
Key confirmation and adaptive corruptions
in the protocol security logic

Prateek Gupta and Vitaly Shmatikov

The University of Texas at Austin

Abstract. Cryptographic security for key exchange and secure sessionestab-
lishment protocols is often defined in the so called “adaptive corruptions” model.
Even if the adversary corrupts one of the participants in themiddle of the proto-
col execution and obtains the victim’s secrets such as the private signing key, the
victim must be able to detect this and abort the protocol. This is usually achieved
by adding akey confirmationmessage to the protocol. Conventional symbolic
methods for protocol analysis assume unforgeability of digital signatures, and
thus cannot be used to reason about security in the adaptive corruptions model.
We present a symbolic protocol logic for reasoning about authentication and key
confirmation in key exchange protocols. The logic is cryptographically sound: a
symbolic proof of authentication and secrecy implies that the protocol is secure
in the adaptive corruptions model. We illustrate our methodby formally proving
security of an authenticated Diffie-Hellman protocol with key confirmation.

1 Introduction

The two dominant models for analysis of security protocols are the conventional
cryptographic model, which aims to prove that the protocol is secure against any
efficient adversarial algorithm, and the so called “Dolev-Yao” model, in which
proofs are carried out in a symbolic logic or a process calculus.

For many (but by no means all) cryptographic primitives, theDolev-Yao
abstraction iscomputationally sound, that is, symbolic proofs of security for
protocols in which the primitive is replaced by its Dolev-Yao abstraction imply
cryptographic security. This has been shown for certain forms of symmetric en-
cryption in the presence of passive [1, 25] and active [2] attacker, for public-key
encryption schemes secure against the adaptive chosen-ciphertext attack [26],
and for digital signature schemes secure against existential forgery [4, 10].

In this paper, we focus on key establishment, which is a fundamental prob-
lem in secure communications. Intuitively, security of a key establishment pro-
tocol requiresmutual authentication(upon completion of the protocol, each par-
ticipant correctly knows the other’s identity) andkey secrecy(for anyone but
the participants, the established key is indistinguishable from a random value).
Standard symbolic interpretations of authentication and key secrecy assume that

corruptions arestatic— each protocol participant is either honest throughout the
protocol execution, or is completely controlled by the adversary from the start.

Modern key establishment protocols such as SSL/TLS [17] andIKE [24],
however, are designed to be secure in the presence ofadaptivecorruptions.
Cryptographic models for key exchange such as those of Shoup[28] and Canetti
and Krawczyk [12] also require adaptive security.

In the adaptive corruptions model, the adversary is permitted to corrupt one
of the participantsin the middleof the protocol execution and obtain either the
victim’s long-term secrets such as his signing key, or his entire internal state,
including ephemeral secrets. The latter is known asstrong adaptive corrup-
tion [28], and is beyond the scope of this paper. We focus on the model which
permits compromise only of the participant’s long-term state. This may appear
counter-intuitive (in practice, long-term secrets may be stored outside the sys-
tem), yet this model is used in cryptographic proofs of secure key establishment
such as [28]. Therefore, we need to consider it if we are to establish crypto-
graphic soundness of symbolic reasoning about key exchangeprotocols.

Even if a participant has been corrupted, the protocol must remain secure
in the following sense:if both participants complete the protocol, then authen-
tication and key secrecy must hold. In particular, this implies that any action
by the adversary that would result in a mismatch between the participants’ re-
spective views of the protocol execution must be detectableby the participant
whose secret has been compromised. This is usually achievedby adding akey
confirmationmessage to the protocol. For example, a MAC (message authenti-
cation code) based on the established key can serve as the confirmation message,
enabling the recipient to verify that he has computed the same key as the sender.

Security in the adaptive corruptions model is best illustrated by example.
Consider the following two-move authenticated Diffie-Hellman protocol.A and
B generate their respective Diffie-Hellman exponents asx andy, and then carry
out the following message exchange:

A
m1,sigA(m1)
−→ B ,where m1 = (gx,B)

A
m2,sigB(m2)
←− B ,where m2 = (gx,gy, i,A)

wherei is the index (randomly generated byB) of some universal hash function
family H. A andB then derive a shared keyk asHi(gxy).

This protocol provides authentication and key secrecy under the Decisional
Diffie-Hellman assumption. Still, the standard ISO-9798-3protocol adds the
following key confirmationmessage:

A
m3,sigA(m3)
−→ B ,where m3 = (gx,gy, i,B)

B does not complete the protocol until he has received and verified this message.
Virtually all modern key establishment protocols contain similar key confir-

mation messages. What is their purpose? They arenotneeded for authentication
or secrecy (at least in the static corruptions model). The answer is that they pro-
vide security against adaptive corruptions. Suppose the adversary corruptsB and
learns his private signing key immediately afterB receives the first message but
before he sends the second one. The adversary thus gains the ability to forgeB’s
signatures, and can forge the second message as, say,sigB(gx,gz, i,A), wherez
is some value known to the adversary. Without key confirmation, B will com-
plete the protocol thinking that the established key isk = Hi(gxy), while A will
complete the protocol thinking that the established key isk′ = Hi(gxz).

Adding the key confirmation message ensures that the victim of long-term
key compromise will not complete the protocol. Even if the adversary forged
the second message, replacinggy with gz, B will be able to detect the inconsis-
tency by verifyingA’s confirmation message. Note thatB doesnotneed to know
whetherA has been corrupted, or vice versa. It is sufficient to observethateither
the second message (fromB to A), or the third message (fromA to B) contains
a signature that could not have been forged by the adversary.This ensures that
either A, or B will detect any inconsistency between the Diffie-Hellman val-
ues that were sent and those that were received. Our objective is to capture this
reasoning in a rigorous symbolic inference system.

Authentication in the adaptive corruptions model is inherently “one-sided”
because the adversary can always impersonate the compromised participant.
The other, uncorrupted participant may thus end up using thekey known to
the adversary. Even in this case, we guarantee that (i) the corrupted participant
detects the attack and aborts the protocol, and (ii) the adversary’s view is fully
simulatable, i.e., no efficient adversary, even after obtaining the victim’s long-
term secret, can tell the difference between the real protocol execution and a
simulation where the key has been replaced by a truly random value. This prop-
erty holds regardless of how the key is used by the uncorrupted participant,i.e.,
we guarantee real-or-random key indistinguishability forany higher-level pro-
tocol that uses the key exchange protocol as a building block.

The adaptive corruptions model is crucial to the study of keyexchange pro-
tocols, both because long-term secrets can be the most vulnerable secrets in the
system due to their repeated use, and because adaptive security is needed for
full universal composability of key exchange [12]. Therefore, symbolic proofs
of universal composability require the ability to reason symbolically about adap-
tive corruptions. We view our work as the first step in this direction.

Overview of our results.We present a protocol logic which is computationally
sound for reasoning about authentication when the long-term secret of one of

the protocol participants may have been compromised. We limit our attention to
two-party protocols. Our logic is based on the protocol logic of Durgin, Dattaet
al., but the set of cryptographic primitives in our logic is substantially different,
and includes Diffie-Hellman exponentiation, digital signatures, universal one-
way functions and pseudo-random functions.

We emphasize that we donot aim to provide general-purpose Dolev-Yao
abstractions for these primitives. Our goal is to obtain a sound symbolic logic
for reasoning about key exchange protocols with key confirmation. We do not
attempt to construct a symbolic representation for every computation performed
by the adversary; instead, we directly define computationalsemantics for our
logic. One consequence of this is that there may exist computationally secure
protocols which cannot be proved secure in our logic. We do not view this as
a significant limitation. Soundness seems sufficient for thepractical purpose
of proving security of key establishment protocols. Moreover, it is not clear
whether a complete symbolic abstraction can ever be constructed for malleable
cryptographic primitives such as Diffie-Hellman exponentiation.

Our main technical result is the computational soundness theorem. Follow-
ing [15] (but with a different set of cryptographic primitives), we define a com-
putational semantics for our logic in terms of actual cryptographic computations
on bitstrings rather than abstract operations on symbolic terms. Everyprovable
symbolic theoremis guaranteed to be correct in the computational semantics
under standard assumptions about the underlying cryptographic primitives.

The semantics of real-or-random key indistinguishabilityis fundamentally
different in our logic vs. [15]. Following [28], we define thedistinguishing game
on two transcripts: that of the real protocol, and that of the “ideal” protocol
where all occurrences of the established keyk have been replaced with a truly
random valuer. Real-or-random indistinguishability thus holds even when keyk
is used in a confirmation message sent as part of the protocol:to win the game,
the adversary must be able to distinguish between the pairs (k, confirmation
message computed withk) and (r, confirmation message computed withr).

The proof system of our logic is substantially changed vs. the original pro-
tocol composition logic [14, 15] to account for the possibility that the long-term
secret of an (otherwise honest) participant has been compromised. For example,
standard reasoning about digital signatures based on security against existential
forgery (roughly, “If I receive a signed message from Bob andBob is honest,
then Bob must have sent this message”) is no longer sound, because the ad-
versary may have obtained Bob’s signing key and is capable offorging Bob’s
signature. Instead, all authentication axioms now requireexplicit confirmation,
i.e., a message is considered authenticated if and only if the recipient returned
some unforgeable token based on it (this becomes clearer in the examples). In

general, key confirmation (known as the ACK property in the Canetti-Krawczyk
model [12]) is a fundamental concept in adaptive security. To the best of our
knowledge, it has not beenexplicitly captured in symbolic reasoning before.

Related work. Our logic is a variant of the protocol logic of Durgin, Dattaet
al. [18, 14]. The latter is sound for reasoning about encryption[15], but only
with static corruptions. In previous work [20], we demonstrated a cryptographi-
cally sound symbolic system for reasoning about Diffie-Hellman-based key ex-
change protocols, also in the presence of static corruptions. An alternative model
appears in [16], but, unlike [20], it not guarantee simulatability.

In this paper, we focus on key establishment in the presence of adaptive
corruptions. This requires acompletely new axiomatic proof systemfor reason-
ing about authentication. In addition to soundness in the presence of adaptive
corruptions, our logic guarantees that real-or-random indistinguishability is pre-
served foranyuse of the key, even if the key is used to compute a key confirma-
tion message or completely revealed to the adversary (in contrast to [16]).

Security of cryptographic protocols in the presence of adaptive corruptions
is closely related touniversal composability, developed by Canettiet al. [8,
9, 12, 13, 10], andreactive simulatability, developed by Backes, Pfitzmann, and
Waidner [27, 4, 5]. Both models ensure that security properties are preserved un-
der arbitrary composition. One of our goals is to provide symbolic proof meth-
ods for universally composable notions of security.

Cryptographic key secrecy requires that the key be computationally indis-
tinguishable from a true random bitstring. Relationship between symbolic and
cryptographic secrecy has been explored by Canetti and Herzog [11], who show
that for protocols with universally composable encryption(which is realized
only with static corruptions) cryptographic secrecy is equivalent to Blanchet’s
“strong secrecy” [7], and by Backes and Pfitzmann [3]. Our model is incompa-
rable. For instance, the protocol language of [11, 3] includes encryption, while
our language includes a restricted form of Diffie-Hellman exponentiation.

Organization of the paper. Cryptographic assumptions are explained in sec-
tion 2. The symbolic and computational protocol models are defined in, respec-
tively, sections 3 and 4. In section 5, we describe our logic,and its proof system
in section 6. An example is in section 7, conclusions in section 8.

2 Cryptographic preliminaries

We use standard cryptographic definitions (given in appendix A) for the digital
signature schemeDS = (K,S,V) secure against the chosen message attack
(CMA); an (almost) universal hash function familyH = {hi}i∈I and a family of

pseudorandom functionsf = {fi}i∈I . Hash functions and pseudo-random func-
tions are often modeled as the same symbolic primitive, but their purposes are
different in the protocols we consider. Universal hash functions are employed
asrandomness extractorsto extract an (almost) uniformly random key from a
joint Diffie-Hellman value, while pseudo-random functionsare used to imple-
ment message authentication codes (MACs)after the key has been derived.

Mutual authentication and key secrecy.Our definition of mutual authentica-
tion is based onmatching conversations[6]. The participants’ respective records
of sent and received messages are partitioned into sets of matching messages
with one message from each record per set. For every “receive” action by one
of the participants, there should be a matching “send” action by another partici-
pant, and the messages should appear in the same order in bothrecords.

Key secrecy requires that the established key be indistinguishable from a
random bitstring by any efficient (i.e., probabilistic polynomial-time) adver-
sary. Following thesimulatability paradigm [28, 12], we first define a secure-
by-designideal functionalityfor key exchange: a trusted third party generates
the key as a true random value and securely distributes it to protocol participants.

Of course, in the real protocol participants exchange messages and compute
the key according to the protocol specification. Consider any efficient adver-
sary, and let theRealview be the sequence of messages sent and received by
this adversary during the real protocol execution. Following [28], we say that
the protocol is secure if there exists an efficientsimulator algorithm which,
with access only to the ideal functionality, generates anIdeal view such that
no efficient adversary can distinguish betweenIdealandRealwith a probability
non-negligibly greater than12 . Formal definition can be found in appendix B.

Note that all occurrences of the established key or any function thereof in
theRealview are replaced with the (truly random) ideal key in theIdeal view.
Therefore, unlike [16], we place no restrictions on how the key may be used by
an arbitrary higher-layer protocol. Even if the key is completely revealed to the
adversary and the protocol contains confirmation messages computed with this
key, he will not be able tell the difference betweenRealandIdeal (see section 4).

Adaptive corruptions. In theadaptive corruptionsmodel [28], the real-world
adversary may issue acorrupt user query to any of the honest participants
at any point during the protocol execution. As a result of this query, he obtains
the victim’s long-term secrets such as the private signing key. For the purposes
of this paper, we assume that the adversary doesnot learn any ephemeral data
such as Diffie-Hellman exponents and nonces created just forthis protocol ex-
ecution (In the full version of the paper [22], we discuss thestrong adaptive
corruptions model, in which the adversary also learns ephemeral data of the

Identities id ::= X (variable name)| A (constant name)
Terms t ::= x (variable)| c (constant)| id (identity) | r (random)|

i (index of hash function family)| (t, t) (pair) | d(r) (exponentialgr) |
d(r, r) (exponentialgr.r) | {t}rid (signature ofid)|
hi(t) (unary hash function)| ft(t) (pseudo-random function)|

Actions a ::= ǫ (null) | (νx) (generate nonce)| (νi) (generate index)| 〈t〉 (send termt) |
(t) (receive termt) | x = x (equality test)| (t/t) (pattern matching)|
(done) (“protocol session completed”)

AList ::= ǫ | a, AList
Thread ::= 〈 id, sessionId〉

Role ::= [AList]Thread

Fig. 1. Syntax of the symbolic model

corrupted participant.) In the ideal world, corrupting a participant does not yield
any information, but the simulator gets the right to substitute the ideal random
key with any value of his choice. In this paper, we are not interested in denial-
of-service attacks, and, as in [28], assume that the corrupted participant follows
the protocol faithfully even after his long-term secrets have been compromised.

The adversary controls the network, and invokes participants by delivering
messages. On receiving a message, the participant performsa local computation
according to his role specification and gives the output to the adversary. Partici-
pants terminate by outputting the established key or aborting the protocol.

In the proofs, we assume that at most one of the two participants has been
corrupted. Ifbothare compromised, simulatability holds vacuously: the simula-
tor corrupts both participants and substitutes the ideal-world key with the real-
world key, thus ensuring that the adversary’s view is identical in both worlds.

3 Symbolic model

Our protocol logic is inspired by the logic of Dattaet al. [14, 15], but has been
extended to include Diffie-Hellman exponentiation, universal hash functions,
and message authentication codes based on pseudo-random functions. The syn-
tax of terms and actions is given in fig. 1.

We use a simple “programming language” to specify the protocol as a set
of roles.X,Y, . . . denote the names of protocol participants. Athread is a pair
〈X, s〉, wheres is a sessionIddenoting a particular session being executed by
X. For simplicity, we will omit thesessionIdand denote a thread simply byX.
Each role is a sequence of actions (AList) associated with a single thread. A
role specifies the actions that an honest participant must do.

Symbolic actions include generation of nonces and indices,pattern match-
ing (which subsumes equality tests and signature verification), outputting a spe-

cial markerdone (as the last action of the role), sending and receiving. Receiv-
ing a message(t) always involves pattern matching whent is not a variable.

A (two-party) protocolΠ is a set of two roles, together with a basic term
representing the initial attacker knowledge. We define thenormal executionof
Π to be the matching of the two roles that would occur if the protocol were
executed in a secure communication environment with perfect message delivery.
In the normal execution, every send action by one of the rolesis matched up with
a receive action by the other role, and there exists a substitution match from
variables in received messages to terms such that the sent and received terms
are equal after applying the substitution. Intuitively, for every receive action(x)
wherex is a variable,match(x) is the “intended” term sent by the other role.

Distinct signatures assumption.To simplify proofs, we impose a simple syn-
tactic constraint on protocols. All signatures received bythe role must be syntac-
tically distinct,i.e., for signatures{t1}

l1
X , . . . ,{tn}

ln
X received by some role, for

any substitutionτ from variables to ground terms, it must be thatτ(ti) 6= τ(tj)
for i, j ∈ [1..n] and i 6= j. This can be ensured by adding a unique “tag” to the
plaintext of each signature,i.e., replacing each{ti}

li
X in the role specification

with {(ti, ci)}
li
X whereci ’s are distinct symbolic constants. The unique match-

ing of sent and received signatures also imposes a unique matching on the sub-
terms of signed terms. For the rest of this paper, we will assume thatΠ satisfies
this constraint and thatmatch describes the intended matching of the roles.

Definesymbolic traceof Π asExecStrandΠ ::= Start(Init), AList, where
Init is some initial configuration, andAList is the sequence of actions which
respects the partial order imposed by the roles ofΠ.

4 Computational model

In the computational model, abstract symbolic terms are replaced with actual
bitstrings, and symbolic role specifications are instantiated as stateful oracles in
the standard Bellare-Rogaway model [6]. Every symbolic term sent by a honest
participant isinstantiatedto a bitstring, and every term received by an honest
participant from the adversarially controlled network isparsed to match the
symbolic term expected by this participant according to hisrole specification.

Initialization. We fix the protocolΠ (assume that we are given its symbolic
specification), security parameterη1, probabilistic polynomial-time (inη) ad-
versaryA, and some randomnessR of size polynomially bounded inη, which

1 In cryptography, the security parameter measures the size of the input problem,e.g., the size
of the key in bits.

is divided intoRΠ = ∪Ri (for protocol participants) and andRA (for inter-
nal use of the adversary). Each principal (Ui) and each thread is assigned a
unique bitstring identifier chosen from a sufficiently largepolynomially bound
setI ⊆ {0, 1}η . We run the key generation algorithmK of the digital signature
schemeDS = (K,S,V) on 1η for each principalUi using randomnessRi, and
produce a public/private key pair(pki, ski).

Correct public keys of all participants are assumed to be known to every-
body, includingA (e.g., via a trusted certification authority). We assume that
a family of large cyclic groups, indexed byη, in which the Decisional Diffie-
Hellman problem is presumed hard, has been chosen in advance, and that both
participants know the correct values of the group parameters, including the gen-
eratorg. (For simplicity, we will assume that a Diffie-Hellman grouprefers to a
member of a family of Diffie-Hellman groups, indexed byη.) We will also as-
sume that every signed message consists of the message itself and the signature,
i.e., participants simply reject signatures that arrive without a plaintext.

Generation of computational traces.Honest participants in the computational
model are modeled as stateful oracles. The state of each oracle is defined by an
interpretation function,σ : t → bitstrings from ground terms to bitstrings (of
size polynomially bounded inη), and the counterc, which is initially set to0
and increases by1 for each executed action. We fix the mapping from symbolic
constants to bitstrings prior to protocol execution. This includes identities of
participants, public/private key pairs for each participant, publicly known con-
stants,etc.. Abstract Diffie-Hellman valuesd(x) andd(x, y) are mapped togx

andgxy, whereg is the generator of the Diffie-Hellman group.
During protocol execution, oracles are activated by the adversary who ac-

tivates them by sending messages and collects their responses. Each oracle
proceeds in steps according to the sequence of actions in therole’s symbolic
specification, when activated by the adversary. Instantiation of symbolic actions
to concrete operations on bitstrings is performed by substituting ground terms
with their interpretation and incrementing the counterc for every symbolic ac-
tion [26, 15]. The adversary is allowed to obtain any participant’s private signing
key at any point in the protocol by performing thecorrupt user operation.

Let a denote the current action in theAList defining some role of par-
ticipant i in sessions, i.e., the symbolic thread is(i′, s′) where i = σ(i′) and
s = σ(s′). For example, actiona = (νx) is executed by updatingσ so that
σ(x) = v wherev is a random bitstring chosen fromRi. We omit the (standard)
details for other operations including signature generation and verification, pair-
ing, unpairing, equality test,etc.. We inductively extend the interpretation func-
tion σ to all ground terms,e.g., σ({t}lX) = (σ(t),SskX(σ(t), σ(l))), whereS
is the signing algorithm of the digital signature schemeDS, skX is the private

a ::= Send(X, m) | Receive(X, m) | VerifyMAC(X, t) | New(X, t) | VerifySig(X,t)
ϕ ::= a | Has(X, t) | Fresh(X, t) | FollowsProt(X) | Done(X) | Contains(t1, t2)

Start(X) | IndistRand(t) | ϕ ∧ ϕ | ¬ϕ | ∃ x.ϕ | −3ϕ | ©©−©ϕ | ϕ ⊃ ϕ | ϕ ⇒ ϕ
ψ ::= ϕρϕ

Fig. 2. Syntax of the protocol logic

key of principalX, σ(l) is the randomness of the signing algorithm. Note that
the signature{t}lX is interpreted as a pair(b, sigX(b)) whereb is the plaintext
corresponding to termt andsigX(b) is the signature obtained from the signing
algorithm of the signature scheme usingX’s private key.

When an honest participant receives a message from the adversary, heparses
and labels it to match the symbolic term expected according to the role specifi-
cation. Bitstrings which cannot be parsed (e.g., hash of an unknown valueh(a)
received when the recipient expects a variablex) are labeled by fresh symbolic
constants, as in [26]. Parsing algorithm is given in appendix C.

Definition 1 (Computational Traces). Given a protocolΠ, an adversaryA,
a security parameterη, and a sequence of random bits R∈ {0, 1}p(η) (R =
RΠ ∪ RA) used by honest participants (RΠ) and the adversary (RA), a com-
putational trace of the protocol is the tuple(ts, σ,R) (σ ∈ {σr , σi}) , where ts
is the sequence of symbolic actions executed by honest participants,σ is the
interpretation function and R is the randomness used in the protocol run. Let
CExecStrandΠ be the set of all computational traces ofΠ.

5 Protocol logic

The syntax of the logic appears in fig. 2. Formulasϕ andψ denote predicate
formulas,ρ, t, m andX denote a role, term, message and a thread, respectively.

For every protocol action, there is a corresponding action predicate which
asserts that the action has occurred in the run. For example,Send(X, m) holds in
a run where the threadX has sent the messagem. FollowsProt(X) means that
X faithfully executes the actions in its role specification (we prefer not to use the
termhonestbecauseX’s private key may have been compromised by the adver-
sary).Done(X) means that the threadX has successfully completed the protocol
session and output the key.IndistRand(t) means that no efficient algorithm
can distinguisht from a random value of the same distribution (the precise se-
mantics is defined below). The special case when the distribution is uniform is
denoted asIndistURand(t) — this is used,e.g., whent is the established key.
Modal formulas of the formθ[s]Xϕ are used in the proof system. The formula
states that in a threadX after actionss ∈ AList are executed, starting from a
state in which the formulaθ was true, formulaϕ is true in the resulting state.

In the adaptive corruptions model, it is no longer sound to assume that hon-
est participants’ signatures are trustworthy. This requires a complete revision of
the authentication formulas and axioms, which is the main contribution of this
paper. We introduce two new formulas.VerifySig(X, {t′}lY) means that thread
X verified signaturesigY(σ(t′)) using the public key of participant (thread)
Y. As mentioned above, we assume that every signature is accompanied by
its plaintext, i.e., term t′ is Dolev-Yao computable from the signature{t′}lY.
Similarly, VerifyMAC(X, ft′(c)) means thatX has verified the MAC by re-
computing the keyed pseudo-random functionf with keyσ(t′) on inputσ(c).

Following [15], we use two forms of implication: classical implication⊃
and conditional implication⇒. Conditional implicationθ ⇒ ϕ is defined¬θ
OR the conditional probability ofϕ given θ. Conditional implication is useful
for proving cryptographic reductions: for example, we showthat if the attacker
violatesIndistRand(t) wheret is the symbolic term representing the key, then
this attacker can be used to break the Decisional Diffie-Hellman assumption.

Closureof a termt is the least set of terms derivable using the following:

t ∈ closure(t)
t ∈ closure((t, s)), s ∈ closure((t, s))
t ∈ closure({t}lX), d(x, y) ∈ closure(d(y, x))
r ∈ closure(s)∧ s ∈ closure(t) ⊃ r ∈ closure(t)

Relation
wcr
−→⊆ t×t is defined as follows:t′

wcr
−→ t iff, for an n-ary function

f , t = f (t′, t1, . . . , tn−1), and, given valuesx, x1, . . . , xn−1, it is computation-
ally infeasible to findx′ 6= x such thatf (x′, x1, . . . , xn−1) = f (x, x1, . . . , xn−1)
holds. We say thatt is a weakly collision-resistant function oft′.

Computational semantics. We define the semantics of formulas oversetsof
computational traces. For most formulas, the definition is straightforward:ϕ
holds over an individual trace if the action described byϕ occurred in that trace
(e.g., theSend action predicate is true in the trace if the corresponding sending
action occurred in the trace), and for a set of tracesT, the semantics[ϕ](T) is
the subsetT′ ⊆ T consisting of traces on whichϕ holds. The formulaϕ holds
for protocolΠ, denoted asΠ |=c ϕ, if it holds for the overwhelming majority
of traces in the entire set of computational tracesCExecStrandΠ . The precise
inductive definition has been removed to appendix D, due to lack of space.

The IndistRand(t) predicate is more challenging. It should hold when
the value oft (typically, the key established in the protocol) is indistinguish-
able from random by any efficient adversary. Unlike other models of real-or-
random indistinguishability [16], our definition preserves indistinguishability
regardless of how the value is used: for example, the key remains indistinguish-
able from random even when used to compute a key confirmation message. This

is achieved by defining the distinguishing game on entire protocol transcripts
rather than standalone keys. This technique is similar to [28].

Given a protocolΠ (between rolesX and Y), computational tracet =
(ts, σ,R) and termt, let t1, . . . , tn be the symbolic terms in the role specifi-
cations ofX andY whose interpretation is the same as that oft, i.e., σ(t1) =
. . . = σ(tn) = σ(t). Define a substitution̺t as:

̺t = [t1 → r, . . . , tn → r]; wheret is not a Diffie-Hellman term
[t1 → d(r), . . . , tn → d(r)]; t is of the formd(x) or d(x, y)

wherer a fresh symbolic constant. LetΠideal = ̺t(Π). Let tideal denote the
computational trace generated by runningΠideal with the same adversarial al-
gorithmA and same randomnessR as used int. The randomness for instantiat-
ing r is drawn fromR\RA. Intuitively, in tideal all occurrences of the real-world
key are replaced by a random value. This includes key confirmation messages:
in the real world, they are computed withσ(t); in the ideal world, withσ(r).

Let adv(t) denote the adversaryA’s view, i.e., the sequence of send and
receive actions in the tracet. Given a set of computational tracesT = {t}R
(parameterized by randomnessR), define:

– T̂ = {adv(t).σ(t)}R
– T̂ideal = {adv(tideal).σ(r)}R

We explicitly append the value of termt to each trace of the “real” protocol,
and its random equivalent to each trace of the “ideal” protocol. We say that
[IndistRand(t)](T) = T if T̂ and T̂ideal are computationally indistinguish-
able, else it is the empty setφ.

Semantics ofIndistRand can be understood in terms of a game played
by the adversaryA. Fix randomnessRassociated with the protocol participants
andA at the start of the game. A random bitb is tossed. Ifb = 1, participants
follow the real protocol, in which the key is generated according to protocol
specification. Ifb = 0, the key is generated as a true random value and “mag-
ically” distributed to participants (i.e., the value of the key is independent of
protocol execution); all protocol messages involving the key are computed us-
ing this random value. To modelarbitrary usage of the key by a higher-layer
protocol, we explicitly reveal the key toA in each world.A wins the game if he
guesses bitb with a probability non-negligibly greater than12 , i.e., if A can tell
whether he is operating in the real or ideal world.[IndistRand(t)](T) = T iff
no probabilistic polynomial-time adversary can win the above game, else it isφ.

6 Symbolic proof system

Our logic inherits some axioms and proof rules from the original protocol com-
position logic of Durgin, Dattaet al. [18, 14, 15], and the axioms for reasoning

about Diffie-Hellman exponentiation from our previous workon key exchange
protocols in the static corruptions model [21, 20].

The main new additions are the axioms and rules for reasoningabout authen-
tication in the presence of adaptive corruptions, and pseudo-randomness axioms
for reasoning about message authentication codes (MACs). Our new authenti-
cation axioms require an explicit confirmation message for every term sent by
an honest participant. For example, theVER axiom models confirmation with
digital signatures: “Alice knows that Bob has received her signed term correctly
if she receives a signed message from Bob containing the sameterm” (this rea-
soning is sound even if either party’s signing key has been compromised). More
precisely, termt sent fromX to Y has been transmitted correctly if (i) bothX
andY follow the protocol, (ii)Y received a term containingt that was signed by
X, (iii) Y verifiedX’s signature, (iv)Y sent a signed term containingt to X (this
is the confirmation message), and (v)X verifiedY’s signature. IfX’s long-term
key has been compromised, the adversary will be able to forgeX’s signature and
substitute a different term in the message received byY, but X will detect the
compromise after receivingY’s confirmation message.

Similarly, theAUTH axiom models confirmation with message authentica-
tion codes (MACs): “Alice knows that Bob has received her term correctly if she
receives a MAC computed as a pseudo-random function of some public constant
with the secret key derived in part from Alice’s term.”

We focus on the new axioms only. The complete set of axioms andproof
rules is given in appendix 5. We sayΠ ⊢ ϕ if ϕ is provable using this system.

Theorem 1 (Computational soundness).Let Π be a protocol satisfying the
distinct signatures assumption, and letϕ be a formula. If the protocol is imple-
mented with a digital signature scheme secure against existential forgery under
the adaptive chosen message attack, and assuming the existence of a universal
family of hash functions and pseudo-random functions and that the Decisional
Diffie-Hellman assumption holds, then

Π ⊢ ϕ ⊃ Π |=c ϕ

Proof. Complete soundness proofs for all axioms and proof rules are in the
full version of the paper [22]. To illustrate our proof techniques, we give the
soundness proof of theVER axiom, which models confirmation with digital
signatures. As mentioned in section 2, we will only considerthe case when at
most one of the two participants has been corrupted by the adversary.

Soundness of VER axiom.The informal intuition behind the proof is as fol-
lows. According to the precondition of theVER axiom,X sent a signed termt
to Y, Y signed whatever he received and returned it toX, who verified that the

VER FollowsProt(X) ∧ FollowsProt(Y) ∧ (X 6= Y)∧ [NEW]
−3(VerifySig(X, {m2}kY)∧ (−3VerifySig(Y, {m1}lX))) ∧ SendAfterVer(Y, t′)∧
ContainedIn(m2 , t) ∧ ContainedIn(m1 , t

′)) ∧ (t = match(t′)) ⊃
∃ l′.∃ k′.∃ m′1 ∃ m

′

2.

ActionsInOrder(Sendterm(X, {m′1}
l′

X), VerifySig(Y, {m1}lX),

Sendterm(Y, {m′2}
k′

Y), VerifySig(X, {m2}kY))∧
ContainedIn(m′1 , t) ∧ ContainedIn(m′2 , t

′) ∧ (t = t
′)

AUTH FollowsProt(X) ∧ FollowsProt(Y) ∧ (X 6= Y)∧ [NEW]
−3(VerifyMAC(X,ft(c)) ∧ (−3Receive(Y,m))) ∧ IndistURand(t) ∧ NotSent(X, ft(c))∧
ContainedIn(m, t′′) ∧ SendMACAfterVer(Y,ft(c), t′′) ∧ t′ = match(t′′) ∧ (t′

wcr
−→ t) ⇒

∃ l′.∃ m′.
ActionsInOrder(Sendterm(X, m′), Receive(Y, m),
Sendterm(Y,ft(c)), VerifyMAC(X, ft(c)) ∧ ContainedIn(m′ , t′) ∧ (t′ = t′′)

ContainedIn(m, t) ≡ t ∈ closure(m)
SendAfterVer(Y, t) ≡ ∀ m.(Sendterm(Y,m) ∧ ContainedIn(m, t)) ⊃

∃ m1, l.−3VerifySig(Y, {m1}lX) ∧ ContainedIn(m1 , t)
Sendterm(X, t) ≡ ∃ m.Send(X, m) ∧ ContainedIn(m, t)
SendMACAfterVer(Y,ft(c), t′) ≡ ∀ m′.(Sendterm(Y, m′) ∧ ContainedIn(m′ , ft(c))) ⊃

∃ m, l.−3VerifySig(Y, {m}lX) ∧ ContainedIn(m, t′)
NotSent(X, t) ≡ ∀ a.(−3a ∧ a = 〈m〉) ⊃ t 6∈ closure(m)
IndistURand(t) ≡ IndistRand(t) ∧

t is not of the formd(x), d(x, y) andc is a public constant

Fig. 3. Axioms for authentication

signed value is equal tot. Suppose the adversary hasX’s signing key, and causes
Y to receive somet′ 6= t. In this case,Y sendst′ to X in the second message, yet
we knowX receives signedt. This means that the adversary forgedY’s signa-
ture on the message containingt, even though he does not knowY’s signing key.
Now suppose the adversary hasY’s signing key. IfY receivest′ 6= t in the first
message (signed byX), then the adversary forgedX’s signature on the message
containingt′, even though he does not knowX’s signing key. In both cases, we
conclude that eitherY receivedt in the first message, or the adversary forged a
signature of the participant whose signing key he does not know.

We now give the formal proof. Fix protocolΠ, adversaryAc and a sig-
nature schemeDS = (K,S,V) secure against existential forgery. Lettc ∈
CExecStrandΠ be a computational trace such thattc = (ts, σ,R). Suppose that
tc doesnot satisfy the axiom. We will useAc to construct a forgerB against the
digital signature schemeDS. SinceB can only succeed with negligible proba-
bility, we will conclude by contradiction that the axiom must hold overtc.

Recall the existential forgery game. Given a signature schemeDS and ad-
versaryB, run the key generation algorithm to produce a key pair(s, v) and give
v toB. In the query phase,B can obtainSs(m) for any messagem. B wins if he

WCR1 d(x)
wcr
−→ d(x, y) [NEW]

WCR2 d(y)
wcr
−→ d(x, y) [NEW]

WCR3 ∀ i.t
wcr
−→ hi(t) [NEW]

WCR4 t1
wcr
−→ t2 ⊃ ∀ i.t1

wcr
−→ hi(t2) [NEW]

WCR5 (t1
wcr
−→ t2) ∧ (t2

wcr
−→ t3) ⊃ t1

wcr
−→ t3 [NEW]

WCR6 FollowsProt(X) ∧ −3[νk]X ⊃ k
wcr
−→ hk() [NEW]

Fig. 4. Axioms for weak collision resistance

DDH1 Fresh(Y,y) ∧ NotSent(Y, d(x, y)) ∧ FollowsProt(Y) ∧ ((X 6= Y) ∧ FollowsProt(X)
∧Fresh(x,X)) ∧ NotSent(X, d(x, y)) ⇒ IndistRand(d(x, y))

DDH2 IndistRand(d(x, y))[a]XIndistRand(d(x, y)), where ifa = 〈t〉 then
d(x, y), x, y 6∈ closure(t)

LHL IndistRand(d(x, y)) ∧ FollowsProt(X) ∧ −3[νk]X ⇒ IndistRand(hk(d(x, y)))
PRF IndistURand(t) ∧ NotSent(X, t) ∧ NotSent(Y, t) ⇒ IndistURand(ft(c)) [NEW]

NotSent(X, t) ≡ ∀ a.(−3a ∧ a = 〈m〉) ⊃ t 6∈ closure(m)

Fig. 5.Axioms for Diffie-Hellman, hash functions and pseudo-random functions

produces a signatureσ on messagem which he did not use in the query phase
such thatVv(σ,m) = 1. A signature scheme isCMA-secureif no probabilistic
polynomial-time adversary can win this game with non-negligible probability.

Our forgerB runs the protocol adversaryAc in a “box” (i.e., as a subrou-
tine) and simulates the oracle environment to him as follows. Let X andY be the
names of protocol participants, and letSX andSY be the corresponding sign-
ing oracles (B is given access to such oracles by the CMA game). Consider
the sequence of queriesq1, . . . ,qn (i.e., messages sent to protocol participants)
made byAc. For each queryqi , B performs the required action on behalf of the
protocol participant. Whenever an honest participantX is required to produce a
signature on some termm, B obtains the required signature from the signing or-
acleSX. When a participant is corrupted, his signing key is given toAc. To win
the CMA game,B must forge a valid signature of the uncorrupted participant.

Suppose the computational trace does not satisfyVER. This implies that
the postcondition of the axiom is false, while the precondition is true,i.e., the
following actions did happen in sequence:Y verified the signature ofX on some
term containingt′, signed a term containingt′, and sent it toX.

Case I.Both participants were still uncorrupted whenX verified the signature
of Y on some term containingt. First, consider the caset = t′. Since the
trace does not satisfy the axiom, there must exist some queryQi which contains
the signature{m′1}

l′

X (wherem′1 containst) which did not appear in a previous
message, or a (previously unseen) signature{m′2}

k′

Y wherem′2 containst′.

Without loss of generality, we assume that queryqi contains the signature
of X on termm′1 such that no earlier message contains the signature of the same
term under the same signing key (even with a different labell). ThenB simply
outputs the signature{m′1}

l′

X sent by the adversaryAc and wins the CMA game.
This is a valid forgery becauseX has not been corrupted andB successfully
produced a signature ofX on a term whichX did not previously sign before.
(B knows whenAc first produced a valid signature of some honest participant
which has not been seen before becauseB can verify the signature himself.)

Now consider the caset 6= t′. Recall that all received signatures in a role
specification are distinct,i.e., for {t1}

l1
X , . . . , {tn}

ln
X received by the role, for

any substitutionτ from variables to ground terms,τ(ti) are all distinct. The
precondition of the axiom states thatX verified Y’s signature on the term con-
tainingt andY previously verifiedX’s signature on a term containingt′ 6= t.
Because for any valid signature received byY there exists exactly one signature
sent byX, there must exist some queryqi made byAc which contains the sig-
nature{m′}l

′

X (wherem′ containst′) under the private signing key ofX, but no
earlier message containsX’s signature on termm′. Therefore, the adversary made
a query which contains a valid signature of an honest participant, but no earlier
message contains this participant’s signature on the same term. The forgerB
simply outputs this signature and wins the CMA game.

Case II.Suppose the adversary corrupts participantX beforeY receivedX’s sig-
nature on a term containingt. The adversary can now forge a valid signature of
X on a message containing somet1 6= t (which was not signed byX in the past)
and deliver it toY. Y verifiesX’s signature on the message containingt1 and
receives the value of the term int′. Suppose the adversary delivers toX some
signatureα. It follows from the precondition thatX accepts it iffα is a valid sig-
nature byY on a term containingt. From the distinct signatures assumption and
the fact thatt = match(t′), it follows that the only sent term in the role specifi-
cation ofY which matchesα is Y’s signature on a term containingt′ = t1 6= t

in the same position whereα containst. Therefore, there exists some queryqi

made by the adversary which contains a signature of the uncorrupted partici-
pantY on a message containing termt which was not previously signed byY.
B outputs this signature and wins the CMA game.

The proof for the case where the adversary corruptsY beforeX receivesY’s
signature on a message containingt is similar and omitted.

7 Example

We illustrate the use of the logic by proving security for a three-move authenti-
cated Diffie-Hellman protocol (DHKE-1), which is essentially the same as the

Init ::= {(A1 A2)[(νx).〈A1,A2, d(x), {d(x),A2}
l′1
A1
〉.

(A2,A1, d(x), y
′, k′, z).(z/{d(x), y′, k′,A1}

l2
A2

) .(create).〈A1,A2, fκ(c)〉.(done)]A1
}

Resp ::= {(A1 A2)[(νy).(νk).(A1,A2, x
′, z). (z/{x′,A2}

l1
A1

).

〈A2,A1, x
′, d(y), k,{x′, d(y), k,A1}

l′2
A2
〉.(connect).(A1,A2, z′).(z′/fκ(c)).(done)]A2

}

andmatch(x′) = d(x), match(y′) = d(y), match(k′) = k, match(z′) = fκ(c),
wherek is a hash function index andf is a family of pseudo-random functions;
the derived key isκ = hk(d(x, y)) for hash functionh indexed byk and
c is a public constant.

Fig. 6. Symbolic specification of the DHKE-1 protocol.

protocol described in section 2, except that PRFs instead ofsignatures are used
in the key confirmation message. The symbolic specification of the protocol is
in fig. 6. Init andRespdenote the initiator and responder roles, respectively.

Below, we specify the authentication property for the initiator role of the
protocol (specification for the responder is similar). The property is proved us-
ing the formulationpre [actions] post, wherepre is the precondition before the
actions in theactionslist are executed andpost is the postcondition. Note that
mutual authentication is conditional onA2 actually completing the protocol.

We emphasize that this doesnot mean thatA1 can verify the state of theA2.
As explained in section 1, this simply means that ifA2’s key is compromised,
then the adversary can successfully impersonate compromised A2 to A1 and
authentication ofA2’s messages cannot be guaranteed. This isinevitablein the
presence of adaptive corruptions. The protocol must guarantee, however, that
A2 detects that it has been compromised and doesnot complete the protocol,
thusA1 andA2 never communicate using a key known to the adversary. As our
proofs in appendix F show, the protocol indeed satisfies thisproperty.

pre ::= Fresh(A1, x) ∧ FollowsProt(A1)
actions::= [Init]A1

post ::= FollowsProt(A1) ∧ FollowsProt(A2) ∧ Done(A2) ⊃
∃ l1.l

′
2.

ActionsInOrder(Send(A1, {A1,A2, d(x), {d(x),A2}
l1
A1
})

Receive(A2, {A1,A2, x
′, {x′,A2}

l′1
A1

)})

Send(A2, {A2,A1, x
′, d(y), k, {x′, d(y), k,A1}

l′2
A2
})

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})

Send(A1, {A1,A2, fκ(c)})
Receive(A2, {A1,A2, fκ(c)})),

wherec denotes a symbolic constant,
x′ = d(x), y′ = d(y), k′ = k and
κ = hk(d(x, y)).

The secrecy property is specified symbolically as follows:

pre ::= FollowsProt(A1) ∧ Fresh(A1, x)
actions::= [Init]A1

post ::= FollowsProt(A2) ∧ −3[νk]A2
⇒ IndistURand(hk(d(x, y)))

The postcondition ensures that, ifA2 is honest, too, then the established key
is indistinguishable from a uniform random value. Proofs are in appendix F.

8 Conclusions

We presented a symbolic logic which is sound for reasoning about authenti-
cation in key establishment protocols even when if the signing key of one of
the participants has been compromised by the adversary. Future work involves
extending the model to universally composable key exchange, which requires
security in the presence of strong adaptive corruptions,i.e., when the adversary
obtains the entire internal state of the corrupted participant, including short-term
secrets such as Diffie-Hellman exponents. Preliminary sketch can be found in
the full version of this paper [22].

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption).J. Cryptology, 15(2):103–127, 2002.

2. P. Adão, G. Bana, and A. Scedrov. Computational and information-theoretic soundness and
completeness of formal encryption. InProc. 18th IEEE Computer Security Foundations
Workshop (CSFW), pages 170–184. IEEE, 2005.

3. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. InProc. IEEE
Symposium on Security and Privacy, pages 171–182. IEEE, 2005.

4. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. InProc. 10th ACM Conference on Computer and Communications Security
(CCS), pages 220–230. ACM, 2003.

5. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure re-
active systems. InProc. 1st Theory of Cryptography Conference (TCC), volume 3378 of
LNCS, pages 336–354. Springer, 2004.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. InProc. Advances in
Cryptology – CRYPTO 1993, volume 773 ofLNCS, pages 232–249. Springer, 1993.

7. B. Blanchet. Automatic proof of strong secrecy for security protocols. InProc. IEEE Sym-
posium on Security and Privacy, pages 86–100. IEEE, 2004.

8. R. Canetti. Security and composition of multiparty cryptographic protocols.J. Cryptology,
13(1):143–202, 2000.

9. R. Canetti. Universally composable security: a new paradigm for cryptographic protocols.
In Proc. 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–
145. IEEE, 2001. Full version athttp://eprint.iacr.org/2000/067.

10. R. Canetti. Universally composable signature, certification, and authentication. InProc. 17th
IEEE Computer Security Foundations Workshop (CSFW), pages 219–233. IEEE, 2004. Full
version athttp://eprint.iacr.org/2003/329.

11. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentica-
tion and key-exchange protocols. InProc. 3rd Theory of Cryptography Conference (TCC),
volume 3876 ofLNCS, pages 380–403. Springer, 2006.

12. R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure
channels. InProc. Advances in Cryptology - EUROCRYPT 2002, volume 2332 ofLNCS,
pages 337–351. Springer, 2002. Full version athttp://eprint.iacr.org/2002/
059.

13. R. Canetti and T. Rabin. Universal composition with joint state. InProc. Advances in
Cryptology – CRYPTO 2003, volume 2729 ofLNCS, pages 265–281. Springer, 2003.

14. A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. A derivation system for security protocols
and its logical formalization. InProc. 16th IEEE Computer Security Foundations Workshop
(CSFW), pages 109–125. IEEE, 2003.

15. A. Datta, A. Derek, J.C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-
time semantics for a protocol security logic. InProc. 32nd International Colloquium on
Automata, Languages and Programming (ICALP), volume 3580 ofLNCS, pages 16–29.
Springer, 2005.

16. A. Datta, A. Derek, J.C. Mitchell, and B. Warinschi. Computationally sound compositional
logic for key exchange protocols. InProc. 19th IEEE Computer Security Foundations Work-
shop (CSFW). IEEE, 2006.

17. T. Dierks and C. Allen. The TLS protocol Version 1.0. Internet RFC:http://www.
ietf.org/rfc/rfc2246.txt, January 1999.

18. N. Durgin, J.C. Mitchell, and D. Pavlovic. A compositional logic for proving security prop-
erties of protocols.J. Computer Security, 11(4):677–722, 2003.

19. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attack.SIAM J. Computing, 17(2):281–308, 1988.

20. P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of key ex-
change protocols.http://eprint.iacr.org/2005/171, 2005.

21. P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of key ex-
change protocols (extended abstract). In3rd ACM Workshop on Formal Methods in Security
Engineering (FMSE). ACM, November 2005.

22. P. Gupta and V. Shmatikov. Key confirmation and adaptive corruptions in the protocol secu-
rity logic. http://eprint.iacr.org/2006/171, 2006.

23. R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc. 30th Annual
Symposium on Foundations of Computer Science (FOCS), pages 248–253. IEEE, 1989.

24. C. Kaufman (ed.). Internet key exchange (IKEv2) protocol. Internet draft:http://www.
ietf.org/internet-drafts/draft-ietf-ipsec-ikev2-17.txt, Septem-
ber 2004.

25. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway language
of encrypted expressions.J. Computer Security, 12(1):99–130, 2004.

26. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. InProc. 1st Theory of Cryptography Conference (TCC), volume 3378 ofLNCS,
pages 133–151. Springer, 2004.

27. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. InProc. IEEE Symposium on Security and Privacy, pages
184–200. IEEE, 2001.

28. V. Shoup. On formal models for secure key exchange (version 4). Technical Report RZ
3120, IBM Research, November 1999.http://shoup.net/papers/skey.pdf.

A Cryptographic primitives

Computational indistinguishability. Two ensemblesX = {Xn}n∈N andY =
{Yn}n∈N are (computationally)indistinguishable in polynomial timeif for ev-
ery probabilistic polynomial time algorithmA, every polynomialp(.) and all
sufficiently largen’s | Pr(A(Xn, 1

n) = 1)− Pr(A(Yn, 1
n) = 1) |< 1

p(n)

Digital signature schemes.A digital signature scheme is a triple of proba-
bilistic polynomial-time algorithmsDS = (K,S,V) on a finite domainD ⊆
{0, 1}∗. On input the security parameterη, K generates a pair of keys(s, v).
The deterministic verification algorithm on inputm, signatureσ and verifica-
tion key v, produces a one bit output. AlgorithmsS andV have the property
that on any messagem ∈ D, Vv(Ss(m),m) = 1 holds, except with negligible
probability. The range ofV includes a special symbol⊥6∈ D.

The standard notion of security for digital signatures is security against
exisential forgery under the chosen message attack (CMA) [19], defined as a
game. Given a signature schemeDS = (K,S,V) and PPT adversaryA, runK
to generate a key pair(s, v) and givev toA.A can query(sign,m) for any mes-
sagem ∈ D and obtainSs(m) in response.A wins the game if he can produce
a bitstringσ such thatVv(σ,m) = 1 for somem that he did not use in the query
phase. A signature scheme isCMA-secureif no probabilistic polynomial-time
adversary can win this game with non-negligible probability.

DDH assumption. LetG be a member of a large family of groups, indexed byη,
of prime orderq and generatorg. Denote byODH a “Diffie-Hellman” oracle. Fix
a PPT adversaryA, which operates in two phases:learning andtesting. In the
learning phase,Amakes queries of the form(i, j) (i 6= j) toODH. In response to
a query, the oracle returns the(gxi ,gxj ,gxi xj), wherexi , xj are chosen uniformly
at random fromZq. In the testing phase,A makes a distinct query(i, j) (i 6= j)
which he did not make in the learning phase. A coinb is tossed. Ifb = 0, ODH

returns(gxi ,gxj ,gxi xj), else it returns(gxi ,gxj ,gzij), wherezij is random. The DDH
assumption states that no probabilistic polynomial-time adversaryA can output
bit b correctly with probability non-negligibly greater than12 .

One-way functions, hash functions, and pseudo-random functions.

Definition 2 (One-way function). Function f : {0, 1}∗ → {0, 1}∗ is one-way
if (1) there exists a PPT algorithm that on input x outputs f(x), and (2) for every
PPT algorithm A′, polynomial p(.), and sufficiently large n

| Pr(A′(f (Un), 1
n) ∈ f−1(f (Un))) |<

1

p(n)

where Un denotes a random variable uniformly distributed over{0, 1}n.

Functionf : {0, 1}∗ → {0, 1}∗ is weakly collision resistant, if given x, it
is computationally infeasible to find a differentx′ such thatf (x) = f (x′). One-
wayness implies weak collision resistance.

Let H be a family of functions mapping{0, 1}n(η) to {0, 1}l(η), whereη is
the security parameter.H is called (almost)universalif for everyx, y ∈ {0, 1}n,
x 6= y, the probability thathi(x) = hi(y), for an elementhi ∈ H selected uni-
formly from H, is at most1

2l + 1
2n . The leftover hash lemma [23] states that the

distribution{hi(x)} is statistically indistinguishable from the uniform distribu-
tion for a uniformly random hash function indexi.

Definition 3 (Pseudo-random function ensemble).A function ensemble f=
{fn}n∈I , is calledpseudo-randomif for every probabilistic polynomial time or-
acle machine M, every polynomial p(.) and all sufficiently large n’s

| Pr(Mfn(1n) = 1) − Pr(Mhn(1n) = 1) |<
1

p(n)

where h= {hn}n∈N is the uniform function ensemble.

To make proofs simpler, we define security of PRFs in terms of agame. For
a family of pseudorandom functionsf, adversaryA, uniformly random indexκ,
letF denote an oracle for producing pseudorandom values.A can query(prf , i)
on anyn-bit string i. In response, the oracle returnsfκ(i).A wins if he produces
a pair(i, j) such thatj = fκ(i) and j was not one of the values returned by the
oracle in the query phase. Say thatf is pseudorandom if no efficient adversary
can win the above game with non-negligible probability.

B Shoup’s model for key exchange protocols

We outline the definition of security for key exchange protocols proposed by
Shoup in [28]. The protocol is secure if no efficient adversary can tell whether
he is dealing with the real-world execution of the protocol,or with a simulation
in the ideal world where the ideal functionality (the “ring master”) generates
keys as random values and distributes them securely to protocol participants.

B.1 Ideal world

Let Ui for i ∈ {1, 2, . . .} be a set of users and letI ij denote the user instances,
i.e., different sessions of the protocol executed by the same user. The ideal-world
adversary may issue the following commands:

– (initialize user, i, ID i): Assigns identityID i to the userUi .

– (initialize user instance, i, j, roleij , PIDij): Specifies user in-
stanceI ij , whether it is an initiator or responder (roleij ∈ {0, 1}), partner
identity PIDij (i.e., the other party in this session).

– (abort session, i, j): Aborts the session with user instanceI ij .
– (start session, i, j, connection assignment[(key)]): For an active user

instanceI ij , specifies how the session keyKij is generated. It can be one of
create, connect, compromise. create instructs the ring master to gen-
erate a random bitstringKij , connect(i′, j′) instructs the ring master to set
Kij equal toKi′j′ , compromise instructs the ring master to setKij to key.
Two initialized user instancesI ij and I i′ j′ are compatibleif PIDij = ID′

i ,
PIDi′j′ = ID i and roleij 6= rolei′ j′ . The connection assignmentconnect
is legal if user instancesI ij and I i′ j′ are compatible andI ij is isolated (not
active). The connection assignmentcompromise is legal if one of the fol-
lowing holds: (a)PIDij is not assigned to a user, (b)PIDij is assigned to a
corrupt user, (c) userUi himself is corrupted.

– (application, f): This models anarbitrary use of the key by higher level
applications. It returns the result of applying functionf to the session key
Kij and a random inputR. The adversary can selectanyfunction f (even one
that completely leaks the key!).

– (implementation, comment): This is a “no op” which allows the adver-
sary to record an arbitrary bitstring in the protocol transcript.

– (corrupt user, i): The tuple (corruptuser, i) is recorded in the ideal-
world transcript. The adversary is given no information.

TranscriptIdeal(S) records all actions of the ideal-world adversaryS.

B.2 Real world

Let Ui be users andAij user instances. A PKI registrarT generates the pub-
lic/private key pairs (PKi,SKi) for the users. Let (PKT,SKT) denote the (public,
private) key pair ofT. T may be online or offline. For simplicity, assume that
all user instances upon initialization obtain a public/private key pair fromT by
a protocol-specific action, which is stored as part of the long-term (LTSi) of Aij .

In the real world, a user instanceI ij is a probabilistic state machine. It has
access toPKT, long-term stateLTSi , and partner identityPIDij (identity of the
other party in this session). Upon starting in some state, the user updates his
state upon receiving a message and may generate a response message. At any
moment, the state of a user is one ofcontinue, accept, reject. These mean,
respectively, that the user is ready to receive a message, has successfully termi-
nated a protocol session having generated a session keyKij , or has unsuccess-
fully terminated a protocol session without generating a session key.

The real-world adversary may issue the following commands:

– (initialize user, i, ID i): This operation assigns the (previously unas-
signed) identityID i to an uninitialized userUi.

– (register, ID, registration request): The adversary runsT’s registration
protocol directly with some identityID. This operation allows the adversary
to operate under various aliases.

– (initialize user instance, i, j, roleij , PIDij): Specifies user in-
stanceI ij , whether it is an initiator or responder (roleij ∈ {0, 1}), partner
identity PIDij . After this operation we say that the user instanceI ij is active.

– (deliver message, i, j, InMsg): The adversary delivers messageInMsg
to an active user instanceI ij .

– (application, f): Same as in the ideal world: models usage of the key
by a higher-level protocol.

– (corrupt user, i): A tuple recording the long-term state of the partici-
pant in recorded in the real-world transcript.

TranscriptReal(A) records all actions of the ideal-world adversaryA.

C Parsing messages received by honest participants

Let OΠ denote the oracle environment for the adversaryA, and letγ be the
parsing function that labels bitstrings received byOΠ from the adversary with
symbolic terms. We defineγ inductively on the sequence of bitstrings received
from the adversary during protocol execution. Letb denote the current adversar-
ial bitstring and letts be the symbolic trace constructed so far. Recall that every
receive action in the symbolic role specification includes asymbolic termt to be
received (this term may contain variables). Letλ be the function from symbolic
variables to symbolic constants. The input toγ is a 6-tuple(b, ts, t, σ, λ,R). The
output is an updated tuple(t′s, σ

′, λ′). If σ′ orλ′ are unchanged when parsing the
current bitstringb, we omit them in the description of the output. The obtained
symbolic term is pattern-matched against the expected termt. If the match is
successful,(t) is appended tots. Otherwise, the bitstring sent by the adversary
does not match what the participant expects. We assume that the participant
quits in this case without establishing the key, and terminate the symbolic trace.

Before the procedure starts, we initializeγ by mapping all symbolic terms
sent by honest participants to the corresponding bitstrings.

1. t is a constant such thatσ(t) = b′ (Note that all symbolic constants have
an interpretation which is defined when the constant is first created). Ifb =
b′, update the symbolic trace by appending(t). Mappingsσ andλ remain

unchanged since a symbolic label forb already exists. Ifb 6= b′, terminate
the symbolic tracets.

2. t a variable such thatλ(t) = t′ for some ground termt′, andσ(t′) = b′. If
b′ = b, append(t) to the symbolic trace; otherwise, terminate the trace.

3. t = (t1, t2). Apply γ recursively on bitstringsb1,b2 such thatb = (b1,b2),
obtaining(t1, σ1, λ1) and (t2, σ2, λ2), respectively. Letσ′ = σ1 ∪ σ2 and
λ′ = λ1 ∪λ2.

4. t is a signature{t′}lX. Let b = (b′,b′′) for someb′,b′′ (recall that every
signature is accompanied by its plaintext). If there existsan interpretation
of t′ andσ(t′) = b′, then verify whetherb′′ is a valid signature ofX on b′.
If yes, appendt to ts; otherwise terminatets. If σ(t′) 6= b′, terminatets. If
σ contains no interpretation oft′, then applyγ recursively on termt′ and
bitstringb′. The recursive call would either updateσ′, λ′ so thatσ(t′) = b′,
or terminate the trace. If the recursive call returns successfully and ifb′′ is a
valid signature onb′, then appendt to ts; else terminatets.

5. t is a Diffie-Hellman termd(t′), wheret′ is a ground term andσ(d(t′)) =
b′. If b′ = b, append(t) to the symbolic trace; else terminate the trace.

6. t is a Diffie-Hellman termd(x), wherex is a variable such thatλ(x) = t′

andσ(d(t′)) = b′. If b 6∈ G (G is the Diffie-Hellman group), then terminate
ts. If b ∈ G andb = b′ then updatets accordingly, else terminatets. If there
exists no symbolic termt′ such thatλ(x) = t′, then create a new symbolic
constantt′′, updateλ(x) = t′′ (i.e., λ(t) = d(t′′)) andσ(d(t′′)) = b.

7. t = h(x) andx is a constant term such thatσ(x) = b′. If b = h(b′), then
appendt to ts; otherwise terminatets. If x is a variable such thatλ(x) = t′

andσ(t′) = b′, then perform the same check as above. Ifx is a free variable
such that it has no mapping inλ, then create a new symbolic constantt′′,
updateλ(x) = t′′ andσ(h(t′′)) = b

8. The case wheret = fx(y) is handled similar to the case above.
9. t = x is a free variable,i.e., t does not have a mapping inλ. Oracle environ-

mentOΠ maintains computational instantiations (given byσ) of all terms
previously sent by honest participants. The parser checks if the value ofb
matches the value of any term previously sent by any honest participant. If
yes, labelb with the corresponding term and updatets. If no, check whether
b is a member of the Diffie-Hellman groupG. If b ∈ G, then create a sym-
bolic constantt′, updateλ(t) = d(t′) andσ(d(t′)) = b. Else, create a new
symbolic constantt′′, updateλ(t) = t′′ andσ(t′′) = b.

D Computational Semantics

We define the semantics[ϕ](T) of formulaϕ over a set of tracesT, inductively,
as follows. The set of tracesT = CExecStrandΠ is initialized to the set of all

traces of the protocolΠ with adversaryA and randomnessR. For formulas
not involving IndistRand, the semantics is straightforward. For example, the
action predicateSend selects a set of traces in which send occurs.

1. [Send(X, u)](T) is the collection of all(ts, σ,R) ∈ T such that some action
in the tracets has the formSend(X′, v) with σ(X′) = X andσ(v) = u.
Recall thatσ is the interpretation function which assigns computational bit-
strings to symbolic terms. The computational semantics of other predicates
(exceptIndistRand) is similar (see [15]). We provide the semantics of new
predicatesVerifySig andVerifyMAC which are introduced in this paper.

2. [VerifySig(X, u)](T) is the collection of all(ts, σ,R) ∈ T such that some
action (executed by symbolic thread X’) in the tracets has the formm/{t}lX′

(pattern matching), such thatσ(X′) = X andσ(m) = u,i.e., m is a valid
signature on termt under the private signing key ofX′.

3. [VerifyMAC(X, u)](T) is the collection of all(ts, σ,R) ∈ T such that some
action (executed by symbolic thread X’) in the tracets has the formm/ft(c)
(pattern matching), such thatσ(X′) = X andσ(m) = u,i.e., m is a pseudo-
random value on some constantc using termt as the key.

4. IndistRand(t)(T) = T, whereT = {t}R (parameterized by randomness
R), if the two familiesT̂, T̂ideal:
– T̂ = {adv(t).σ(t)}R
– T̂ideal = {adv(tideal).σ(r)}R

are computationally indistinguishable, else it is the empty setφ.
5. [θ ∧ ϕ](T) = [θ](T) ∩ [ϕ](T)

6. [θ ∨ ϕ](T) = [θ](T) ∪ [ϕ](T)

7. [¬ϕ](T) = T\[ϕ](T)

8. [∃ x.ϕ](T) = ∪β[ϕ](T[x→ β]), whereT[x→ β] denotes the substitution of
x by bitstringβ in T andβ is any bitstring of polynomial size.

9. [θ ⊃ ϕ](T) = [¬θ](T) ∪ [ϕ](T)

10. [θ ⇒ ϕ](T) = [¬θ](T) ∪ [ϕ](T′), whereT′ = [θ](T).
11. [θ[P]Xϕ](T) = T¬P∪ [¬θ](Pre(TP))∪ [ϕ](Post(TP)) whereT¬P = {t ∈ T :

t = t0t1t2 whereP does not matcht1|X}, Pre(TP) = {t0 : t ∈ T∧ t = t0t1t2∧
∃ substitutionσ s.t.P = σ(t1|X)} andPost(TP) = {t2 : t ∈ T∧ t = t0t1t2∧∃
substitutionσ s.t.P = σ(t1|X)}

We say that a formulaϕ holds for protocolΠ in the computational model,
denoted byΠ |=c ϕ, if [ϕ](T), whereT = CExecStrandΠ is the set of all
computational traces of protocolΠ, is an overwhelming subset ofT. More pre-
cisely,Π |=c ϕ, if, by definition, | [ϕ](CExecStrandΠ) | / | CExecStrandΠ |≥
1− ν(η), whereν is some negligible function in the security parameterη.

E Symbolic proof system

The axioms of the logic are as follows:

AA1 ϕ[a]X−3a

AA2 Fresh(X, t)[a]X−3(a ∧©©−©Fresh(X, t))
AN2 ϕ[νn]XHas(Y, n) ⊃ (Y = X)
AN3 ϕ[νn]XFresh(X, n)
ARP −3Receive(X, x)[(x/t)]X−3Receive(X, t)
ORIG −3New(X, n) ⊃ Has(X, n)
REC −3Receive(X, n) ⊃ Has(X, n)
TUP Has(X, x) ∧ Has(X, y) ⊃ Has(X, (x, y))
PROJ Has(X, (x, y)) ⊃ Has(X, x) ∧ Has(X, y)
N1 −3New(X, n) ∧ −3New(Y, n) ⊃ (X = Y)
N2 After(New(X, n1), New(X, n2)) ⊃ (n1 6= n2)
F1 −3Fresh(X, t) ∧ −3Fresh(Y, t) ⊃ (X = Y)
CON1 Contains((x, y), x) ∧ Contains((x, y), y)
CON2 Contains({t}lX, t)

After(a, b) ≡ −3(b ∧©©−©−3a)
ActionsInOrder(a1, . . . , an) ≡ After(a1, a2)∧ . . . ∧ After(an−1, an)

P1 Persist(X, t)[a]XPersist(X, t)
P2 Fresh(X, t)[a]XFresh(X, t),

where ifa = 〈m〉 thent 6∈ closure(m)
P3 HasAlone(X, n)[a]XHasAlone(X, n),

where ifa = 〈m〉 thenn 6∈ closure(m)
F θ[〈m〉]X¬Fresh(X, t), where(t ∈ closure(m))
F2 Fresh(X, t1) ⊃ Fresh(X, t2), wheret1 ⊆ t2

Persist ∈ {Has,−3ϕ},
HasAlone(X, t) ≡ Has(X, t) ∧ (Has(Y, t) ⊃ (X = Y))

T1 −3(ϕ ∧ ψ) ⊃ −3ϕ ∧ −3ψ
T2 −3(ϕ ∨ ψ) ⊃ −3ϕ ∨ −3ψ
T3 ©©−©¬ϕ ⊃ ¬©©−©ϕ
AF0 Start(X)[]X¬−3a(X, t)
AF1 θ[a1 . . . an]XAfter(a1, a2) ∧ . . . ∧ After(an−1, an)
AF2 (−3(b1(X, t1) ∧©©−©Fresh(X, t)) ∧ −3b2(Y, t2)) ⊃

After(b1(X, t1), (b2(Y, t2)),
wheret ⊆ t2, t ⊆ t1 andX 6= Y

The rules of the logic are as follows:

G1 if Π ⊢ θ[P]Xϕ andΠ ⊢ θ[P]Xψ thenΠ ⊢ θ[P]Xϕ ∧ ψ
G2 if Π ⊢ θ[P]Xϕ andθ′ ⊃ θ andϕ ⊃ ϕ′ thenΠ ⊢ θ′[P]Xϕ

′

G3 if Π ⊢ ϕ thenΠ ⊢ θ[P]Xϕ
MP if Π ⊢ θ andΠ ⊢ θ ⇒ ϕ thenΠ ⊢ ϕ
GEN if Π ⊢ ϕ thenΠ ⊢ ∀ x.ϕ
TGEN if Π ⊢ ϕ thenΠ ⊢ ¬−3¬ϕ
HON if Π ⊢ Start[]Xϕ and∀P ∈ S(Π),Π ⊢ ϕ[P]Xϕ

thenΠ ⊢ Alive(X) ∧ FollowsProt(X) ⊃ ϕ

whereS(Π) denotes all possible starting configurations ofΠ and
Alive(X) means that threadX has not completed the protocol yet.

F Proofs of authentication and key secrecy for DHKE-1 protocol

Figs. 7, 8 and 9 contain the symbolic proofs of, respectively, authentication and
key secrecy for the DHKE-1 protocol.

AA2,P1 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

−3(Send(A1, {A1,A2, d(x), {d(x),A2}
l1
A1
}) ∧©©−©Fresh(A1, x)) (1)

AA1,P1 Fresh(A1, x)[Init]A1

VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

) (2)
AF1,ARP Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1
A1
})

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})) (3)

(3),F1,P1,G2 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
¬−3Fresh(A2, x

′) (4)
F1,P1,G2 FollowsProt(A1)[Init]A1

FollowsProt(A2) ⊃ ¬−3Fresh(A1, y
′) (5)

HON FollowsProt(A1) ⊃ −3VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

) (6)
HON FollowsProt(A2) ⊃ ActionsInOrder(

VerifySig(A2, {x
′,A2}

l′1
A1
}),

Send(A2, {A2,A1, x
′, d(y), k, {x′, d(y), k,A1}

l′2
A2
})) (7)

(5),(6),(7),HON FollowsProt(A1) ⊃ ((¬−3Fresh(A1, y
′) ∧ −3VerifySig(A1, {d(x), y

′, k′,A1}
l2
A2

)) ⊃
ActionsInOrder(

Send(A2, {A2,A1, x
′, d(y), k, {x′, d(y), k,A1}

l′2
A2
}),

VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

))) (8)
(7),(8),HON, VER FollowsProt(A2) ∧ FollowsProt(A1) ∧ A1 6= A2 ∧ SendAfterVer(A2, x

′)∧

−3(VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

)∧ (−3VerifySig(A2, {x
′,A2}

l′1
A1

))) ⊃

∃ l1.∃ l
′

2.∃ m1.∃ m2. ActionsInOrder(

Sendterm(A1, {m1}
l1
A1

), VerifySig(A2, {d(x),A2}
l′1
A1

),

Sendterm(A2, {m2}
l′2
A2

), VerifySig(A1, {d(x), y
′, k′,A1}

l2
A2

))∧

ContainedIn(m1 , d(x)) ∧ ContainedIn(m2 , x
′) ∧ (x′ = d(x)) (9)

HON FollowsProt(A2) ⊃ (((−3Send(A2, m)∧

Contains(m, {d(x), d(y), k,A1}
l′2
A2

) ∧ ¬−3Fresh(A2, d(x)) ⊃

(m = {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
}∧ −3(Send(A2, m) ∧©©−©Fresh(A2, y))∧

ActionsInOrder(

Receive(A2, {A1,A2, d(x), {d(x),A2}
l′1
A1
}),

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
}))))) (10)

(1),(9),AF2 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

−3Receive(A2, {A1,A2, d(x), {d(x),A2}
l′1
A1
}) ⊃

After(Send(A1, {A1,A2, d(x), {d(x),A2}
l1
A1
}) , Receive(A2, {A1,A2, d(x), {d(x),A2}

l′1
A1
})) (11)

(1),(9),AF2 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
})∧

©©−©Fresh(A2, y) ⊃

After(Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
}),

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
},) (12)

(9-12),AF2 Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A2)) ⊃

∃ l1.∃ l
′

2.ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1
A1
})

Receive(A2, {A1,A2, d(x), {d(x),A2}
l′1
A1
})

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
})

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})) (AUTH-1)

Fig. 7. Proof of authentication for DHKE-1 protocol

HON FollowsProt(A2) ⊃ −3[νk]A2
(14)

(14),WCR6 FollowsProt(A2) ∧ −3[νk]A2
⊃ k

wcr
−→ hk(d(x, y)) (15)

Secrecy Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A2) ∧ −3[νk]A2

⇒
IndistURand(κ = (hk(d(x, y)))) (16)

MP Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A2) ∧ IndistURand(κ) (17)

defn.of Done, G3, HON Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A2) ∧ Done(A2) ⊃

−3VerifyMAC(A2, fκ(c)) (18)
HON FollowsProt(A1) ⊃ ActionsInOrder(

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})

Send(A1, {A1,A2, fκ(c)})) (19)
(17-19),AF2 FollowsProt(A1) ∧ FollowsProt(A2) ∧ Done(A2) ⊃ (

(−3VerifyMAC(A2, fκ(c)) ∧©©−©Fresh(A2, κ) ∧ −3Send(A1, {A1,A2, fκ(c)})) ⊃
ActionsInOrder(Send(A1, {A1,A2, fκ(c)})), VerifyMAC(A2, fκ(c)))) (20)

HON FollowsProt(A1)[Init]A1
FollowsProt(A2) ⊃ NotSent(A2, fκ(c)) (21)

(17-21) ,AUTH , Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A1) ∧ FollowsProt(A2) ∧ (A1 6= A2)∧

WCR1-6, G2 −3(VerifyMAC(A2, fκ(c)) ∧ −3Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
}))∧

IndistURand(κ) ∧ NotSent(A2, fκ(c)) ∧ (d(y)
wcr
−→ κ) ∧ (k

wcr
−→ κ) ⇒

∃ l′2.ActionsInOrder(Sendterm(A2, m)
Receive(A1, {A2,A1, d(x), y

′, k′, {d(x), y′, k′,A1}
l2
A2
})

Sendterm(A1, fκ(c))
VerifyMAC(A2, fκ(c)))∧

ContainedIn(m, d(y)) ∧ ContainedIn(m, k) ∧ y
′ = d(y) ∧ k

′ = k (22)
(22),HON Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1

FollowsProt(A1) ∧ FollowsProt(A2) ∧ Done(A2) ⊃

∃ l′2.ActionsInOrder(Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
})

Receive(A1, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l2
A2
})

Send(A1, {A1,A2, fκ(c)})
Receive(A2, {A1,A2, fκ(c)})) (23)

(AUTH-1),(23) Fresh(A1, x) ∧ FollowsProt(A1)[Init]A1
FollowsProt(A1) ∧ FollowsProt(A2) ∧ Done(A2) ⊃

∃ l1.∃ l
′

2.ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1
A1
})

Receive(A2, {A1,A2, x
′, {x′,A2}

l′1
A1

)})

Send(A2, {A2,A1, x
′, d(y), k, {x′, d(y), k,A1}

l′2
A2
})

Receive(A1, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l2
A2
})

Send(A1, {A1,A2, fκ(c)})
Receive(A2, {A1,A2, fκ(c)})) (24)

Fig. 8. Proof of mutual authentication for DHKE-1 protocol (continued)

P2 Fresh(A1, x)[Init]A1
Fresh(A1, x) (1)

AUTH-1 from fig. 7 Fresh(A1, x)[Init]A1
FollowsProt(A2) ∧ Done(A2) ⊃

∃ l1.∃ l
′

2. ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1
A1
})

Receive(A2, {A1,A2, d(x), {d(x),A2}
l′1
A1
})

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l′2
A2
})

Receive(A1, {A2,A1, d(x), y
′, k′, {d(x), y′, k′,A1}

l2
A2
})) (2)

HON FollowsProt(A2) ∧ Send(A2, {A2,A1, d(x), y1, k, {d(x), y1, k,A1}
l′2
A2
})

⊃ ∃ y.(y1 = d(y) ∧ Fresh(A2, y1)) (3)
(2-3) Fresh(A1, x)[Init]A1

FollowsProt(A2) ⊃
∃ y.(y1 = d(y) ∧ Fresh(A2, y)) (4)

NotSent defn Fresh(A1, x)[Init]A1
NotSent(A1, d(x, y)) (5)

NotSent defn, (2) Fresh(A1, x)[Init]A1
FollowsProt(A2) ⊃ (NotSent(A2, d(x, y))) (6)

(1),(4-6) FollowsProt(A1) ∧ Fresh(A1, x)[Init]A1
FollowsProt(A1) ∧ Fresh(A1, x)∧

∧NotSent(A1, d(x, y)) ∧ (FollowsProt(A2) ⊃
∃ y.Fresh(A2, y) ∧ NotSent(A2, d(x, y))) (7)

(7),DDH1-2,G2,G3 FollowsProt(A1) ∧ Fresh(A1, x)[Init]A1
FollowsProt(A2) ⇒

IndistRand(d(x, y)) (8)
(8),LHL,G3 FollowsProt(A1) ∧ Fresh(A1, x)[Init]A1

FollowsProt(A2) ∧ −3[νk]A2
⇒

IndistRand(hk(d(x, y))) (9)
IndistURand defn,(9) FollowsProt(A1) ∧ Fresh(A1, x)[Init]A1

FollowsProt(A2) ∧ −3[νk]A2
⇒

IndistURand(hk(d(x, y))) (10)

Fig. 9. Proof of key secrecy for DHKE-1 protocol

