in a value being looked up
in the precomputed table of partial sizes), and then recurs
on the index recomputed relative to the first character and
the threshold adjusted based on the frequency of the first
character.

To index into the entire keyspace, we call get_key1 with
current length = 0 and level = 0.

We note the similarity of the ideas used in this algorithm
to the well-known Viterbi algorithm from speech process-
ing[12].

4.2 First-order Markovian dictionary
As in the case of the zero-order model, we define length-

restricted dictionaries and their partial versions. After read-
ing a partial string, however, we now need to keep track of
the last character because this time we are using digram
frequencies.

partial_size2(current_length, prev_char, level)

{

if level >= threshold: return 0

if total_length = current_length: return 1

sum = 0

for each char in alphabet

if current_length = 0

new_level = mu(char)

else

new_level = level + mu(prev_char, char)

sum = sum + partial_size2(current_length+1,

char, new_level)

}

get_key2(current_length, index, prev_char, level)

{

if total_length = current_length: return ""

sum = 0

for char in alphabet

if current_length = 0

new_level = mu(char)

else

new_level = level + mu(prev_char, char)

size = partial_size2(current_length+1,

char, new_level)

if sum + size > index

return char | get_key2(

current_length+1,

index-sum, char, new_level)

sum = sum + size

// control cannot reach here

print "index larger than keyspace size"; exit

}

4.3 Deterministic finite automaton
This algorithm is similar to the algorithm for zero-order

Markovian dictionaries, except that instead of levels and
character frequencies we have states and state transitions.
The get_key3 algorithm is very similar to get_key1 and is
omitted.

partial_size3(current_length, state)

{

if current_length = total_length

if state is an accepting state: return 1

else: return 0

sum = 0

for char in alphabet

new_state = transition(char, state)

if new_state is not NULL

sum = sum + partial_size3(

current_length+1, new_state)

return sum

}

4.4 Any keyspace
We now describe an indexing algorithm for any keyspace

K, which works as long as there is an indexing algorithm
for some superspace K′ ⊃ K and a testing procedure which,
given α ∈ K′, decides whether α ∈ K. For instance, we
can trivially index into (unfiltered) character sequences of
a given length and test if a character sequence satisfies a
Markovian filter, and, therefore, we can use this algorithm
to index into Markovian dictionaries. The disadvantage is
that precomputation involves enumerating K′ via its index-
ing algorithm which might be prohibitively expensive if K is
sparse in K′. For instance, it is quite reasonable to consider
10-character password sequences with a first-order Marko-
vian filter. This compresses the keyspace by a factor of 105,
but to use the algorithm below to achieve this would involve
iterating over a keyspace larger than 1014. Furthermore,
the indexing itself is not very efficient. On the other hand,
it provides a good starting point because further keyspace-
specific optimizations may be possible.

Given a parameter t, the algorithm divides the space K′

into bins of size t, precomputes the number of members of
K in each bin and stores them. When it gets an index, it
quickly figures out which bin it falls into, iterates over all
keys in K′ in that bin and tests each one for membership.

Let |K′| = mt.

compute_bins(t)

{

count=0

for i = 0 to m-1

for j = i*t to i*t+(t-1)

if the j’th key of K’ belongs to K

count = count+1

bin[i] = count

}

For each i, this computes the cumulative counts for the
first i bins.

get_key(index)

{

i = binary_search(bin[], index)

// i.e., bin[i] < index <= bin[i+1]

count=0

for j = i*t to i*t+(t-1)

key = the j’th key of K’

if key belongs to K

count++

if count = index - bin[i]

return key

}

This algorithm requires O(|K′|) precomputation time,

O(|K′|
t

) storage and O(t + log |K′|
t

) indexing time. Observe
that this algorithm is very similar to the algorithm for find-
ing the nth prime [4].

4.5 Hybrid Markovian/DFA dictionary
Let A be the set of characters, and consider the com-

bined dictionary Dν,θ,ℓ1,M,ℓ2 = {α : |α| = ℓ,
P

x∈α,x∈A =

ℓ′, Πx∈α,x∈Aν(x) ≥ θ, and M accepts α}.
As mentioned earlier, our finite automaton works over the

symbol set {A, a, n, s}. All lowercase characters are repre-
sented by a, all uppercase characters by A, all numerals by n
and all special characters by s in the input to the automaton.

get_key5(index)

{

count1 = partial_size1(0, 0)

count2 = partial_size2(0, initial_state)

index1 = index/count2 // quotient is truncated

index2 = index - index1 * count2

key1 = get_key1(0, index1, 0)

// wlog we assume that key1 consists of

// lowercase characters

key2 = get_key2(0, index2, initial_state)

key = ""

pos = 1

for char in key2:

if char is ’a’

append key1[pos] to key

pos = pos+1

if char is ’A’

append uppercase(key1[pos]) to key

pos = pos+1

if char is neither ’a’ nor ’A’

append char to key

return key

}

Essentially, this algorithm looks at the positions in the
output of get_key2 where alphabet characters are expected,
and substitutes the string returned by get_key1. Combin-
ing an automaton with a first-order Markovian filter works
similarly.

4.6 Multiple keyspaces
Finally, we show how multiple disjoint keyspaces can be

combined into a single space.

get_key6(K1, K2, ... Kn, index)

{

sum = 0

for i = 1 to n

if sum + size(Ki) > index

return get_key(Ki, index-sum)

sum = sum + size(Ki)

// this cannot be reached

print "index larger than sum of keyspace sizes"

}

4.7 Possible optimizations
In this section, we describe some optimizations that have

not yet been implemented. The main criterion for the hy-
brid attack is that indexing should take less time than the
hashing algorithm. So we want the hybrid algorithm to use
about 50− 100 table lookups and the table must fit into the
cache. The automaton algorithm is very fast because its in-
put alphabet is very small; get_key6 can be slow when there
is a large number of keyspaces, but it can accelerated by pre-
computation of the cumulative sums and binary search for
the appropriate keyspace. Our main concern, then, are the
Markovian filters. We can speed up get_key1 by reordering
the characters so that the more frequent ones come first, re-
ducing the average number of iterations to 6 (from 13, if the
characters are ordered alphabetically). This reduces table
lookups to less than 50 for 8-character strings. The same
strategy works for get_key2, too.

5. EXPERIMENTS
Our first experiment involves measuring the coverage of

Oechslin’s rainbow attack vs. our hybrid attack. We used
a database containing 142 real user passwords kindly pro-
vided by Passware (operator of http://LostPassword.com),
which we believe to be a representative source. We used the
search space of 6-character alphanumeric sequences (lower-
case characters only) for the rainbow attack, which gives
a keyspace size of 366 = 2.17 × 109. To model common
password patterns, we created a set of around 70 regular
expressions, which are listed in Appendix A.

The following table compares the number of passwords
recoverd by the Rainbow attack vs. our attack.

Category Count Rainbow Hybrid
Length at most 5 63 29 63
Length 6 21 10 17
Length 7 18 0 10
Length 8, A* or a* 9 0 6
Others 31 0 0
Total 142 39(27.5%) 96(67.6%)
only length ≥ 6 79 10(12.7%) 33(41.8%)

The effect of the probabilistic nature of the time-space
tradeoff has been neglected, since the probability can be

arbitrarily increased by increasing table size (and the de-
pendence is the same for both attacks).

This experiment validates our basic hypothesis, but fur-
ther experiments are needed. Passwords in our database
may not have been representative of typical user passwords
due to the way the database was compiled by Passware. We
had access to the passwords when creating our regular ex-
pressions, although we did take the utmost care to write
the expressions without using specific knowledge about the
passwords in the database. A better experiment would in-
volve a database containing only hashes of passwords, e.g.,
the contents of an /etc/passwd file obtained from a system
with a large, diverse user base. We are currently planing
such an experiment, which would also involve larger storage
for precomputed values, enabling search of larger keyspaces.

6. CONCLUSIONS
There are a variety of attacks against passwords, of which

dictionary-based attacks are only one subclass. The sim-
plest to deploy are social engineering attacks such as im-
personation, bribery, phishing and login spoofing. Other
attacks that directly exploit human vulnerabilities include
shoulder surfing and dumpster diving. Password-based au-
thentication systems appear particularly susceptible to pro-
tocol weaknesses, which can be exploited by keystroke log-
ging, “Google hacking,” wiretapping and side-channel at-
tacks based on timing and acoustic emanations. Among
dictionary-based attacks, it is worth mentioning that the
United States Secret Service recently reported [20] success
with custom dictionaries built from victim-specific informa-
tion gleaned from analyzing their hard drives, including their
documents, email messages, web browser cache and contents
of visited websites.

Defending against offline and online dictionary attacks on
human-memorable passwords is a difficult task. Possible
techniques include graphical passwords [18, 36, 8], reverse
Turing tests [31, 35], and hardening passwords with bio-
metric information [26]. These techniques, however, require
substantial changes in the authentication infrastructure. An
interesting question for future research is whether human-
memorable passwords drawn from non-textual spaces (e.g.,
faces or geometric images) are vulnerable to attacks such
as ours, based on filtering out unlikely candidates and very
efficient enumeration of the remaining ones. Investigating
this question will only be possible after one of the proposed
methods is widely adopted and there is a significant body
of such passwords chosen by real users.

Acknowledgement. We are grateful to Dmitry Sumin of
Passware for providing the password material for our exper-
iments.

7. REFERENCES
[1] MD5 online cracking using rainbow tables.

http://www.passcracking.com/.

[2] M. Bellare, D. Pointcheval, and P. Rogaway.
Authenticated key exchange secure against dictionary
attacks. In Proc. EUROCRYPT ’00, volume 1807 of
LNCS, pages 139–155. Springer, 2000.

[3] S. Bellovin and M. Merritt. Encrypted key exchange:
password-based protocols secure against dictionary
attacks. In Proc. IEEE Security and Privacy

Symposium, pages 72–84. IEEE Computer Society,
1992.

[4] A. Booker. The Nth prime algorithm.
http://primes.utm.edu/nthprime/algorithm.php,
2005.

[5] J. Borst, B. Preneel, and J. Vandewalle. On the
time-memory tradeoff between exhaustive key search
and table precomputation. In Proc. 19th Symposium
on Information Theory in the Benelux, pages 111–118,
1998.

[6] V. Boyko, P. MacKenzie, and S. Patel. Provably
secure password-authenticated key exchange using
Diffie-Hellman. In Proc. EUROCRYPT ’00, volume
1807 of LNCS, pages 156–171. Springer, 2000.

[7] W. Burr, D. Dodson, and W. Polk. Electronic
authentication guideline. NIST Special Publication
800-63, 2004.

[8] D. Davis, F. Monrose, and M. Reiter. On user choice
in graphic password schemes. In Proc. 13th USENIX
Security Symposium, pages 151–164. USENIX, 2004.

[9] D. Denning. Cryptography and Data Security.
Addison-Wesley, 1982.

[10] D. C. Feldmeier and P. R. Karn. UNIX password
security - ten years later. In Proc. CRYPTO ’89,
volume 435 of LNCS, pages 44–63. Springer, 1989.

[11] A. Fiat and M. Naor. Rigorous time/space tradeoffs
for inverting functions. In Proc. STOC ’91, pages
534–541. ACM, 1991.

[12] G. D. Forney. The Viterbi algorithm. Proceedings of
the IEEE, 61(3):268–278, 1973.

[13] C. Gentry, P. MacKenzie, and Z. Ramzan. Password
authenticated key exchange using hidden smooth
subgroups. In these proceedings, 2005.

[14] O. Goldreich and Y. Lindell. Session-key generation
using human random passwords. In Proc. CRYPTO
’01, volume 2139 of LNCS, pages 408–432. Springer,
2001.

[15] T. L. Griffiths and J. B. Tenenbaum. Probability,
algorithmic complexity, and subjective randomness. In
Proceedings of the 25th Annual Conference of the
Cognitive Science Society, 2003.

[16] T. L. Griffiths and J. B. Tenenbaum. From
algorithmic to subjective randomness. In Advances in
Neural Information Processing Systems 16, 2004.

[17] M. Hellman. A cryptanalytic time-memory tradeoff.
IEEE Transactions on Information Theory,
26:401–406, 1980.

[18] I. Jermyn, A. Mayer, F. Monrose, M. Reiter, and
A. Rubin. The design and analysis of graphical
passwords. In Proc. 8th USENIX Security Symposium,
pages 135–150. USENIX, 1999.

[19] J. Katz, R. Ostrovsky, and M. Yung. Efficient
password-authenticated key exchange using
human-memorable passwords. In Proc. EUROCRYPT
’01, volume 2045 of LNCS, pages 475–494. Springer,
2001.

[20] B. Kerbs. DNA key to decoding human factor. The
Washington Post, March 28, 2005.
http://www.washingtonpost.com/wp-dyn/articles/

A6098-2005Mar28.html.

[21] K. Kusuda and T. Matsumoto. Optimization of

time-memory trade-off cryptanalysis and its
application to DES, FEAL-32 and Skipjack. IEICE
Transactions on Fundamentals, E79-A(1):35–48, 1996.

[22] K. Kusuda and T. Matsumoto. Achieving higher
success probability in time-memory trade-off
cryptanalysis without increasing memory size.
TIEICE: IEICE Transactions on
Communications/Electronics/Information and
Systems, 1999.

[23] R. Li and P. Vitanyi. An Introduction to Kolmogorov
Complexity and Its Applications. Springer, 1997.

[24] S. Lucks. Open key exchange: how to defeat
dictionary attacks without encrypting public keys. In
Proc. Security Protocols Workshop, volume 1361 of
LNCS. Springer, 1997.

[25] G. A. Miller. The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological Review, 63:81–97, 1956.

[26] F. Monrose, M. Reiter, and S. Wetzel. Password
hardening based on keystroke dynamics. International
Journal of Information Security, 1(2):69–93, 2002.

[27] R. Morris and K. Thomson. Password security: A case
history. In Communications of the ACM, Vol.22,
No.11, pages 594–597, 1979.

[28] P. Oechslin. Making a faster cryptanalytic
time-memory trade-off. In Proc. CRYPTO ’03, volume
2729 of LNCS, pages 617–630. Springer, 2003.

[29] Openwall Project. John the Ripper password cracker.
http://www.openwall.com/john/, 2005.

[30] Openwall Project. Wordlists collection.
http://www.openwall.com/wordlists/, 2005.

[31] B. Pinkas and T. Sander. Securing passwords against
dictionary attacks. In Proc. 9th ACM Conference on
Computer and Communications Security (CCS), pages
161–170. ACM, 2002.

[32] L. R. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[33] Zhu Shuanglei. Project RainbowCrack.
http://www.antsight.com/zsl/rainbowcrack/, 2005.

[34] F. Standaert, G. Rouvroy, J.J. Quisquater, and
J. Legat. A time/memory tradeoff using distinguished
points: new analysis and FPGA results. In Proc.
CHES 2002, volume 2523 of LNCS, pages 593–609.
Springer, 2002.

[35] S. Stubblebine and P. van Oorschot. Addressing online
dictionary attacks with login histories and
humans-in-the-loop. In Proc. Financial Cryptography,
volume 3110 of LNCS, pages 39–53. Springer, 2004.

[36] J. Thorpe and P. van Oorschot. Graphical dictionary
and the memorable space of graphical passwords. In
Proc. 13th USENIX Security Symposium, pages
135–150. USENIX, 2004.

APPENDIX

A. REGULAR EXPRESSIONS FOR COM-
MON PASSWORD PATTERNS

To simplify the regular expressions as well as the indexing
algorithms, we specify length restrictions separately. Each
regular expression has the input alphabet {A, a, n, s}, rep-
resenting uppercase, lowercase, numeral and special charac-
ters, respectively. For each regular expression, we specify 4
numbers, which represent how many times the correspond-
ing symbol type is permitted to occur in any accepted string.
We also specify whether Markovian filtering is to be used,
and if so, whether it should be zero- or first-order. Finally,
we specify the threshold (recall that with Markovian filter-
ing, we will only consider strings whose Markovian weight is
above the threshold). The threshold is specified by stating
what fraction of the keyspace should belong to the dictio-
nary. The last column in the table is the size of the keyspace.
It is not part of the keyspace specification. The size of the
combined keyspace is the sum of the entries in the last col-
umn.

Determining the threshold for each regular expression is
somewhat subjective, but we followed these general rules:
no keyspace can have a size more than 108; the dictionary
size should be 10% of the keyspace (based on Markovian
filtering) unless the number of characters is 4 or less; in the
latter case it should be 30% of the keyspace.

Regexes with 5 characters or less are not shown because
they contribute too little to the keyspace size. We use the
first-order Markov model whenever there are at least 6 al-
phabetical characters, all of them contiguous.

Regex A a n s Fraction Markov Size
a* 0 8 0 0 0.000478 1 108

a* 0 7 0 0 0.0124 1 108

a* 0 6 0 0 0.1 1 3.09×107

A* 8 0 0 0 0.000478 1 108

A* 7 0 0 0 0.0124 1 108

A* 6 0 0 0 0.1 1 3.09×107

[Aa]* 1 6 0 0 0.00178 1 108

[Aa]* 1 5 0 0 0.0540 1 108

n* 0 0 8 0 1 - 108

n* 0 0 7 0 1 - 107

n* 0 0 6 0 1 - 106

a*n* 0 6 1 0 0.0324 1 108

a*n* 0 5 1 0 0.1 0 1.18×107

a*n* 0 4 2 0 0.3 0 1.37×107

a*n* 0 3 3 0 1 - 1.75×107

a*n* 0 2 4 0 1 - 6.76×106

a*n* 0 1 5 0 1 - 2.6×106

a*n* 0 1 6 0 1 - 2.6×107

A*n* 6 0 1 0 0.0324 1 108

A*n* 5 0 1 0 0.1 0 1.18×107

A*n* 4 0 2 0 0.3 0 1.37×107

A*n* 3 0 3 0 1 - 1.75×107

A*n* 2 0 4 0 1 - 6.76×106

A*n* 1 0 5 0 1 - 2.6×106

A*n* 1 0 6 0 1 - 2.6×107

a*A 1 6 0 0 0.0124 1 108

a*A 1 5 0 0 0.1 1 3.09×107

Aa* 1 6 0 0 0.0124 1 108

Aa* 1 5 0 0 0.1 1 3.09×107

Aa*n 1 5 1 0 0.0324 1 108

Aa*n 1 4 1 0 0.1 0 1.18×107

[An]* 5 0 1 0 0.1 0 7.13×107

[An]* 4 0 2 0 0.1 0 6.85×107

[An]* 3 0 3 0 0.284 0 108

[An]* 2 0 4 0 0.3 0 3.03×107

[An]* 1 0 5 0 1 0 1.56×107

[an]* 0 5 1 0 0.1 0 7.13×107

[an]* 0 4 2 0 0.1 0 6.85×107

[an]* 0 3 3 0 0.284 0 108

[an]* 0 2 4 0 0.3 0 3.03×107

[an]* 0 1 5 0 1 0 1.56×107

[As]* 6 0 0 1 0.0108 0 108

[As]* 5 0 0 1 0.1 0 2.97×107

[As]* 4 0 0 2 0.1 0 1.7×107

[As]* 3 0 0 3 1 - 4.38×107

[As]* 2 0 0 4 1 - 6.34×106

[As]* 1 0 0 5 1 - 4.88×105

[as]* 0 6 0 1 0.0108 0 108

[as]* 0 5 0 1 0.1 0 2.97×107

[as]* 0 4 0 2 0.1 0 1.7×107

[as]* 0 3 0 3 1 - 4.38×107

[as]* 0 2 0 4 1 - 6.34×106

[as]* 0 1 0 5 1 - 4.88×105

