
Game-Based Analysis of Denial-of-Service Prevention Protocols

Ajay Mahimkar
Department of Electrical & Computer Engineering

The University of Texas at Austin
Austin, TX 78712 U.S.A.

mahimkar@cs.utexas.edu

Vitaly Shmatikov
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 U.S.A.
shmat@cs.utexas.edu

Abstract

Availability is a critical issue in modern distributed sys-
tems. While many techniques and protocols for preventing
denial of service (DoS) attacks have been proposed and de-
ployed in recent years, formal methods for analyzing and
proving them correct have not kept up with the state of the
art in DoS prevention. This paper proposes a new proto-
col for preventing malicious bandwidth consumption, and
demonstrates how game-based formal methods can be suc-
cessfully used to verify availability-related security proper-
ties of network protocols.

We describe two classes of DoS attacks aimed at band-
width consumption and resource exhaustion, respectively.
We then propose our own protocol, based on a variant of
client puzzles, to defend against bandwidth consumption,
and use the JFKr key exchange protocol as an example
of a protocol that defends against resource exhaustion at-
tacks. We specify both protocols as alternating transition
systems (ATS), state their security properties in alternating-
time temporal logic (ATL) and verify them using MOCHA,
a model checker that has been previously used to analyze
fair exchange protocols.

1. Introduction

A fundamental design principle of the IP architecture is
to keep the functionality inside the core network simple,
pushing difficulty to the network endpoints. This princi-
ple, commonly referred to as the “end-to-end principle,” has
guided most of modern network protocol design. One of
the undesirable side effects of this approach, however, has
been the problem of malicious traffic aimed at denial of ser-
vice (DoS). DoS traffic is caused by deliberate distributed
flooding [32], worms such as Nimda, Code Red, and SQL
Slammer [31, 40], port scanners, and spammers. The need
to protect against or mitigate this flood of undesirable traf-
fic has been recognized by both commercial and research

groups. Since there are few disincentives for clients who
contribute to this traffic, the standard mechanism has been
to first detect the clients exhibiting suspicious behavior,and
then install filtering rules on routers to block their traffic.
While a variety of anti-DoS mechanisms and protocols have
been proposed, relatively few of them have been analyzed
using formal verification techniques that have been success-
fully applied to the analysis of other security properties such
as secrecy and authentication.

Methods that filter traffic [6, 18, 19, 30, 28, 34, 35, 46,
37, 38, 39, 42, 47] look for known attack patterns or sta-
tistical anomalies in traffic patterns. They can be defeated
by changing the attack pattern and masking the anomalies.
Also, statistical approaches might filter out legitimate traf-
fic, too. There is a need for preventive mechanisms that
allow all legitimate traffic to reach the destination.

Client puzzles[12, 13, 14, 20, 41, 43, 44] are a promis-
ing technique that aims to provide service guarantees to le-
gitimate clients. Clients get access to a service only after
they prove their legitimacy. For each service request, the
client is forced to solve a cryptographic “puzzle” before the
server commits its resources. This imposes a large compu-
tational task on adversaries generating traffic in large quan-
tities. The main idea behind client puzzles is that any client
requesting service must allocate some of its own resources
(processing time or memory) before the server commits its
resources for the connection. This defends against attacks
staged by a large number of zombie computers using au-
thentic IP addresses, since existing DDoS tools are carefully
designed not to disrupt the zombie computers so as to avoid
alerting the machine owners to their presence.

In this paper, we discuss protocols that prevent two types
of attacks: those aimed atresource exhaustionandband-
width consumption, respectively. In aresource exhaustion
attack, the attacker sends spurious requests to the server,
causing the latter to devote all of its resources to processing
the malicious requests and to start dropping requests from
legitimate clients. An example of such an attack is the TCP
SYN flooding attack (see,e.g., [42]). An even more se-

vere attack is thebandwidth consumptionattack in which
the attacker floods the connection to the server, causing the
latter to stop accepting, let alone processing requests from
legitimate clients. Here the goal of the attack is to consume
all available network bandwidth by flooding it with a huge
number of properly or improperly formed requests.

We propose a new system to defend the network against
bandwidth consumption attacks, and use the JFKr key ex-
change protocol [3] as an example of a protocol that defends
against resource exhaustion attacks. We then use game-
based analysis techniques to formally state the availability
guarantees provided by the protocols, and verify them using
the MOCHA model checker.

Contributions and overview. In this paper, we formally
describe two existing anti-DoS protocols [13, 43] which are
based on client puzzles. We will refer to these protocols as
basicclient-puzzle protocols because they prevent resource
exhaustion, but not bandwidth consumption attacks. We
then propose our own protocol to defend against bandwidth
consumption attacks. Our protocol operates at the IP layer,
and provides an efficient defense since it stops all malicious
traffic in the intermediatenetwork, before it can reach its
final destinations.

The protocols are specified and verified using a game-
based formalism and the associated model checker called
MOCHA [5]. The interaction between the attacker and
the defending server or filtering node is modeled as a two-
player strategic game. In this game, the server’s strategy is
characterized by the difficulty level of the puzzle it gener-
ates and presents to the client, whereas the DoS attacker’s
strategy is characterized by the amount of effort it can invest
in solving the puzzles.

While there has been some previous work on formal
modeling of anti-DoS protocols [25, 27, 29, 36, 45], we
believe this work is the first to use a game-based frame-
work, which is a natural fit foradversarialprotocols such
as those arising in DoS prevention, and also the first to focus
on bandwidth- rather than resource-consumption attacks.

We believe that our distributed approach to DoS preven-
tion is interesting from the viewpoint of protocol design and
not just that of formal modeling. First, it does not require
the formulation of attack signatures by which routers detect
and/or filter suspicious traffic. Since ours is a preventive ap-
proach, it does not result in dropping any legitimate traffic.
This is due to our use of client puzzles. The ability to solve
puzzles separates legitimate clients from automatic attack
tools that typically operate on zombie computers and are
carefully designed to avoid performing computations that
may alert machine owners to their presence. Second, our
protocol is designed to work within the IP layer, in the inter-
mediate network, preventing malicious traffic from reaching
end servers and thus preventing bandwidth consumption at-

tacks. Third, our protocol can be deployed incrementally.
The main contributions of the paper are as follows:

1. A novel distributed client puzzle protocol that prevents
bandwidth consumption attacks.

2. Formal game-based modeling and verification of two
client puzzle protocols.

3. Formal game-based verification of the defense against
resource exhaustion DoS attacks in the JFK key ex-
change protocol.

Organization of the paper. In section 2, we describe re-
lated work. Basic client puzzle protocols are described in
section 3. We then propose our own distributed client puz-
zle protocol in section 4. In section 5, we briefly present
our formal analysis tools, including ATL (alternating-time
temporal logic), its game semantics and the MOCHA finite-
state verification tool. We then model the protocols, state
their properties in ATL, and use MOCHA to verify them. In
section 6, we describe game-based analysis of DoS preven-
tion in the JFKr protocol. Conclusions are in section 7.

2. Related work

We first describe the state of the art in denial-of-service
prevention mechanisms. We then survey relevant related
work on formal methods in security, focusing on, respec-
tively, formal modeling of availability-related securityprop-
erties, game-based verification of security, and previous for-
mal analyses of the JFK key exchange protocol.

2.1 Denial-of-service prevention mechanisms

Reactive mechanisms.Development of anti-DoS mech-
anisms has received enormous attention. Proposed ap-
proaches include pushback [19, 28], traceback [37, 38, 39],
and filtering [6, 30, 34, 46, 47].

Pushback mechanisms [19, 28] require router support to
rate-limit aggregate flows responsible for congestion (an ag-
gregate is defined as a collection of packets that share some
common property), and push filters upstream towards the
sources of these aggregate flows. Pushback faces challenges
in attack traffic identification and ISP co-operation, and re-
quires non-negligible state at the routers.

IP traceback schemes are used to find attacks’ ori-
gins. Traceback information is marked by routers in the
IP identification field. In the Probabilistic Packet Marking
Scheme [37, 39], each packet is probabilistically marked
with partial path information. The victim can reconstruct
the attack paths if it receives a significant number of pack-
ets. Another IP traceback scheme, known as hash-based
traceback [38], stores packet digests in the form of Bloom

filters [8] at each router. By checking neighboring routers
iteratively with attack packets, the attack path can be con-
structed. The inherent assumption of traceback mechanisms
is that they can generate attack signatures and differentiate
attack and legitimate traffic. This is a non-trivial problem,
however, and traceback approaches are less useful if the at-
tack traffic originates from genuine source addresses and is
statistically similar to legitimate traffic. Traceback schemes
also suffer from scalability problems.

Andersen proposed Mayday [6] that uses Secure Over-
lay Services (SOS) [22] architecture to proactively defend
against DoS Attacks. Park and Lee proposed a distributed
packet filtering (DPF) mechanism [34] against IP address
spoofing. DPF relies on BGP routing information to de-
tect spoofed IP addresses. Mirkovicet al. [30] proposed
detection and filtering close to the attacker. The Pi mark-
ing scheme [46] enables the victim to detect packets with
a spoofed source IP address. Stateless Internet Flow Fil-
ter (SIFF) [47] enables the victim to stop individual traffic
flows from reaching it without keeping per-flow state in the
network. SIFF defends against bandwidth flooding attacks.
Still, both Pi and SIFF require differentiation of legitimate
and attack traffic.

The main challenge for reactive mechanisms is the cor-
rect differentiation between legitimate and attack traffic.
Reactive mechanisms produce non-zero false positives (i.e.,
legitimate packets are sometimes dropped), which is a DoS
issue in itself. Therefore, there is a need for proactive mech-
anisms that drop only attack packets and ensure that the le-
gitimate traffic always reaches its destination.

Client puzzles. Client puzzles are a proactive mechanism
to defend against denial of service attacks. They have been
proposed in the context of TCP [12, 13, 14, 20, 43, 44],
authentication protocols [7, 26], and TLS [11].

The puzzle auctions protocol of [43] allows clients to
bid for service by computing puzzles with difficulty levels
of their own choice. The server under attack allocates its
limited resources to requests carrying the highest priorities.
The bidding strategy is such that the client can gradually
raise its bid until it wins. Feng has described the impor-
tance of implementing the puzzles at the IP layer [12, 13].
Most puzzle-solving techniques concentrate on collecting
idle CPU cycles to generate a solution. Abadiet al. [2]
proposed a memory bound puzzle that imposes a memory
access cost upon the client in an effort to impose similar
puzzle solving delays on different hardware platforms.

Several papers [14, 21, 33] proposed to use application-
layer graphic Turing tests (GTTs) as puzzles to prevent au-
tomated flooding. GTTs differentiate human users from au-
tomated attack zombies and filter attack traffic at the server.
By contrast, we focus on IP-layer puzzles.

2.2 Formal models

Formal models of denial of service. Meadows [29]
(followed by Ramachandran [36]) proposed a cost-based
framework for analysis of denial-of-service attacks and
used the NRL protocol analyzer to carry out the analysis.
Her framework is based on Gong and Syverson’s fail-stop
model [15]. The approach of [29] is well-suited to re-
source exhaustion attacks since it models DoS vulnerability
as asymmetry of computational costs between participants.

Lafrance and Mullins [25] proposed to detect DoS vul-
nerabilities in security protocols using the process algebra
SPAA and a cost-based framework. They introduce an in-
formation flow property, calledimpassivity, which detects
when an attacker, using his low-cost actions, causes inter-
ference on high-cost actions of other principals. This model
also appears to be best suited to resource exhaustion attacks.

Gunteret al. [16] presented a mathematical characteri-
zation of anti-DoS properties of an authenticated broadcast
protocol. By contrast, our paper describes a formal, tool-
supported analysis of a different set of anti-DoS guarantees.

Game-based verification. Game-based formal analysis
frameworks are a good fit for adversarial protocols, in which
the main challenge for an honest participant is to defend
against strategic behavior by the other party. ATL and
MOCHA have been successfully used to analyze adversar-
ial protocols for fair exchange, contract signing, and non-
repudiation [9, 24, 23]. To the best of our knowledge, this
paper is the first to formally model anti-DoS mechanisms
as adversarial protocols, and to apply a game-based frame-
work to their verification.

Formal analysis of the JFK protocol. For the purposes
of this paper, we are only interested in the DoS prevention
mechanisms of the JFK key exchange protocol [3]. The pro-
tocol in its entirety has been previously analyzed by Datta
et al. [10] and Abadiet al. [1], but their work is comple-
mentary to ours in that they do not attempt to capture the
adversarial nature of the protocol in the formal model itself.

3 Basic client puzzle protocols

Client puzzleprotocols require clients to solve puzzles
before getting resources from the server. The idea is to
force clients to pay (in this case, with their own resources)
in order to use network services. In this section, we de-
scribe the auction protocol of Wang and Reiter [43], and the
challenge-response protocol of Fenget al. [13].

3.1 Puzzle auctions

As all puzzle-based anti-DoS protocols, the puzzle auc-
tions protocol of Wang and Reiter [43] requires the client

to solve a puzzle of a certain difficulty level before he can
initiate a session with the server. The request message must
be accompanied by the solution to the puzzle. Puzzles are
based on hash reversals. A puzzle includes a nonce param-
eterNs created by the server, and a nonce parameterNc

created by the client. The purpose of the nonces is to ensure
freshness of the puzzles, thus preventing replay attacks. The
solution to the puzzle is the stringX such that the firstm
bits of h(Ns, Nc, X) are zeroes (h is the hash function).
The client performs a brute-force search on the value ofX

until he finds the value that produces the right hash. The
difficulty level of the puzzle is determined by the valuem.

The server adapts the difficulty levelm depending upon
its current utilization. Given a request message, the server
can either accept the request and continue with the protocol,
or send a rejection to the client. The latter may then increase
the difficulty level of the puzzle and send the request back
to the server. Legitimate clients get access to the server
by increasing the difficulty level, whereas an attacker will
have less incentive to do that because he would not want
to alert the zombie machine’s owner by excessive compu-
tation. Puzzle auction protocols thus ensure that legitimate
clients will eventually get access to the server, while attack
traffic is filtered out at the server since the attacker can only
provide puzzle solutions up to a certain level.

3.2 Challenge-response puzzles

In the approach proposed by Fenget al. [13], instead of
clients increasing the puzzle difficulty level for each server
rejection, the server is required to respond with a puzzle
of the current highest difficulty level. The server allocates
resources only if it receives the correct solution from the
client. By adapting the puzzle difficulty level in proportion
to the current load, the server can force clients to solve puz-
zles of varying difficulty.

For game-based modeling, we will use the challenge-
response protocol of [13]. A slightly modified version of
the protocol is depicted in fig. 1. To understand the pro-
tocol, recall the standard TCP session establishment proto-
col, in which the client starts a new TCP session by sending
a SYN request to the server. The server responds with a
SYN-ACK message, which the client confirms by returning
an ACK message. In the SYN flooding attack, the attacker
sends a large number of SYN requests with spurious source
addresses. If the server allocates and maintains TCP state
for each request in its connection queue, it will soon run
out of room to accommodate new requests, and legitimate
clients will be denied service.

In the client-puzzle version of the protocol, the client at-
taches its nonceNc and a timestampTS to its SYN request
message. Upon receiving the request, the server generates
a puzzle, if required (depending upon the current server uti-

CLIENT SERVER

C

P, N , h (N , N , F, X), SYN−ACK

SYN, N

X, N , N , ACKC S

S C S

Figure 1. Challenge-response client puzzles.

lization levels) and sends the puzzle parametersP (includ-
ing the difficulty level,i.e., the number of missing bits the
client is expected to compute), server nonceNs and the hash
valueH = h(Nc, Ns, F, X) to the requesting client.F is
the flow identifier, defined as the quintuple (source IP ad-
dress, destination IP address, source port, destination port,
and protocol number). Note that in this protocol, as well
as in the rest of this paper, the client verifies his puzzle so-
lution by recomputingH and matching it against the hash
value received from the server (protocol of section 3.1 uses
a different verification procedure).

Upon receiving the puzzle, the client computes the solu-
tionX by brute-force search, and sends it back to the server.
The server verifies the solution and then allocates resources.
Because the server does not maintain any state until the so-
lution is verified, SYN flooding attacks are prevented. (It
may appear that the server is not truly stateless since it must
remember the puzzles it previously generated, but, as we
explain in section 4.4, this can be avoided if puzzles are
computed as HMAC of connection parameters and server’s
secret).

3.3 Drawbacks of basic client puzzle protocols

Basic client puzzle protocols work well to preventre-
source exhaustionattacks on servers. They fail, however,
if the attackers direct a huge surge of traffic to a particu-
lar server, flooding that server’s bandwidth and causing the
server to start dropping packets. We will refer to this attack
as thebandwidth consumptionattack. To block this kind of
malicious traffic, the filtering mechanism must be deployed
in the intermediate network rather than at the server level.
In section 4, we propose a new distributed client puzzle pro-
tocol that can prevent bandwidth flooding attacks.

4 Distributed client puzzle system

4.1 Overview of the system

In order to block bandwidth-consumption traffic early
on, we propose a newdistributed client puzzle protocol(or,

more precisely, a suite of protocols) that moves puzzle gen-
eration and verification from the servers to the network. Our
protocols employ standard hash-reversal puzzles.

Our system comprises a set of monitoring and filtering
nodes that form an overlay network to detect and filter at-
tack traffic. The monitoring nodes continuously monitor
traffic to detect anomalies such as SYN floods and unusual
inflections in the incoming and outgoing traffic rates. Once
an anomaly in traffic to a particular server is detected, the
monitoring nodes send BGP route advertisements to the ac-
cess (edge) routers, claiming that the filtering nodes have
the shortest path to the server in question. This will result
in all incoming traffic destined to this server being diverted
to the filtering nodes. The routing tables of core routers are
not changed. Loops are avoided since edge routers can dif-
ferentiate the traffic entering and leaving the network. Only
incoming traffic is diverted to the filters. This re-routing
mechanism works well both within a single ISP and across
multiple ISPs.

The filtering nodes use client puzzles to block attack
traffic and allow the legitimate traffic to go through to the
server. Once the attack subsides, the monitoring nodes can
issue BGP route updates to revert the traffic flow back to its
regular path.

A client who wants his request to reach the server must
solve the puzzle presented by the filtering node. Client func-
tionality remains the same as in the previously proposed
client-puzzle protocols. It is important that the monitoring
nodes detect the unusual volume of traffic at an early stage
of the attack and inform the filtering nodes of the proper
puzzle difficulty level. The monitoring nodes have to mea-
sure server flows (i.e., all traffic going to a particular desti-
nation address and port), and the puzzle distribution mecha-
nism must be applied on the per-flow basis, with the puzzle
difficulty level proportional to the flow volume. This means
that different clients communicating with the same server,
possibly through different filtering nodes, must be solving
puzzles of the same difficulty level.

Our distributed protocol comprises three main parts:dis-
tributed network monitoring to obtain a global view of
traffic statistics;puzzle distribution to present puzzles to
clients and adaptively vary their difficulty;distributed fil-
tering to filter flows based on the results of puzzle-solving
by clients.

We give a semi-formal specification of main protocols in
fig. 3 and 4.

4.2 Distributed monitoring

We will assume a set of monitoring nodes deployed in
the intermediate network in such a way that any packet
traversing the network passes through exactly one node.
For the purposes of DDoS detection, we define a flow as

Aggregated Statistics

Root of the tree

denote Monitoring Nodes

Figure 2. Hierarchical deployment of monitor
nodes for distributed network monitoring.

〈destination IP address, destination port number〉. In gen-
eral, a flow is somek-tupleF (for example, for worm de-
tection the flow should be defined by the source IP address
and destination port).

Every measurement interval, the monitoring nodes
record the per-flow traffic information (packet and byte
count) into a table. A counting Bloom filter may be used to
reduce storage requirements. At the end of the measurement
interval, the monitoring nodes communicate and exchange
the flow-level statistics to gather the global view of traffic.
For this communication, we organize our monitoring nodes
into a hierarchical tree structure. This is depicted in fig. 2.
Left and right child nodes send traffic information to their
parents, where the information is aggregated and then for-
warded up the tree until it reaches the root. At the root node,
aggregated packet and byte information are used to analyze
traffic behavior. A large number of packets associated with
a low number of bytes indicates a probable DDoS attack. A
large number of bytes may indicate a flash crowd (sudden
surge of legitimate traffic) or an attack.

Note that we donot use this classification to separate
traffic into “good” and “bad.” Instead, we use it to gen-
erate client puzzles of different difficulty levels and let the
clients’ puzzle-solving behavior clarify their intent. Attack-
ers will not be able to solve the presented puzzles, and their
traffic will be dropped by the filtering nodes.

4.3 Puzzle distribution

Once the root of the hierarchy has computed the aggre-
gated flow information, it determines which flows exceed
theglobal threshold(s), as well as the destination addresses
of these flows. Multiple global thresholds are used to de-
termine the puzzle difficulty levels. Different flows may
have different traffic statistics, and puzzle difficulty levels
are proportional to the total per-flow traffic. If the traffic for
a given flow varies across measurement intervals, the puz-

zle difficulty level would adapt depending upon the current
traffic (this is done at the end of each measurement inter-
val). For instance, for traffic counts between (T1, T2), the
difficulty level is D1, between (T2, T3), the difficulty level
is D2, and so on, whereT1 < T2 < T3 < . . . are differ-
ent global thresholds, andD1 is the lowest puzzle difficult
level.

If the traffic for at least one flow exceeds the least global
threshold, the root node issues BGP advertisements to edge
routers, instructing them to divert all traffic destined to the
corresponding server to the nearest filtering node. The ag-
gregated per-flow volume information is used to derive the
proper puzzle difficulty level for clients of each identified
server. These per-flow puzzle difficulty levels are commu-
nicated to the filtering nodes. Note that, from the client’s
viewpoint, the difficulty of the puzzle depends on the des-
tination. In particular, access to destinations that arenot
under attack does not require clients to solve difficult puz-
zles.

4.4 Distributed filtering

Once the filtering nodes have set the puzzle difficulty
level for each destination under attack and traffic to these
destinations has been diverted to the filtering nodes, clients
are forced to solve puzzles of the appropriate difficulty
level. This ensures that traffic from zombie machines does
not reach the end-link to the destination server. We assume
that, for each puzzle difficulty level, the filtering node main-
tains a “white list” of source IP addresses that have solved
a puzzle of that level. This ensures that a client needs to
prove its legitimacy only once. We also assume that all fil-
tering nodes share the same secret key to be used in puzzle
generation, and that their clocks are loosely synchronized.

If client and server belong to different ISPs, client’s
packets may traverse multiple filtering nodes on their way
to the destination. To ensure that the client needs to solve
a puzzle only once, we take the following approach (de-
scribed below for the specific case of a SYN flooding attack,
but easily adaptable to any bandwidth flooding attack).

When a filtering node sees a SYN packet, it first checks
whether the source is in the white list associated with the
puzzle difficulty level required by the destination server.If
not, the filter generates a puzzle (as HMAC of the connec-
tion parameters and nonces, with the filters’ common secret
as the key) and sends it along with SYN-ACK to the client.
The filter does not forward the SYN to the server, and SYN-
ACK is spoofed to look as if it is coming from the server.

Once a solution and ACK are received from the client,
the filtering node re-generates the puzzle and verifies the
solution. If verification succeeds, then the source addressis
added to the white list, and the solution and ACK are for-
warded to the next-hop router. If there is another filtering

node in the routing path, it will assume that this ACK has
been sent in response to some previously generated puzzle
(filtering nodes are stateless, and don’t remember the puz-
zles they generate). It will again verify the solution. Assum-
ing not too much time has passed, verification will succeed
since this node will be using the same timestamp and the
same secret key as the filter that originally generated the
puzzle.

Once the ACK packet with the puzzle solution reaches
the server, there are two possibilities. If the server’s TCP
stack has been modified to make it stateless and to verify
client puzzles (with the same key that the filtering nodes are
using), then the server will accept the connection request.If
the server is running a normal TCP stack, then it will drop
the packet or send RST to the client since he has not seen
the corresponding SYN packet. The client will time out, and
send a second SYN packet to the server. By now, all filter-
ing nodes on the routing path have this client in their white
lists and hence forward its SYN packet without any inter-
ference, resulting in the establishment of the normal TCP
connection between the client and the server. Fig. 5 depicts
what happens when the client’s connection request traverses
multiple filtering nodes along the route to the server.

Note that white lists of client IP addresses are main-
tained at the filtering nodes for each puzzle difficulty level,
not for each destination address. A client in the white list
for a particular difficulty level is automatically added to the
white lists for all lower difficulty levels. The white lists are
flushed after a time interval (which could be as long as 30
minutes). This is done to ensure that an attacker does not
launch a DDoS attack by compromising legitimate nodes
over time after the latter have solved difficult puzzles.

Replay attack on stateless filters.In our solution, filtering
nodes responsible for generating puzzles are stateless. In
particular, it is not necessary for them to remember every
puzzle they sent to clients (otherwise, they would also be
vulnerable to a flooding denial-of-service attack). Instead
of randomly generating a new puzzle valueX , the filtering
node can compute it as keyed hash (e.g., HMAC) of the
connection parameters, nonces, and a (coarse) timestamp,
using a secret key which is known only to the filtering nodes
(same key for all nodes). This guarantees thatX appears
(pseudo-)random to the client, yet the node does not need
to storeX since it can be re-computed whenever the client
presents his ostensible solution. The client must respond
within the same coarse time slice, or else the timestamp will
change, and the node will not accept the client’s value ofX .

One potential drawback of this approach is the possibil-
ity of replay of old puzzle solutions within asingle time
slice. The scope of this threat is limited. Old solutions be-
come invalid as soon as the timestamp changes, and the at-
tacker needs to know the exact connection parameters and
nonces of a legitimate connection, which is typically not

Traffic monitoring at each monitor node:
1. for each incoming packetdo
2. flow definitionF = <destIP, destport>;
3. update local counting Bloom filter;
4. if end of measurement intervalthen
5. send traffic information (counting Bloom filters)

along the hierarchy of monitor nodes to the root;
6. fi
7. rof
Traffic aggregation at the root node:
1. aggregate traffic statistics obtained from all monitor

nodes;
2. determine the mapping of aggregated counts to different

global thresholds;
3. determine the appropriate puzzle difficulty level;
4. activate the filtering nodes and inform them of the

puzzle difficulty levels for each destination;
5. divert routing tables by sending BGP route

advertisements to the edge routers.

Figure 3. Protocol specification: distributed
monitoring and puzzle distribution.

Filtering at each filter node:
1. for each incoming packetdo
2. if the source IP belongs to the white listthen
3. forward the packet along the route to server;
4. else
5. if packet contains the correct puzzle solutionthen
6. add source IP to white list and forward packet;
7. else
8. if packet does not contain solutionthen
9. generate and send a puzzle to the client;
10. fi
11. if packet contains incorrect puzzle solutionthen
12. drop the packet;
13. fi
14. fi
15. fi
16. rof

Figure 4. Protocol specification: distributed
filtering.

the case in flooding attacks. We also note that even success-
ful replay does not result in allocation of new filtering node
or server resources since all replayed puzzle solutions refer
to the same client-server connection (although short-term
bandwidth exhaustion is a possibility).

One possible defense against replay is to cachecorrectly
solvedpuzzles at the filtering node. This would require

verify puzzle solution

ACK with solution

SYN

Client FF
1 2

SYN−ACK with puzzle generate & send puzzle

Server

verify puzzle solution

ACK with solution

ACK with solution

RST

SYN

check white list

SYN

check white list

SYN

SYN−ACK
create state

ACK

Figure 5. Legitimate traffic traverses multiple
filtering nodes. The figure depicts the sce-
nario with two filtering nodes Fi along the
path from client to server. The client is legiti-
mate and the first filtering node F1 verifies the
puzzle solution and sends ACK with solution
to the next node. F2 also verifies the solution,
and does not force the client to solve a new
puzzle.

the node to maintain some state, but only for “white-listed”
connections in which the client has successfully solved the
puzzle. This technique is borrowed from the JFK proto-
col, described below in section 6, except that in JFK server
cookies rather than puzzles are cached. The objective of
server cookies in JFK is simply to confirm that the client is
listening at the ostensible source IP address, while the ob-
jective of client puzzles is both to confirm the address and to
force the client to perform a computationally intensive task.

Adaptive traffic variation attack. Our proposed system
is potentially vulnerable to an attack in which the attacker
uses the measurement interval to launch large volumes of
traffic. At the end of the interval, the traffic surge will be
detected, and the filtering nodes will be activated to stop at-
tack traffic. Because the attacker can no longer solve diffi-
cult puzzles being presented to him, he stops sending pack-
ets. At the next interval, since the attack has subsided, the
packet flow reverts back to its normal path. The attacker
can now re-launch its attack and continue doing so every
other measurement interval. This is a difficult attack to de-
fend against, and we conjecture that any anti-DoS system
based on adaptive traffic measurement will be vulnerable.
At the very least, our proposed system will defend against
non-adaptive attacks such as those launched by automated
scripts and random-scanning worms.

4.5 Example

To illustrate our protocol with an example, we describe
a small configuration, similar to the one we will later ana-
lyze using MOCHA. We assume that 3 clients are sending
traffic to a destination serverS via monitoring nodesM1,
M2, andM3. Traffic on a link from clienti to monitorj is
given bytij . Therefore, the difficulty level of the puzzle for
every client (since all clients transmit to the same destina-
tion) is collaboratively computed by monitoring nodesM1,
M2, andM3 asD =

∑

1≤i≤3,1≤j≤3

tij.

4.6 Desired security properties

We now describe the properties that must be maintained
by a DDoS prevention protocol. In section 5, they will be
formalized in alternating-time temporal logic.

Availability The DDoS prevention protocol should ensure
that legitimate clients are always guaranteed access to
server resources (provided they solve puzzles of the
appropriate difficulty level). Any coalition of attack-
ers should not be able to prevent the legitimate clients
from accessing the service.

Liveness If the server has enough resources to handle con-
nection requests, then any requesting client (legitimate
or malicious) should obtain access to the server.

Client authentication Clients that do not solve the puzzle
should not be allocated resources by the server.

Adaptability Puzzle difficulty level should be proportional
to the amount of traffic going to the server, and it
should adapt depending upon the current utilization
levels at the server.

5 Game-based model

In this section, we discuss our formal modeling and
verification of the denial-of-service prevention protocols.
Protocols are specified as alternating transition systems
(ATS), their properties are stated in alternating-time tem-
poral logic (ATL) and verified using the MOCHA model
checker [5]. ATS and ATL were originally proposed by
Alur et al.[4]. Our modeling techniques are similar to those
previously used by Kremeret al. for fair exchange proto-
cols [9, 24, 23], but the set of protocols and properties we
consider are substantially different.

As in previous work on game-based verification of secu-
rity protocols, we only verify a small finite configuration of
the system. The ATS/MOCHA formalism cannot be used

(at least not directly) to prove that a protocol is correct re-
gardless of the size of configuration. Formally proving that
our system guarantees availability and adaptability for con-
figurations of arbitrary size is an interesting topic of future
research.

5.1 ATS, ATL, and MOCHA

To capture the adversarial nature of denial-of-service
prevention protocols, we model protocols as alternating
transition systems (ATS) [4], which are a game variant of
Kripke structures. An ATS is composed of a set of players
Σ, a set of statesQ that represent all possible game config-
urations, a setQ0 ⊆ Q of initial states, a set of propositions
Π, a labeling functionπ : Q → 2Π that labels each state
with a set of propositions true in the state, and a game tran-
sition functionδ : Q × Σ → 22

Q

.
For a playera and a stateq, δ(q, a) is the set of choices

thata can make in the stateq. A choice is a set of possible
next states. One step of the game at stateq is played as fol-
lows: each playera ∈ Σ makes its choice and the next state
of the gameq

′

is the intersection of the choices made by all
the players ofΣ, i.e., {q′} = ∩a∈Σδ(q, a). A computation
is an infinite sequenceλ = q0q1...qn... of states obtained by
starting the game inq0 ∈ Q0.

Alternating-time temporal logic (ATL) is defined with
respect to a finite setΠ of propositions and a finite setΣ
of players. For a set of playersA ⊆ Σ, a set of computa-
tionsΛ, and a stateq, consider the following game between
a “protagonist” and an “antagonist” starting inq. At each
step, to determine the next state, the protagonist selects the
choices controlled by the players in the setA, while the
antagonist selects the remaining choices. If the resultingin-
finite computation belongs to the setΛ, then the protagonist
wins. If the protagonist has a winning strategy, we say that
the ATL formula≪ A ≫ Λ is satisfied in stateq. Here,
≪ A ≫ is a path quantifier, parameterized by the setA of
players, which ranges over all computations that the players
in A can force the game into, irrespective of how the players
in (Σ \ A) proceed. Details of ATS and ATL can be found
in [4].

Instead of modeling protocols directly with ATS, we
follow Kremer and Raskin [24] in using a Dijkstra-style
guarded command language (details of the language can be
found in [17]). Each playera ∈ Σ is associated with a set
of guarded commands of the formguard → update. A
computation step is defined as follows: each player chooses
one of its commands whose boolean guard evaluates to true,
and the next state is obtained by taking the conjunction of
the effects of theupdateparts of the commands selected by
the players. Given an ATS described in terms of guarded
commands, the finite-state verification tool MOCHA [5]
automates the job of model checking ATL formulae over

the specified ATS. Excerpts from our MOCHA code can be
found in the appendix.

5.2 Protocol modeling

5.2.1 Challenge-response client puzzle protocol

This protocol was originally proposed by Fenget al. [13]
(see section 3.2). For finite-state modeling, we choose a
configuration with two legitimate clients and two attackers
trying to access the server that can allocate resources for at
most two requesting entities. The client is modeled as an en-
tity that can solve puzzles of a high difficulty level, whereas
the attackers can only solve puzzles below a certain diffi-
culty level. When all server resources have been allocated
and a new entity requests a resource, the server adapts the
difficulty level for the requesting entity and, if it receives a
solution for this new, difficult puzzle, then the server evicts
the client who had previously solved a puzzle of a low dif-
ficulty level. If the new client was unsuccessful in solving
the difficult puzzle, then the server drops the request.

5.2.2 Distributed client puzzle protocol

For our own distributed protocol (see section 4), we model
a finite configuration consisting of one client, one attacker,
two intermediate filtering nodes, and one server. After some
communication (sharing of per-flow summary traffic infor-
mation), the monitoring nodes determine the puzzle diffi-
culty level for a given flow. Adaptability property (see sec-
tion 4.6) requires that clients should not be able to get ser-
vice from the server by solving a puzzle of lower difficulty
level than that associated with the total traffic directed to
that server, as viewed by the intermediate filtering nodes.

5.3 Modeling of anti-DoS properties

In this section, we show how the security properties that
a DDoS prevention protocol is required to provide (see an
informal description in section 4.6) can be stated as game
strategies for different players and easily formulated as ATL
formulas. One of the major advantages of using a game-
based framework is that it enables us to directly and for-
mally model adversarial and cooperative behaviors between
different entities taking part in a protocol run. For example,
we can formally model the collaborative strategy of a coali-
tion of filtering nodes that cooperate in order to defeat a
coalition of malicious clients.

5.3.1 Properties of challenge-response client puzzles

The ATL formulae that must be maintained by the protocol
are given below. In the formulae,Clients are legitimate

clients,Servers are the servers andfull is the state pred-
icate stating that all resources at the server are allocated.
Boolean variablesrequestClient and requestAttacker

indicate whether the entity sending a request to the
server is legitimate or malicious. Boolean variables
allocatedClient andallocatedAttacker indicate whether
the server allocated resources in response to a request from
a legitimate (respectively, malicious) client. Boolean vari-
ablesClientPuzzleSolution andAttackerPuzzleSolution

indicate whether the client (respectively, attacker) has cor-
rectly solved the puzzle.

Note that a property of the form≪ X ≫ φ does
not mean that only members ofX are participating in the
protocol. For example, the client authentication property
says that, regardless of the attacker’s actions, the coali-
tion of honest clients and servers has a strategy such that
in any state in which the attacker makes the predicate
AttackerPuzzleSolution (over attacker’s state variables)
false, the predicateallocatedAttacker (over servers’ state
variables) is also false, due to previous actions by clients
and servers.

Availability Expressed by this ATL path formula:

≪ Clients, Servers ≫�((ClientPuzzleSolution → allocatedClient)∧
(allocatedClient → ClientPuzzleSolution))

This says that the server allocates resources to a client
if and only if the client has solved the puzzle presented
to him. There is no adaptation of the puzzle difficulty
level in the basic challenge-response client puzzle pro-
tocol.

Liveness Expressed by this ATL path formula:

≪ Servers ≫�((¬full) →
(requestClient → allocatedClient)∧
(requestAttacker → allocatedAttacker))

This says that in any state in which the server is not
full, it grants resources to all requesters regardless of
whether they are legitimate or malicious.

Client authentication Expressed by this formula:

≪ Clients, Servers ≫�(¬AttackerPuzzleSolution ∧ full →
¬allocatedAttacker)

This says that legitimate participants have a strategy
that results in not allocating resources to an attacker
who has not solved the puzzle presented to him.

We used the MOCHA model checker to formally verify
that the above three properties hold for the basic challenge-
response client puzzle protocol of Fenget al. [13].

5.3.2 Properties of distributed client puzzles

In the ATL formulae below,Clients are legitimate clients,
Servers are the servers,Filters are the intermediate
filtering nodes,Monitors are the intermediate monitor-
ing nodes andfull is the state predicate stating that all
resources at the server have been allocated. Boolean
variablesrequestClient and requestAttacker indicate
whether the entity sending a request to the server is le-
gitimate or malicious. Boolean variablesallocatedClient

and allocatedAttacker indicate whether the server al-
located resources in response to a request from a le-
gitimate (respectively, malicious) client. Boolean vari-
ablesClientPuzzleSolution andAttackerPuzzleSolution

indicate whether the puzzle has been solved correctly,
difficulty level is the current puzzle difficulty level, and
pkts1[0] andpkts1[1] contain the number of packets from
client1 to monitor0 (monitor1, respectively). Since we are
only modeling one server, that server is assumed to be the
destination of all the packets.

Availability Expressed by this ATL path formula:

≪ Clients, F ilters ≫�((ClientPuzzleSolution → allocatedClient)∧
(allocatedClient → ClientPuzzleSolution))

This is similar to the property for the basic challenge-
response protocol, except that here it’s theintermedi-
ate filtering nodes(possibly in coalition with legiti-
mate clients) who must have a collaborative strategy
for ensuring that server resources are allocated to a
client if and only if the client has solved the puzzle
presented to him.

Note that while the availability propertyper sedoes
not model the increasing difficulty of the puzzles as
the traffic volume increases, theadaptabilityproperty
(see below) guarantees that the current difficulty level
is equal to the total traffic volume for a given flow.

Liveness Expressed by this ATL path formula:

≪ Filters, Servers ≫�((¬full) →
(requestClient → allocatedClient)∧
(requestAttacker → allocatedAttacker))

Same as for the basic protocol, except that servers are
assisted by filtering nodes in ensuring that, provided
the server is not full, everybody is granted access.

Client authentication Expressed by essentially the same
formula as for the basic challenge-response protocol:

≪ Clients, F ilters ≫�(¬AttackerPuzzleSolution ∧ full →
¬allocatedAttacker)

Adaptability Expressed by this ATL path formula:

≪ Filters, Monitors ≫�(difficulty level = pkts1[0] + pkts1[1])

This says that the filtering and monitoring nodes have
a collaborative strategy for reaching a state in which
the difficulty level of puzzles is equal to the total traf-
fic (across both monitors) directed to the destination
server.

We used the MOCHA model checker to formally verify
that all four properties hold for our distributed client puzzle
protocol.

6 DoS prevention for key establishment

In this section, we formalize one of the variants of the
Just Fast Keying (JFK) key establishment protocol [3], and
use the MOCHA model checker to verify its resistance to
resource exhaustion attacks.

6.1 JFKr protocol

The JFK design paper [3] describes two variants of the
protocol. The variants are very similar. JFKr protects the
responder’s identity against active attacks and the initiator’s
identity against passive attacks, while JFKi protects the ini-
tiator’s identity only against active attacks. Both variants
aim to defend the responder against resource exhaustion at-
tacks caused by a malicious client or clients initiating a large
number of spurious protocol sessions.

We limit our attention to the JFKr variant. Our notation
appears in fig. 6.

JFKr specification. The JFKr protocol consists of
four messages. The third and fourth messages are
protected using keysKa (for integrity checking)
and Ke (for encryption). The keys are computed as
Ka,e = hashx(Ni, Nr, {“a” , “e”}), where x is the
shared secret computed as the joint Diffie-Hellman value:
x = xdr

i = xdi
r . Heredr,i is the responder’s (respectively,

initiator’s) DH exponent (see fig. 6).

I → R : Ni, xi

R → I : Ni, Nr, xr, gr, tr
wheretr = hashKr

(xr, Nr, Ni, IPi)
I → R : Ni, xi, Nr, xr , tr, ei, hi

where ei =encKe
(IDi, ID

′

r, sai,

sigKi
(Nr, Ni, xr, xi, gr)),

hi =hashKa
(“i” , ei)

R → I : er, hr

where er =encKe
(IDr, sar,

sigKr
(xr, Nr, xi, Ni)),

hr =hashKa
(“r” , er)

hashk(M) Keyed hash of messageM using key
k.

enck(M) Encryption of messageM using
symmetric keyk.

sigki
(M) Digital signature of messageM un-

der principali’s private key.
Ni Initiator’s nonce.
Nr Responder’s nonce.
di Initiator’s secret exponent.
dr Responder’s secret exponent.
g Diffie-Hellman group generator.
xi = gdi Initiator’s Diffie-Hellman value.
xr = gdr Responder’s Diffie-Hellman value

(same for multiple sessions).
IPi Initiator’s IP address.
IPr Responder’s IP address.
sai Initiator’s desired security associa-

tion.
sar Security association that the respon-

der may need to give to the initiator
(e.g., responder’s SIP in IPSec).

Figure 6. Notation for the JFKr model.

6.2 Modeling of anti-DoS properties

The JFK protocol employs a cookie-based scheme for
preventing resource consumption attacks. After the first
message, the responder computes acookie(an unforgeable
keyed hash value of the information identifying the connec-
tion) and sends it back to the initiator (tr value in the spec-
ification of section 6.1). The responder does not establish
any state until the initiator returns the cookie in the third
message of the protocol. The responder verifies the cookie
by recomputing the keyed hash and comparing it with the
value returned by the initiator. Verified cookies are cached
at the responder to prevent the replay of old cookies. This
cache grows with time as the number of legitimate connec-
tions increases, and is flushed when the responder’s secret
changes, invalidating all existing cookies. In our simplified
attacker model, we do not attempt to model cookie replay
attacks, and thus our model for the JFK responder does not
include the cookie cache (see [1] for a full-fledged model of
the JFK protocol).

Unlike the client puzzle protocols considered in the rest
of this paper, the purpose of responder cookies in JFK is
simply to confirm that the source IP address is legitimate,
while the purpose of client puzzles is both to confirm the
client address and to force the client to perform a computa-
tional intensive task such as guessing the missing bits in the
cookie (puzzle).

In the formulas below,responder cookie is a predicate
which holds iff the initiator returned the correct cookie, and

hashi holds iff the value of the initiator’s MAChi is equal
to that computed by the server. Flagfail stop Responder

is used to indicate that the responder has stopped execution
of the protocol before it could complete. This follows Gong
and Syverson’s fail-stop model [15].

Before completing the protocol and starting to use the
established key, the initiator is expected to verify the MAC
(hash value) sent by the responder in the fourth message of
the protocol. Lethashr be the predicate which holds iff this
value matches that expected by the initiator.

Fail-stop responder Expressed by this ATL path formula:

≪ Responder ≫�((¬responder cookie ∨ ¬hash i) →
fail stop Responder)

If the responder does not receive the cookie or the
cookie is not equal to the expected hash value, then
the responder may abort the protocol.

Fail-stop initiator Expressed by this ATL path formula:

≪ Initiator ≫�((¬hashr) → fail stop Initiator)

If the responder’s hash value is incorrect, then the ini-
tiator will abort the protocol.

7 Conclusions

We presented a new protocol that protects against mali-
cious bandwidth consumption by using adaptive client puz-
zles and pushing their generation to the intermediate routers
(rather than destination servers). The routers adaptively
change the difficulty level of the puzzles depending on the
global measurement of flows directed to a particular desti-
nation.

We also demonstrated how game-based verification tech-
niques can be used to analyze availability-related properties
of network protocols. As in the case of other adversarial
protocols such as fair exchange, alternating-time temporal
logic provides a concise and powerful formal language for
expressing the properties of interest.

Our case studies include two client puzzle protocols and
a state-of-the-art key establishment protocol. Their anti-
DoS properties have been verified automatically using the
MOCHA model checker. We believe that game-based for-
mal methods are a natural fit for verification problems aris-
ing in the analysis of availability, and can be applied to a
wide range of denial-of-service prevention protocols.

Acknowledgments. We are very grateful to the anony-
mous CSFW reviewers for their insightful comments. Their
suggestions have significantly improved our protocols.

References

[1] M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying in
the Pi calculus. InProc. ESOP ’04, pages 340–354, 2004.

[2] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Mod-
erately hard, memory-bound functions. InProc. NDSS ’03,
pages 25–39, 2003.

[3] W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ioannidis,
A. Keromytis, and O. Reingold. Just Fast Keying: key agree-
ment in a hostile Internet.ACM Trans. Information and Sys-
tems Security, 7(2):242–273, 2004.

[4] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time
temporal logic.J. ACM, 49(5):672–713, 2002.

[5] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and
S. Tasiran. MOCHA: modularity in model checking. In
Proc. CAV ’98, pages 512–525, 1998.

[6] D. Andersen. Mayday: distributed filtering for Internetser-
vices. InProc. USENIX Internet Technologies and Systems
’03, 2003.

[7] T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authenti-
cation with client puzzles. InProc. 8th Security Protocols
Workshop, pages 170–178, 2000.

[8] B. Bloom. Space/time trade-offs in hash coding with allow-
able errors.CACM, 13(7):422–426, 1970.

[9] R. Chadha, S. Kremer, and A. Scedrov. Formal analysis
of multi-party contract signing. InProc. CSFW ’04, pages
266–279, 2004.

[10] A. Datta, J. Mitchell, and D. Pavlovic. Derivation of the JFK
protocol. Kestrel Institute Technical Report KES.U.02.03,
July 2002.

[11] D. Dean and A. Stubblefield. Using client puzzles to protect
TLS. In Proc. USENIX Security ’01, pages 1–8, 2001.

[12] W. Feng. The case for TCP/IP puzzles. InProc. SIG-
COMM Workshop on Future Directions in Network Archi-
tecture, pages 322–327, 2003.

[13] W. Feng, E. Kaiser, W. Feng, and A. Luu. The design and
implementation of network puzzles. InProc. INFOCOM
’05, 2005.

[14] V. Gligor. Guaranteeing access in spite of service-flooding
attacks. InProc. Security Protocols Workshop, 2003.

[15] L. Gong and P. Syverson. Fail-stop protocols: an approach
to designing secure protocols. InProc. DCCA ’95, pages
44–55, 1995.

[16] C. Gunter, S. Khanna, K. Tan, and S. Venkatesh. DoS pro-
tection for reliably authenticated broadcast. InProc. NDSS
’04, 2004.

[17] T. Henzinger, R. Majumdar, F. Mang, and J.-F. Raskin. Ab-
stract interpretation of game properties. InProc. SAS ’00,
pages 220–239, 2000.

[18] A. Hussain, J. Heidemann, and C. Papadopoulos. A frame-
work for classifying denial of service attacks. InProc. SIG-
COMM ’03, pages 99–110, 2003.

[19] J. Ioannidis and S. Bellovin. Pushback: router-based de-
fense against DDos attacks. InProc. NDSS ’02, pages 79–
86, 2002.

[20] A. Juels and J. Brainard. Client puzzles: a cryptographic
defense against connection depletion. InProc. NDSS ’99,
pages 151–165, 1999.

[21] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-
Sale: Surviving organized DDoS attacks that mimic flash
crowds. InProc. NSDI, 2005.

[22] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
overlay services. InProc. SIGCOMM ’02, pages 61–72,
2002.

[23] S. Kremer and J.-F. Raskin. Game analysis of abuse-free
contract signing. InProc. CSFW ’02, pages 206–220, 2002.

[24] S. Kremer and J.-F. Raskin. A game-based verification of
non-repudiation and fair exchange protocols.J. Computer
Security, 11(3):399–430, 2003.

[25] S. Lafrance and J. Mullins. Using admissible interference to
detect denial of service vulnerabilities. InProc. IWFM ’03,
2003.

[26] J. Leiwo, T. Auro, and P. Nikander. Towards network denial
of service resistant protocols. InProc. SEC ’00, pages 301–
310, 2000.

[27] P. Liu and W. Zang. Incentive-based modeling and inference
of attacker intent. InProc. CCS ’03, pages 179–189, 2003.

[28] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. Controlling high bandwidth aggregates in
the network.ACM CCR, 32(3):62–73, 2002.

[29] C. Meadows. A cost-based framework for analysis of denial
of service in networks.J. Computer Security, 9(1/2):143–
164, 2001.

[30] J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoS at the
source. InProc. ICNP ’02, pages 312–321, 2002.

[31] D. Moore, C. Shannon, and J. Brown. Code-Red: a case
study on the spread and victims of an Internet worm. In
Proc. 2nd Internet Measurement Workshop, pages 273–284,
2002.

[32] D. Moore, G. Voelker, and S. Savage. Inferring Internet
denial-of-service activity. InProc. USENIX Security ’01,
pages 9–22, 2001.

[33] W. Morein, A. Stavrou, C. Cook, A. Keromytis, V. Misra,
and R. Rubenstein. Using graphic Turing tests to counter
automated DDoS attacks against web servers. InProc. CCS
’03, pages 8–19, 2003.

[34] K. Park and H. Lee. On the effectiveness of route-based
packet filtering for distributed DoS attack prevention in
power-law internets. InProc. SIGCOMM ’01, pages 15–26,
2001.

[35] V. Paxson. An analysis of using reflectors for distributed
denial-of-service attacks.ACM CCR, 31(3):38–47, 2001.

[36] V. Ramachandran. Analyzing DoS-resistance of proto-
cols using a cost-based framework. Yale Technical Report
YALEU/DCS/TR-1239, July 2002.

[37] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Prac-
tical network support for IP traceback. InProc. SIGCOMM
’00, pages 295–306, 2000.

[38] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchak-
ountio, S. Kent, and W. Strayer. Hash-based IP traceback.
In Proc. SIGCOMM ’01, pages 3–14, 2001.

[39] D. Song and A. Perrig. Advanced and authenticated marking
schemes for IP traceback. InProc. INFOCOM ’01, pages
878–886, 2001.

[40] S. Staniford, V. Paxson, and N. Weaver. How to own the
Internet in your spare time. InProc. USENIX Security ’02,
pages 149–167, 2002.

[41] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. InProc.
EUROCRYPT ’03, pages 294–311, 2003.

[42] H. Wang, D. Zhang, and K. Shin. Detecting SYN flooding
attacks. InProc. INFOCOM ’02, pages 1530–1539, 2002.

[43] X. Wang and M. Reiter. Defending against denial-of-service
attacks with puzzle auctions. InProc. IEEE Security and
Privacy ’03, pages 78–92, 2003.

[44] B. Waters, A. Juels, J. Halderman, and E. Felten. New client
puzzle outsourcing techniques for DoS resistance. InProc.
CCS ’04, pages 246–256, 2004.

[45] J. Xu and W. Lee. Sustaining availability of Web services
under distributed denial of service attacks.IEEE Trans.
Computers, 52(2):195–208, 2003.

[46] A. Yaar, A. Perrig, and D. Song. Pi: A path identification
mechanism to defend against DDos attacks. InProc. IEEE
Security and Privacy ’03, pages 93–109, 2003.

[47] A. Yaar, D. Song, and A. Perrig. SIFF: A stateless Internet
flow filter to mitigate DDos flooding attacks. InProc. IEEE
Security and Privacy ’04, pages 130–146, 2004.

A MOCHA models

Model for the basic challenge-response client puzzle pro-
tocol. We modeled the protocol of Fenget al. [13] with two le-
gitimate clients and two attackers requesting service froma server
that can allocate resources to at most two clients. We assumethat
legitimate clients can solve puzzles of a higher difficulty level than
attackers. Therefore, we assign a high priority for puzzle solving
to legitimate clients and a low priority to the attackers.

Excerpts from our model are in figs. 7 and 8. Variables are
explained below:

Ci, Ai, S Legitimate Clients, Attackers, and the Server.

requesti Boolean variable indicates request sent to the server.

allocatedi Boolean variable indicates whether the server has allo-
cated resources toi.

Xi Boolean variable indicates puzzle solution fromi.

Nc,Ns,Na Client’s (respectively, server’s, attacker’s) nonce, mod-
eled as a counter.

Pci Puzzle sent by the server to the clienti.

h priority Boolean variable indicates the requesting entity’s puz-
zle solving capability (“true” for clients, “false” for attack-
ers).

sum Variable that keeps track of resources allocated at the server.

Model for the distributed client-puzzle protocol. The
model for our own distributed client puzzle protocol comprises
two parts: (a) the challenge-response puzzle protocol between
clients and filters (same as for the basic protocol), and (b)
inter-monitor node communication that adaptively determines the
global client puzzle difficulty level.

For verification of our protocol, we assume filtering and moni-
toring are performed at the same node. We call such node a moni-
tor. An excerpt of the monitor model appears in fig. 10 (the model
for clients, attackers, and servers is the same as in figs. 7 and 8).
Variables are explained below:

Excerpt: Genuine client in the challenge-response client
puzzle protocol
type my int : (0..2)
private currentS : myint
init

[] true→ Nc’ := 0; request’ := false; hpriority’ := true; X’
:= false; ACK’ := false; STOPc’ := false; currentS’ := 0
update

[] ∼ STOPc→ request’ := true; Nc’ := Nc + 1
[] Pc & (Ns > currentS) & hc &∼ STOPc→ X’ := true;

currentS’ := Ns
[] SYNACK & ∼ STOPc→ ACK’ := true; STOPc’ := true

Excerpt: Attacker in the challenge-response client puzzle
protocol
init

[] true → Na’ := 0; request’ := false; hpriority’ := false;
X’ := false; ACK’ := false; STOPa’ := false; currentS’ := 0
update

[] ∼ STOPa→ request’ := true; Na’ := Na + 1
[] Pa & (Ns > currentS) & ha &∼ STOPa→ X’ := true;

currentS’ := Ns
[] SYNACK & ∼ STOPa→ ACK’ := true; STOPa’ := true

Figure 7. MOCHA model of legitimate clients
and attackers in the challenge-response pro-
tocol of [13].

Diff fromi Puzzle difficulty level sent by monitori.

SENDdiffij Becomes true when monitori computes the appropri-
ate difficulty level based on the total traffic flow and is ready
to send a puzzle to clientj.

Ncij Nonce from clienti to monitorj.

reqij Request from clienti to monitorj.

pkts Array of traffic going to each monitor,i.e., pkts[i] is the
number of packets going to monitori.

difficulty leveli Difficulty level of the puzzle clienti needs to
solve.

SENDmij k Used for communication between monitors. It be-
comes true when monitori is ready to send a message to
monitor j with information about the level of traffic from
clientk.

flow info toi Traffic information exchanged between the moni-
tors.

Model for DoS prevention in the JFKr protocol. The
protocol is described in section 6. An excerpt from our MOCHA
model is in fig. 9. In the model,Ni andNri refer to the initiator’s
and responder’s nonces, respectively;xi andxri refer to their re-
spective Diffie-Hellman exponentials;ti refers to the responder’s
cookie that the initiator needs to return correctly in the third mes-
sage of the protocol;hi refers to the hash value computed using
keyKa.

Excerpt: Server in the challenge-response client puzzle protocol
type my int : (0..2)
private sum : sindexType; allocateresourceC1 : bool; allocateresourceA1 : bool; STOPs : bool; currentC1 : myint;
currentA1 : myint
update

[] ∼ STOPs & requestC1 & (NcC1> currentC1) &∼ allocatedC1→ PcC1’ := true; NsC1’ := NcC1 + 1; hcsC1’
:= true

[] ∼ STOPs & XC1 &∼ allocatedC1→ SYNACKC1’ := true
[] ∼ STOPs & ACKC1 &∼ allocatedC1→ allocateresourceC1’ := true
[] ∼ STOPs & allocateresourceC1 & (sum< 2) & ∼ allocatedC1→ allocatedC1’ := true; sum’ := sum + 1
[] ∼ STOPs & allocateresourceC1 & (sum = 2) & hpriorityC1 & ∼ allocatedC1→ allocatedC1’ := true
[] ∼ STOPs & requestA1 & (NaA1> currentA1) &∼ allocatedA1→ PaA1’ := true; NsA1’ := NaA1 + 1; hasA1’

:= true
[] ∼ STOPs & XA1 &∼ allocatedA1→ SYNACKA1’ := true
[] ∼ STOPs & ACKA1 &∼ allocatedA1→ allocateresourceA1’ := true
[] ∼ STOPs & allocateresourceA1 & (sum< 2) & ∼ allocatedA1→ allocatedA1’ := true; sum’ := sum + 1
[] ∼ STOPs & allocateresourceA1 & (sum = 2) & hpriorityA1 & ∼ allocatedA1→ allocatedA1’ := true

Figure 8. MOCHA model of servers in the challenge-response p rotocol of [13].

Excerpt: Initiator in the JFKr protocol
init

[] true→ request’ := true; Ni’ := false; xi’ := false; hi’ := false; ti’:= false; accepti’ := false; fail’ := false
update

[] request &∼ accepti &∼ fail & ∼ STOPc→ Ni’ := true; xi’ := true
[] Nri & xri & tr & ∼ accepti &∼ fail & ∼ STOPc→ ti’ := true; hi’ := true
[] ∼ hri & accepti &∼ fail & ∼ STOPc→ fail’ := true; STOPc’ := true
[] hri & ∼ accepti &∼ fail & ∼ STOPc→ accepti’ := true
[] default→ STOPc’ := true

Excerpt: Responder in the JFKr protocol
init

[] true→ Nri’ := false; xri’ := false; tri’ := false; hri’ := false; accepts’ := false; fails’ := false
update

[] Ni’ & xi’ & ∼ accepts &∼ fails & ∼ STOPsi→ Nri’ := true; xri’ := true; tri’ := true
[] ∼ fails & (∼ hi’ | ∼ ti’) → fails’ := true
[] hi’ & ∼ accepts &∼ fails & ti’ & ∼ STOPsi→ hri’ := true; accepts’ := true
[] default→ STOPsi’ := true; accepts’ := true

Figure 9. MOCHA model of the JFKr protocol.

Excerpt: Filters in the distributed client puzzle protocol
type packets : (0..100)
type noof monitors : (0..1)
type traffic : array (0..1) of packets
module Client1
external Diff from1 : traffic; Diff from2 : traffic; SENDdiff11 : bool; SENDdiff21 : bool
interface Nc11 : bool; Nc12 : bool; req11 : bool; req12 : bool;pkts1 : traffic; difficulty level1 : packets
private STOPc : bool
init

[] true → Nc11’ := true; Nc12’ := true; req11’ := false; req12’ := false; STOPc’ := false; difficultylevel1’ := 0;
pkts1’[0] := 0; pkts1’[1] := 0
update

[] Nc11 & ∼ STOPc→ pkts1’[0] := 1; req11’ := true
[] Nc12 & ∼ STOPc→ pkts1’[1] := 4; req12’ := true
[] ∼ STOPc & SENDdiff11→ difficulty level1’ := Diff from1[0]; STOPc’ := true
[] ∼ STOPc & SENDdiff21→ difficulty level1’ := Diff from2[0]; STOPc’ := true
[] default→ STOPc’ := true

endatom
endmodule
module Monitor1
external req11 : bool; SENDm211 : bool; pkts1 : traffic; flowinfo to2 : traffic
interface flowinfo to1 : traffic; SENDm121 : bool; Diff from1 : traffic; SENDdiff11 : bool
private STOPs : bool
init

[] true→ STOPs’ := false; Difffrom1’[0] := 0
update

[] ∼ STOPs & req11→ flow info to1’[0] := (flow info to1[0] + pkts1[0]); SENDm121’ := true
[] ∼ STOPs & SENDm211→ Diff from1’[0] := (Diff from1[0] + flow info to1[0] + flow info to2[0]); SEND-

diff11’ := true; STOPs’ := true
endatom
endmodule
module Monitor2
external req12 : bool; SENDm121 : bool; pkts1 : traffic; flowinfo to1 : traffic
interface flowinfo to2 : traffic; SENDm211 : bool; Diff from2 : traffic; SENDdiff21 : bool
private STOPs : bool
init

[] true→ STOPs’ := false; Difffrom2’[0] := 0
update

[] ∼ STOPs & req12→ flow info to2’[0] := (flow info to2[0] + pkts1[1]); SENDm211’ := true
[] ∼ STOPs & SENDm121→ Diff from2’[0] := (Diff from2[0] + flow info to1[0] + flow info to2[0]); SEND-

diff21’ := true; STOPs’ := true
endatom
endmodule

Figure 10. MOCHA model of monitors in the new distributed cli ent puzzle protocol.

