Efficient Finite-State Analysis for
Large Security Protocols

Vitaly Shmatikov Ulrich Stern

Computer Science Department
Stanford University
Stanford, CA 94305-9045

{shmat, uli}@cs.stanford.edu

Abstract

We describe two state reduction techniques for finite-state models of security pro-
tocols. The techniques exploit certain protocol properties that we have identified as
characteristic of security protocols. We prove the soundness of the techniques by
demonstrating that any violation of protocol invariants is preserved in the reduced
state graph. In addition, we describe an optimization method for evaluating param-
eterized rule conditions, which are common in our models of security protocols. All
three techniques have been implemented in the Mury verifier.

1 Introduction

Security protocols are becoming widely used and many new protocols are being proposed.
Since security protocols are notoriously difficult to design, computer assistance in the design
process is desirable. The existing verification methods are mainly based on either finite-
state analysis, or computer-assisted proof. The two approaches are complementary. Unlike
computer-assisted proof, finite-state analysis cannot guarantee correctness for a protocol
of unbounded size (e.g., a protocol with a potentially unbounded number of participants).
However, finite-state analysis requires much less human expertise and is fully automatic.

Finite-state analysis of security protocols begins with a high-level description of the
honest participants of the protocol. This protocol model must be augmented with some
specification of the possible actions of an intruder and a precise statement of the desired
properties of the protocol. The finite-state analysis tool then exhaustively enumerates all
reachable states of the model, checking for each state whether it satisfies the desired cor-
rectness criteria. The main problem in this analysis is the very large number of reachable
states for most protocols.

In this paper, we describe two techniques that reduce the number of reachable states
and hence allow the analysis of larger protocols. We prove the techniques sound, i.e., we
show that each protocol error that would have been discovered in the original state graph
will still be discovered in the reduced state graph. The techniques are based on certain
protocol properties that we have identified as characteristic of security protocols. We have
implemented both techniques in the Mury verification system [3] and have evaluated them
on the SSL [4] and Kerberos [5] protocols.

The first technique is to let the intruder always intercept messages sent by the honest
participants (instead of making such interception optional). This technique has resulted in

a very large reduction in both the number of reachable states and execution time. While
this technique has been used by several researchers [6, 1, e.g.], it has neither been proved
sound, nor has its importance been demonstrated.

The second technique prevents the intruder from sending messages to honest participants
in states where at least one of the honest participants is able to send a message. Intuitively,
the technique makes the intruder more powerful since the intruder maximally increases its
knowledge before forging and sending messages to honest participants; hence the analysis of
the reduced state graph should not miss any attacks on the protocol. The technique typically
saved a factor of two or more in the number of reachable states as well as execution time. It
is interesting to note that that this technique is more powerful than partial-order techniques
exploiting the independence of the honest participants.

In addition to the two state reduction techniques, we also describe a technique that
reduces the execution time of Murep, but not the number of reachable states. The technique
is based on the following observations:

The intruder model employed in Mur is highly nondeterministic and thus gives rise to
a large number of state transition rules. In every reachable state, the enabling conditions
of all rules are evaluated. Evaluation can be sped up by partitioning the rules into sets
with identical enabling conditions and evaluating the condition only once for each set. This
technique typically increased the overall speed of Mury by a factor of four.

2 Overview of Mury

Mury [2] is a protocol or, more generally, finite-state machine verification tool. It has been
successfully applied to several industrial protocols, especially in the domains of multipro-
cessor cache coherence protocols and multiprocessor memory models [3, 10, 11] and in the
domain of security protocols [7, 8]. The purpose of finite-state analysis, commonly called
“model checking,” is to exhaustively search all execution sequences.

To verify a security protocol using Muryp, one has to model both the protocol and the
intruder (or adversary) in the Murp language and augment the resulting model with a
specification of the desired properties. The Mury system automatically checks, by explicit
state enumeration, if every reachable state of the model satisfies the given specification. For
the state enumeration, either breadth-first or depth-first search can be selected. Reached
states are stored in a hash table to avoid redundant work when a state is revisited. The
memory available for this hash table typically determines the largest tractable problem.

The intruder is generally modeled to control the network and allowed the following
actions: (1) overhear every message, remember all parts of each message (in a knowledge
database), and decrypt ciphertext when it has the key, (2) intercept (delete) messages,
and (3) generate messages using any combination of initial knowledge about the system
and parts of overheard messages. We also assume that the intruder can masquerade as an
honest participant in the system, capable of initiating communication with a truly honest
participant, for example. We will refer to this intruder model as “mechanical intruder
model” because of its simplicity.

The Mury language is a simple high-level language for describing nondeterministic finite-
state machines. Many features of the language are familiar from conventional programming
languages. The main features not found in a “typical” high-level language are described in
the following paragraphs.

The state of the model consists of the values of all global variables. In a startstate
statement, initial values are assigned to global variables. The transition from one state to
another is performed by rules. Each rule has a Boolean condition and an action, which is a
program segment that is executed atomically. The action may be executed if the condition

is true (i.e., the rule is enabled) and typically changes global variables, yielding a new state.
Most Murg models are nondeterministic since states typically allow execution of more than
one rule. For example, in the model of a security protocol, the intruder usually has the
nondeterministic choice of several messages to replay.

Mury has no explicit notion of processes. Nevertheless a process can be implicitly mod-
eled by a set of related rules. The parallel composition of two processes in Mury is simply
done by using the union of the rules of the two processes. Each process can take any num-
ber of steps (actions) between the steps of the other. The resulting computational model is
that of asynchronous, interleaving concurrency. Parallel processes communicate via shared
variables; there are no special language constructs for communication.

The Muryp language supports scalable models. In a scalable model, one is able to change
the size of the model by simply changing constant declarations. When developing protocols,
one typically starts with a small protocol configuration. Once this configuration is correct,
one gradually increases the protocol size to the largest value that still allows verification to
complete. In many cases, an error in the general (possibly infinite state) protocol will also
show up in a scaled-down (finite state) version of the protocol. Mury can only guarantee
correctness of the scaled-down version of the protocol, but not correctness of the general
protocol. For example, the numbers of clients and servers in a security protocol are typically
scalable and defined by constants.

The desired properties of a protocol can be specified in Mury by invariants, which are
Boolean conditions that have to be true in every reachable state. If a state is reached in
which some invariant is violated, Mury prints an error trace — a sequence of states from the
start state to the state exhibiting the problem.

3 Properties of security protocols

In this section, we identify several characteristic properties of security protocols that we
will use to develop state reduction techniques. These properties characterize every security
protocol we have encountered so far, including, e.g., Kerberos [5], SSL [4], and Needham-
Schroeder [9]. The properties are quite simple, yet recognizing them is useful both for better
understanding of the protocols and for making finite-state analysis as efficient as possible
within the basic framework of the mechanical intruder model.

3.1 Protocol invariants are monotonic

The invariants used to specify correctness of security protocols are typically of the forms
“Intruder does not know X” or “If honest participant A reaches state Si, then honest
participant B must be in state S;.” Assume that an invariant of this form is invalid for a
given state. Then increasing the intruder’s knowledge set (which is part of the state) will
not make the violated invariant valid. Hence we will call the protocol invariant monotonic
with respect to the intruder’s knowledge set. All protocol invariants we have encountered
to date have been monotonic.

The implication of this property for state reduction is that we can safely rearrange the
reachable state graph, possibly eliminating some states, as long as we can guarantee that
for every state in the old graph, there exists a state in the new graph in which the state of
all honest protocol participants is the same while the intruder’s knowledge set is the same
or larger. Because protocol invariants are monotonic, such state reductions are sound in
the sense that any invariant that would have been violated in the old state graph will still
be violated in the new graph.

We also assume that protocol invariants are defined in terms of the intruder’s knowledge
set and the states of the honest protocol participants. The invariants should not depend on
the state of the network. (Since the network is assumed to be controlled by the intruder,
invariants that depend on the state of the network can be rewritten to depend on the
intruder’s knowledge set.)

3.2 Intruder controls the network

It is traditionally assumed in security protocol analysis that the intruder exercises full con-
trol over the network, including the option to intercept any message. Instead of giving the
intruder the option to intercept messages, we will assume that the intruder always inter-
cepts. We model interception in Mury by having the intruder remove the message from the
“network” and store it in its database. The intruder can then replay the message to the
intended recipient, or forge a similar-looking message.

Intuitively, the assumption that every message gets intercepted will not weaken the
intruder and should hence be sound. In Section 5.1 below, this assumption is used to cut
the transitions leading to redundant states, differing only in the contents of the intruder’s
database. The only state left is the one in which the database contains all information
observable from the exchange of protocol messages up to that moment.

3.3 Honest protocol participants are independent

Honest protocol participants are fully independent from each other. The only means of
communication between the participants is by sending messages on the network, which is
assumed to be fully controlled by the intruder. Sending a message to another participant is
thus equivalent to simply handing it to the intruder, hoping that the latter will not be able
to extract any useful information from it and will replay it intact to the intended recipient.

As a consequence, an honest protocol participant has no way of knowing for sure what
the current state of other participants is, since all information about the rest of the world
arrives to him through a network fully controlled by the intruder. Actions of each honest
participant (i.e., sending and receiving of messages) thus depend only on its own local state
and not on the global state that comprises the states of all participants plus that of the
intruder. In our formal representation of security protocols as state graphs, we will rely
on this property to make all transition rules for honest participants local (see Section 4.2
below). We do not consider protocols with out-of-band communication as they are beyond
the scope of our research with Mury.

4 Protocols as state graphs

In this section, we define a formalism for describing finite-state machines associated with
security protocols.

4.1 States
The global state of the system is represented by a vector:
s=[s1,.--,SN,¢€]

where N is the number of honest protocol participants, s; is the local state of the protocol
participant 7, and e is the state of the intruder.

Instead of modeling the global network, we model a separate 1-cell local network for each
honest protocol participant. All messages intended for that participant are deposited in its
local network as described in Section 4.2 below. The local state of an honest participant 4
is a pair

si = (vi, my)

where v; is the vector of current values of i’s local state variables, and m; is the message
currently in i’s local network. It is possible that m; = €, representing the empty network.

The state of the intruder is simply the set of messages that the intruder has intercepted
so far (assume that its initial knowledge is represented as an intercepted message also):

e={Mey,y. e yMey }

The intruder’s knowledge is obviously not limited to the intercepted messages. The in-
truder can split them into components, decrypt and encrypt fields, assemble new messages,
etc. However, the full knowledge set can always be synthesized from the intercepted mes-
sages, since they are the only source of information available to the intruder. Therefore, our
chosen representation for the intruder’s state is sufficient to represent the intruder’s knowl-
edge. When necessary, we will refer to the set of messages that can be synthesized from the
set of intercepted messages as synth(e). (Since operations like encryption and pairing can
be applied infinitely many times in the synthesis, the intruder’s full knowledge is generally
infinite. In practice, one can extract finite limits on the numbers of times encryption and
pairing have to be applied from the protocol definition, making the intruder’s knowledge
finite.)

4.2 Rules for honest participants
All transition rules between states have the following form in our formalism:

le) — if cr(sile) then s — &'

T;;
where ¢ (s;|e) is the condition of the rule (it depends on the local state s; in case of an
honest protocol participant, and the knowledge set e in case of the intruder), s is the original
global state, s’ is the global state obtained as the result of rule application.

We can assume without loss of generality that every transition rule for an honest protocol
participant consists of reading a non-empty message off the local network, changing the
local variables, and sending a non-empty message to another participant. If necessary,
the protocol can be rewritten so as to avoid “hidden” transitions that change the state
of a participant without visible activity on the network. The initial transition for each
participant can be triggered by a special message deposited into its local network in the
start state of the system, and the last transition can be rewritten so that it deposits another
special message on the network. This ensures that every transition reads and writes into the
network. Also, the 1-cell capacity restriction on the local network is not essential, since we
will eventually assume that every message is intercepted by the intruder immediately after
it has been sent.

The transition rules for an honest protocol participant i are represented as follows:

i =if ¢k (vi, m;) then [.. (v, m;) .. (vj,e)...] — [..(vle)... (v;,m;)..]

Informally, if condition cj evaluates to true given ¢’s local state s; = (v;,m;), then &
reads message m; off its local network, executes some code changing its local state variables

from v; to v}, and sends message m; to participant j by depositing it in j’s local network.
Note that the rule is local — its condition depends only on #’s local state. We assume that
honest participants are deterministic. In any state, there is no more than one rule enabled
for each participant. However, it is possible that rules for several participants are enabled
in the same state, resulting in nondeterminism.

4.3 Rules for the intruder

The transition rules for the intruder are global. The first set of rules describes the intruder
intercepting a message intended for an honest participant:

r(f) = if origin(m) # e then [...(v;,m)...e] = [...{v,€)...eU{m}]

The intruder first checks the origin of the message on i’s local network, since we do not
want the intruder to remove its own messages. If the message was generated by an honest
participant, it is removed from the network and added to the intruder’s database. Note that
the local variables of the honest participant are not affected by this action.

The second set of intruder rules describes the intruder generating a message and sending
it to an honest participant whose local network is empty:

r_(f) =if true then [...{v;,&)...e] = [..(v;, m)...¢€] m € synth(e)

The intruder creates a new message (either by replaying an intercepted message m € e, or
by synthesizing m from the messages stored in e) and sends it to participant ¢ by depositing
it in i’s local network. Clearly, the intruder rules are nondeterministic, as there may be
several intruder rules enabled in the same state.

There are no other transition rules in the system.

4.4 State graph

The finite-state machine associated with the protocol is a directed graph {S,T, so, @}. The
vertices S are all possible states of the protocol. The directed edges T' are pairs of states
labeled by rules such that 7\ : (s,s'") € T iff the transition rule r{'® is enabled in state s
(i-e., its condition evaluates to true) and transforms s into state s’. The finite-state machine
is nondeterministic. If several rules are enabled in state s, there will be several edges leaving
the corresponding graph vertex. We will refer to the subgraph reachable from vertex s as
R(s).

so € S is the start state of the protocol.

@ is the set of protocol invariants. An invariant is a function from states to boolean values
g : S — true|false such that ¢(s) = false if the invariant ¢ is violated in s, otherwise
q(s) = true. Since protocol invariants do not depend on the state of the network, the value
of ¢ in any state does not depend on the m; values representing the current contents of the
participants’ local networks.

We will say that state s = [s1...5n,€] is subsumed by another state s’ = [s} ... sy, €]
iff Yi s; = s} and e C e'. Informally, s’ subsumes s if the states of all honest participants
are the same in s’ as in s while the intruder’s knowledge set is the same or larger. In the
rest of the paper, subsumption will be denoted as s < s'.

Note that if s < s', then all rules enabled in s are enabled in s’, too. The reverse is not
true since the intruder’s knowledge set is larger in s’ and some rules may be enabled in s
but not in s. Therefore, R(s) (set of states reachable from s) is isomorphic to a subgraph of
R(s'). Thus, for any t reachable from s, there exists a t' reachable from s’ such that ¢ < ¢'.
We will refer to this fact as inheritance of subsumption.

Protocol invariants are monotonic with respect to the intruder’s knowledge set (increas-
ing intruder’s knowledge does not repair any violated invariants). Therefore, if s < s', then
q(s) = false implies that ¢(s') = false. We will refer to this fact as monotonicity of
invariance.

4.5 Soundness of state reduction

A finite-state analyzer such as Mury verifies the protocol by traversing the state graph
starting from state so. For every state s it reaches, Mury verifies that all invariants are
valid, i.e., Vq ¢(s) = true. Violation of any invariant signals an error in the protocol.

A state reduction technique transforms the original state graph {S, T, sg, @} into a new
graph {S",T", 50, @}. We claim that the technique is sound if all errors that would have been
discovered in the original graph will still be discovered in the new graph. More formally, if
the old graph contains a reachable state in which one of the invariants was violated, then
the new graph should contain a reachable state in which the same invariant is violated.

Jds € R(sp) Jg € Q st. q(s) = false implies Js' € R'(s9) s.t. q(s') = false

In the soundness proofs for the state reduction techniques below, we will demonstrate
that the state graph contains two vertices s and s’ such that s < s’. By monotonicity
of invariance, all invariants that are violated in s are also violated in s’. Moreover, by
inheritance of subsumption, for any ¢ reachable from s, there exists a t' reachable from s’
such that all invariants violated in ¢ are also violated in #'.

Suppose that we find a vertex s* in the state graph such that there are edges leading from
s* to both s and s’. We cut the edge from s* to s. The subgraph rooted in s may become
unreachable, reducing the number of states to be explored. However, we do not “lose” any
protocol errors by eliminating these states. Every eliminated state in which an invariant is
violated has a counterpart reachable from s’ in which the same invariant is violated.

5 State reduction techniques

In this section, we describe the state reduction techniques and prove them sound.

5.1 Intruder always intercepts

Consider a state in which one of the rules for honest participants is enabled:
81 = [.- (vi,mi) P (Uj,E) . ..6]

Suppose that state s; is such that condition ¢ (v;, m;) evaluates to true. Then rule r,(;)
(participant ¢ sends message m; to participant j) is enabled in s;. Suppose that message
m; is not known to the intruder, i.e., m; ¢ e. We intend to reduce the number of states to
be explored by having the intruder always intercept message m;.

Fig. 1 shows the subgraph rooted in s1, where

s = [...(v},e)...(vj,m;)...€]

s3 = [...{(uvi,e)...(vj,e)...eU{m;}]

S4 = [(U,,mz)(v],s)eu{mz}]

ss = [...(v},e)...(vj,m;)...eU{m;}]

Each transition in Fig. 1 is labeled with the corresponding rule: rule r,(ci) is enabled both
(e)

in 1 and s4; rule 7' (intruder removes a message from 4’s local network and stores it in the

i

/N

Figure 1: Intruder always intercepts

database) is enabled in s;; rule r_(fz) (intruder deposits a message from its database into i’s

local network) is enabled in s3. There may be additional rules enabled in states sy, ..., S5,
but we will limit our attention to the subgraph shown in the figure.

We now observe that s < s5 (the states of all honest participants are the same but the
intruder’s knowledge set is larger in s5). Therefore, we can remove the graph edge leading
from s; to s2. Any invariant violation that can be discovered by analyzing R(s2) will be
discovered by analyzing R(ss).

This state reduction technique effectively eliminates direct communication between par-
ticipants. Every message sent on the network is intercepted by the intruder and added
to the intruder’s database. There is no need to consider states in which the database is
“incomplete” (s in the example above) since they are subsumed by the states in which
the database is as complete as possible (s5 in the example above), containing all messages
exchanged on the network so far.

We can simplify the state transition rules slightly by assuming that rule r,(j) deposits
the generated message m; directly into the intruder’s database (recall that the original rule
deposited the message into j’s local network).

PO = if cg (v, my) then [(vi,m;) ... (vj,€)...e] = [..(vle)...(vj,€)...eU{m,}]

(e.) rules. Another consequence is that

i

This simplification also eliminates the need for r

rf) are the only rules that can deposit a message into an honest participant’s local network.

5.2 Intruder does not send if honest participant can send

Fig. 2 shows a fragment of the state graph in which

RE

Figure 2: Intruder does not send if honest participant can send

81 = [(v,,e)(,)e]

Sy = [<U,,mz)<,)€]

ss = [...(ui,mi) ... {vj,€) ... €]

s4 = [...(vi,ms)...(vj,my)...€]

s5 = [..-{vj,€)...(vj,€)...eU{m}}]
s6 = [--(vi,e)...(vj,m;)...eU{m}}]
st = [...(vi,€) ... (vj,m;)...€]

where m;, m; € synth(e), m’; ¢ e

()
+

In state s3, at least two rules are enabled: r ; corresponds to the intruder depositing

my; into j’s network, and f,(c') corresponds to the intruder waiting for participant ¢ to send
its message first. We intend to demonstrate that the number of states to be explored can
be reduced by considering only the latter case. Formally, the edge from s3 to s4 can be
cut from the state graph since any violation of protocol invariants that can be discovered in
R(s4) will be discovered either in R(sg), or in R(s7),

Suppose that there exists a state tg € R(s4) such that ¢(tg) = false for some invariant
q € Q. Consider the sequence of state transitions that leads from s, to tg. Each transition
is labeled by the corresponding rule:

843t05t1—)...r£tE

We will consider two cases.

Case 1. Suppose 3L € 0..E rp = f,(:), and none of the rules r; for [€ 0..L — 1 involve
participant ¢. In other words, rule f',(c') is executed at some point between s4 and tg.
Consider that state sg is identical to s4 except for the state of participant ¢, which does
not matter for rules 7, and the intruder’s knowledge set, which is strictly larger in ss.
Therefore, the rule sequence r; is enabled in sg, leading to a state t;,_;. To complete the

proof for this case, observe that ¢z, is equivalent to f7,_;.

Case 2. Suppose that VI € 0.E r; # f,(c’), i.e., none of rules leading to the erroneous
state involve participant i reading message m; off the network and sending message m;- to
participant j. The only rule enabled for i is f',(;), and it cannot become disabled as long
as the local state of i does not change. Therefore, none of the rules r; involve participant
i at all, and s; is the same in tg as in s4. To prove soundness for this case, we will first
demonstrate that if the state graph includes state sz, it must also include state s7, and
then we will show that if an invariant violation can be discovered in R(s4), it can also be
discovered in R(s7).

To prove that if the state graph contains sg, it must also contain s7, consider the sequence
of rules that leads from the start state so to s3. Since participant i’s local network contains
m; in it, the last rule in the sequence that involves ¢ must be rgfi), since only the intruder
can deposit a message into an honest participant’s local network. In Fig. 2, s; represents

the state to which rule rif:) was applied, and s» represents the resulting state. Note that
(e)

none of the rules leading from s to s3 involve i, since r}; was the last such rule in the
sequence. Therefore, the same rules are enabled in state s; that differs from s2 only in the
contents of ¢’s local network. Applying the rules, we obtain the state § that differs from s3
only in the contents of i’s local network, namely, i’s network is empty in § but contains m;
in s3. Therefore, § = s7.

i

10

To complete the soundness proof, observe that state s7 is identical to s4 except for the
state of participant ¢. Since none of the rules r; leading to tg involve participant ¢, the same
sequence of rules is enabled in s7, leading to a state #5 such that the only difference between
tr and tg is the state of participant i. More precisely, i’s local network is empty in £z but
contains m; in tg. This implies that q(fg) = false, since invariants do not depend on the
state of the network. The proof is complete.

The described state reduction technique makes sure that the intruder never sends a
message if there is an honest participant who is ready to send a message, too (i.e., one
of the rules for honest participants is enabled). The intuitive reason for this is that the
intruder’s knowledge set should be as complete as possible before the intruder synthesizes a
message. By waiting until the honest participant sends its message and intercepting it, the
intruder potentially increases its knowledge set.

To ensure that the intruder sends messages only when no one else can, we can modify
the condition for rule rgf) so that it is enabled only in the states of the following form:

s = [{v1,€),...,{vN,€), €]

An alternative implementation of this state reduction technique is to assign a lower
priority to the intruder rules than to the rules for honest participants (see Section 6.1
below).

Remark. A related state reduction technique exploits the independence of honest protocol
participants to fix a partial order and eliminate multiple interleavings of message sends.
Since all participants send their messages to the intruder, the order in which the messages
are deposited into the intruder’s database does not matter.

However, there is no need to impose a partial order on the honest participants if the
technique described in this section is implemented. To see why this is the case, suppose we
start with an empty network. After the intruder sends a message to the first participant,
the rules for the intruder become disabled until the first participant replies by depositing its
message into the intruder’s database. Only then can the intruder send a message to another
participant. Hence there are no states in which more than one participant is ready to send
a message.

6 Implementation issues

In this section, we discuss how state reduction techniques can be implemented by assigning
priorities to transition rules. We also describe another Mury optimization that does not
rely on state reduction.

6.1 Rule priorities

To support the state reduction techniques described above, we extended Mury language
with rule priorities. In the extended language, a model implementor can assign an integer
priority to every rule in the system. If several rules are enabled in a particular state, Murep
will only explore the subgraphs corresponding to rules with the highest priority. User-
specified rule priorities help Murp recognize which of the rules are associated with honest
participants and which are intruder rules.

The technique from Section 5.1 (intruder always intercepts) can be implemented by
assigning the highest priority to the “Intruder intercepts” rule. Then, whenever a new

11

message appears on the network, it is immediately intercepted by the intruder and stored
in its database.

The technique from Section 5.2 (intruder does not send if an honest participant can) can
be implemented by assigning the lowest priority to the rules for intruder sending a message.
The only other rules in the system are those associated with honest participants, and each
of those rules sends a message to the network. Therefore, as long as there exists an honest
participant who is ready to send a message, the intruder will not send messages but will
intercept those from honest participants, increasing its knowledge set.

6.2 Parameterized rule conditions

After an honest participant has sent its message, the system reaches a state in which the only
enabled rules are those representing the intruder sending messages to honest participants.
Typically, the structure of the messages to be sent is known from the protocol specification.
However, the mechanical intruder employed in Mury cannot determine on its own what
values have to be assigned to message fields so that the resulting message is accepted by
the recipient and potentially leads to a successful attack. Therefore, the intruder will try all
possible combinations of field values. For example, the following rule represents the intruder
forging a Finished message in SSL 3.0 (Finished messages contain a record of all information
previously sent in the protocol):

-- Intruder generates a ServerFinished message with
-- a forged handshake log

ruleset d: ClientId do
choose nl: int.nonces do
choose n2: int.nonces do
choose secretKey: int.secretKeys do
ruleset sender: Serverld do
rule "Intruder generates ServerFinished (forged log)"

cli[d] .state = M_SERVER_FINISHED

-- Forge a message with the above parameters

end

In the above rule, the intruder nondeterministically chooses (using the ruleset and
choose constructs) a recipient d from among the known SSL clients, two nonces n1 and
n2 from its database of nonces, a secretKey from its database of keys, and the ostensible
sender of the message from among the SSL servers, and finally forges and sends the message
if the recipient is in a state in which it is ready to receive the message. (The intruder is
assumed to know the states of all honest protocol participants since the states can be inferred
from the protocol definition and the observed message exchange.)

The above Mury code defines a rule for each possible assignment to the parameters d, n1,
n2, secretKey, and sender. The number of defined rules is thus equal to the product of the
cardinalities of the sets from which the parameter values are drawn. Clearly, if the intruder

12

databases are sufficiently large and there are many choices for each of the parameters, the
number of defined rules is large.

In each state reached during the state space search, Mury checks for each rule whether
it is enabled or not. Many rules, however, share the same condition. In the example above,
all rules generated for the same value of d have the same condition, regardless of the values
of the other parameters. Thus, it is sufficient to evaluate the condition just once for each
possible assignment to d.

To exploit this idea, we modified the Mury compiler so that it separates the parameters
for each rule statement into two sets. The Dep set contains all parameters that are men-
tioned in the rule condition (d in the example above). The Indep set contains the parameters
not mentioned in the rule condition (n1, n2, secretKey, and sender in the example above).

As before, a separate rule is defined for every possible assignment to the parameters
from Dep U Indep. The set of defined rules is partitioned into subsets so that each subset
corresponds one-to-one to a particular assignment to the parameters from Dep. Therefore,
each subset contains the rules corresponding to all possible assignments to the parameters
from Indep given a particular assignment to the parameters from Dep.

Instead of evaluating every rule condition in each state, the Muryp verifier was altered to
only evaluate the condition for one (arbitrarily chosen) rule from each rule subset. The result
of evaluation is the same for all rules in the subset since they differ only in the values of the
parameters from Indep, and the conditions do not depend on those parameters. Therefore,
if the condition evaluates to true, all rules in the subset are executed. If the condition
evaluates to false, the verifier immediately moves on to the next subset corresponding to
the next assignment to the parameters from Dep.

In our experience with security protocols, Dep is usually much smaller than Indep. The
rules with the largest number of parameters are those representing the intruder’s sending
a message to an honest participant. The parameters of such rules contain values (chosen
from the intruder’s database) for the message fields of the forged message, while the rule
conditions depend only on the current state of the recipient and not on the contents of
the intruder’s database. In fact, the intruder’s knowledge should not have any influence on
whether an honest participant is ready to receive a particular message or not. Therefore, not
evaluating rule conditions for every possible assignment to the rule parameters has proved
very profitable in our Murp analyses.

6.3 Preliminary results

We used the state reduction techniques described in this paper to reduce the size of the
finite-state model for SSL 3.0, which is the largest security protocol analyzed with Muryp to
date. The first state reduction technique (intruder always intercepts) reduced the number
of states by a factor of 20. Although spectacular, a reduction of this magnitude was to
be expected. In the original model, every message could be intercepted by the intruder or
delivered directly from sender to recipient. Intuitively, a sequence of N messages resulted
in 2V states, since each of the N messages could be intercepted by the intruder or not.

We profiled the resulting model and determined that most of the execution time was
spent evaluating rule conditions due to the very large number of generated rules. Optimizing
rule condition evaluation as described in Section 6.2 reduced execution time by a factor of
3.7 with the same number of states.

Finally, we implemented the second state reduction technique (intruder does not send if
an honest participant can), which resulted in further 43% reduction in the number of states
and a 40% reduction in the execution time.

We also evaluated our techniques on the Kerberos protocol, starting with the efficient

13

condition evaluation, and then adding the two state reduction techniques. Table 1 shows
the numbers of reachable states and execution times dependent on the numbers of clients
and servers in the protocol. As in the case of SSL, the biggest savings result from the first
state reduction technique. Note that the savings resulting from the second state reduction
technique increase with increasing numbers of clients and servers, as one would expect.

Table 1: Numbers of reachable states and execution times dependent on the model param-
eters in the Kerberos protocol

intruder

previous | efficient always | send low

clients servers scheme | conditions | intercept | priority
1 2 states 14317 14 317 232 175
time 191.8s 68.9s 2.0s 1.6s
2 2 states 541 193
time 4.4s 2.2s
3 3 states 856 195
time 12.3s 3.6s

7 Conclusion and future research

We described two state reduction techniques that exploit characteristic properties of security
protocols. These techniques reduce both the number of reachable states and execution time
of finite-state analysis. In addition, we described a method for minimizing the time required
to evaluate parameterized rule conditions, further reducing total execution time.

The techniques described in this paper have proved very useful for analyzing large secu-
rity protocols in Muryp. While the first state reduction technique (intruder always intercepts)
has been employed in other finite-state analysis tools, the second state reduction technique
(intruder does not send if an honest participant can) is novel and is expected to prove useful
beyond the Mury community.

Future research includes extending the Murg verifier so that it can automatically rec-
ognize subsumption relations between states and remove subsumed states from the state
queue. This technique is independent from the second state reduction technique described
in this paper. We expect that combining the two techniques will result in larger state re-
ductions than those achieved by either of the two techniques on its own. In addition, we
plan to exploit the fact that, when the second state reduction technique is implemented,
every message send from the intruder is immediately followed by a corresponding reply from
the honest participant. This allows, for example, to combine send-reply pairs into a sin-
gle intruder rule, which should result in a significant reduction in the number of reachable
states. We also intend to explore other properties of security protocols and derive new state
reduction techniques from them.

References

[1] D. Bolignano. Towards a mechanization of cryptographic protocol verification. In
Computer Aided Verification. 9th International Conference, pages 131-42, 1997.

14

[2]

[3]

[4]

[8]

[9]

[10]

[11]

D. L. Dill. The Muryp verification system. In Computer Aided Verification. 8th Inter-
national Conference, pages 390-3, 1996.

D. L. Dill, S. Park, and A. G. Nowatzyk. Formal specification of abstract memory
models. In Symposium on Research on Integrated Systems, pages 38-52, 1993.

A. O. Freier, P. Karlton, and P. C. Kocher. The SSL protocol version 3.0.
draft-ietf-tls-ssl-version3-00.txt, November 18, 1996.

J.T. Kohl and B.C. Neuman. The Kerberos network authentication service (version 5).
Internet Request For Comments RFC-1510, September 1993.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP
and FDR. In 2nd International Workshop on Tools and Algorithms for the Construction
and Analysis of Systems. Springer-Verlag, 1996.

J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic proto-
cols using Mury. In IEEE Symposium on Security and Privacy, pages 141-51, 1997.

J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL 3.0. In 7th
USENIX Security Symposium, pages 201-15, 1998.

R. Needham and M. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993-9, 1978.

U. Stern and D. L. Dill. Automatic verification of the SCI cache coherence protocol. In
Advanced Research Working Conference on Correct Hardware Design and Verification
Methods, pages 21-34, 1995.

L. Yang, D. Gao, J. Mostoufi, R. Joshi, and P. Loewenstein. System design methodology
of UltraSPARC™ 1. In 32nd Design Automation Conference, pages 7-12, 1995.

15

