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Abstract. Cryptographic security for key exchange and secure sessitab-
lishment protocols is often defined in the so called “ad&ptiorruptions” model.
Even if the adversary corrupts one of the participants imtiddle of the proto-
col execution and obtains the victim’s secrets such as tkiatprsigning key, the
victim must be able to detect this and abort the protocols Thusually achieved
by adding akey confirmatiormessage to the protocol. Conventional symbolic
methods for protocol analysis assume unforgeability oftaligignatures, and
thus cannot be used to reason about security in the adaptiigtions model.
We present a symbolic protocol logic for reasoning aboutentication and key
confirmation in key exchange protocols. The logic is crypapdically sound: a
symbolic proof of authentication and secrecy implies thatprotocol is secure
in the adaptive corruptions model. We illustrate our methpdormally proving
security of an authenticated Diffie-Hellman protocol wittylconfirmation.

1 Introduction

The two dominant models for analysis of security protocodstiae conventional
cryptographic model, which aims to prove that the protogskcure against any
efficient adversarial algorithm, and the so called “Dolee¥Ymodel, in which
proofs are carried out in a symbolic logic or a process catul

For many (but by no means all) cryptographic primitives, Baev-Yao
abstraction iscomputationally soundthat is, symbolic proofs of security for
protocols in which the primitive is replaced by its Doleveyabstraction imply
cryptographic security. This has been shown for certaim$oof symmetric en-
cryption in the presence of passive [1, 25] and active [2icketr, for public-key
encryption schemes secure against the adaptive chodeereipt attack [26],
and for digital signature schemes secure against exiatdotgery [4, 10].

In this paper, we focus on key establishment, which is a foratdal prob-
lem in secure communications. Intuitively, security of & kstablishment pro-
tocol requiresnutual authenticatiofupon completion of the protocol, each par-
ticipant correctly knows the other’s identity) atkdy secrecyfor anyone but
the participants, the established key is indistinguishdidm a random value).
Standard symbolic interpretations of authentication amddecrecy assume that



corruptions arstatic— each protocol participant is either honest throughout the
protocol execution, or is completely controlled by the adaey from the start.

Modern key establishment protocols such as SSL/TLS [17]IK&d[24],
however, are designed to be secure in the presenaaajftive corruptions.
Cryptographic models for key exchange such as those of SR8lipnd Canetti
and Krawczyk [12] also require adaptive security.

In the adaptive corruptions model, the adversary is peedhith corrupt one
of the participantsn the middleof the protocol execution and obtain either the
victim’s long-term secrets such as his signing key, or hirerinternal state,
including ephemeral secrets. The latter is knownstieng adaptive corrup-
tion [28], and is beyond the scope of this paper. We focus emthdel which
permits compromise only of the participant’s long-terntestd his may appear
counter-intuitive (in practice, long-term secrets may toeesl outside the sys-
tem), yet this model is used in cryptographic proofs of seday establishment
such as [28]. Therefore, we need to consider it if we are tabéish crypto-
graphic soundness of symbolic reasoning about key exchanogecols.

Even if a participant has been corrupted, the protocol nersiam secure
in the following senseif both participants complete the protocol, then authen-
tication and key secrecy must hold. In particular, this iegplthat any action
by the adversary that would result in a mismatch between dhcgpants’ re-
spective views of the protocol execution must be detectaplthe participant
whose secret has been compromised. This is usually achisvadding akey
confirmationmessage to the protocol. For example, a MAC (message aiithent
cation code) based on the established key can serve as firenation message,
enabling the recipient to verify that he has computed theeday as the sender.

Security in the adaptive corruptions model is best illustiaby example.
Consider the following two-move authenticated Diffie-Hmdin protocol A and
B generate their respective Diffie-Hellman exponents asdy, and then carry
out the following message exchange:

A M siga(m) B, where my = (g%, B)

Me,sigg(Mz)

A —""B,wherem, = (g*, ¢,i,A)
wherei is the index (randomly generated By of some universal hash function
family H. A andB then derive a shared kdyasH;(g?).

This protocol provides authentication and key secrecy utigeDecisional
Diffie-Hellman assumption. Still, the standard 1SO-9798+8tocol adds the
following key confirmatiormessage:

A s siga(ms) B, where my = (g%, ¢, i, B)



B does not complete the protocol until he has received anflagthis message.

Virtually all modern key establishment protocols contamikar key confir-
mation messages. What is their purpose? Theparaeeded for authentication
or secrecy (at least in the static corruptions model). Tisgvanis that they pro-
vide security against adaptive corruptions. Suppose theradry corrupt® and
learns his private signing key immediately afBereceives the first message but
before he sends the second one. The adversary thus gairslitye@forge B's
signatures, and can forge the second message asigdg*, 9, 1,A), wherez
is some value known to the adversary. Without key confirmawill com-
plete the protocol thinking that the established kel is H;(g*), while A will
complete the protocol thinking that the established kdy is H;(g*%).

Adding the key confirmation message ensures that the vidtilong-term
key compromise will not complete the protocol. Even if theeexdary forged
the second message, replacgigvith g%, B will be able to detect the inconsis-
tency by verifyingA's confirmation message. Note thitdoesnotneed to know
whetherA has been corrupted, or vice versa. It is sufficient to obsiaieither
the second message (frddto A), or the third message (frov to B) contains
a signature that could not have been forged by the adverBhaiy.ensures that
either A, or B will detect any inconsistency between the Diffie-Hellmai- va
ues that were sent and those that were received. Our olgestio capture this
reasoning in a rigorous symbolic inference system.

Authentication in the adaptive corruptions model is inhége“one-sided”
because the adversary can always impersonate the compobipasticipant.
The other, uncorrupted participant may thus end up usingéyeknown to
the adversary. Even in this case, we guarantee that (i) tmepted participant
detects the attack and aborts the protocol, and (ii) theradrgs view is fully
simulatable i.e., no efficient adversary, even after obtaining the victimisg-
term secret, can tell the difference between the real pobteecution and a
simulation where the key has been replaced by a truly randoueyvThis prop-
erty holds regardless of how the key is used by the uncomypdeticipant,.e.,
we guarantee real-or-random key indistinguishability day higher-level pro-
tocol that uses the key exchange protocol as a building block

The adaptive corruptions model is crucial to the study ofdeghange pro-
tocols, both because long-term secrets can be the mostahlaesecrets in the
system due to their repeated use, and because adaptivétysécueeded for
full universal composability of key exchange [12]. Therefosymbolic proofs
of universal composability require the ability to reasombylically about adap-
tive corruptions. We view our work as the first step in thisdiron.

Overview of our results. We present a protocol logic which is computationally
sound for reasoning about authentication when the long-sa&cret of one of



the protocol participants may have been compromised. Wiedum attention to
two-party protocols. Our logic is based on the protocoldagfiDurgin, Dattaet
al., but the set of cryptographic primitives in our logic is statdially different,
and includes Diffie-Hellman exponentiation, digital sigmras, universal one-
way functions and pseudo-random functions.

We emphasize that we dwot aim to provide general-purpose Dolev-Yao
abstractions for these primitives. Our goal is to obtain @nslosymbolic logic
for reasoning about key exchange protocols with key confionaWe do not
attempt to construct a symbolic representation for evenymgation performed
by the adversary; instead, we directly define computatiseatantics for our
logic. One consequence of this is that there may exist coatiputlly secure
protocols which cannot be proved secure in our logic. We doview this as
a significant limitation. Soundness seems sufficient forpretical purpose
of proving security of key establishment protocols. Momout is not clear
whether a complete symbolic abstraction can ever be catstiidor malleable
cryptographic primitives such as Diffie-Hellman exponatibin.

Our main technical result is the computational soundnessrém. Follow-
ing [15] (but with a different set of cryptographic primiéig), we define a com-
putational semantics for our logic in terms of actual crgoémphic computations
on bitstrings rather than abstract operations on symbefing. Everyprovable
symbolic theorenis guaranteed to be correct in the computational semantics
under standard assumptions about the underlying crygibgrarimitives.

The semantics of real-or-random key indistinguishabiktyundamentally
different in our logic vs. [15]. Following [28], we define tllgstinguishing game
on two transcripts that of the real protocol, and that of the “ideal” protocol
where all occurrences of the established kéyave been replaced with a truly
random value. Real-or-random indistinguishability thus holds even wkeyk
is used in a confirmation message sent as part of the protooein the game,
the adversary must be able to distinguish between the pairoffirmation
message computed wik) and §, confirmation message computed wijh

The proof system of our logic is substantially changed ws.atiginal pro-
tocol composition logic [14, 15] to account for the possipithat the long-term
secret of an (otherwise honest) participant has been comged. For example,
standard reasoning about digital signatures based onityeagainst existential
forgery (roughly, “If | receive a signed message from Bob &ud is honest,
then Bob must have sent this message”) is no longer soundubedhe ad-
versary may have obtained Bob’s signing key and is capabferging Bob's
signature. Instead, all authentication axioms now regex@icit confirmation
i.e, @ message is considered authenticated if and only if thpieet returned
some unforgeable token based on it (this becomes clearbe iaxamples). In



general, key confirmation (known as the Aproperty in the Canetti-Krawczyk
model [12]) is a fundamental concept in adaptive securitythe best of our
knowledge, it has not beaxplicitly captured in symbolic reasoning before.

Related work. Our logic is a variant of the protocol logic of Durgin, Data
al. [18, 14]. The latter is sound for reasoning about encrypfids], but only
with static corruptions. In previous work [20], we demoastd a cryptographi-
cally sound symbolic system for reasoning about Diffie-rtelh-based key ex-
change protocols, also in the presence of static corruptidn alternative model
appears in [16], but, unlike [20], it not guarantee simujdity.

In this paper, we focus on key establishment in the presehealaptive
corruptions. This requires@mpletely new axiomatic proof systéon reason-
ing about authentication. In addition to soundness in tlesgmce of adaptive
corruptions, our logic guarantees that real-or-randonsimgjuishability is pre-
served foranyuse of the key, even if the key is used to compute a key confirma-
tion message or completely revealed to the adversary (itrasirio [16]).

Security of cryptographic protocols in the presence of ddagorruptions
is closely related tauniversal composabilitydeveloped by Canetgt al. [8,
9,12, 13, 10], andeactive simulatabilitydeveloped by Backes, Pfitzmann, and
Waidner [27, 4, 5]. Both models ensure that security progeere preserved un-
der arbitrary composition. One of our goals is to provide kglic proof meth-
ods for universally composable notions of security.

Cryptographic key secrecy requires that the key be comipuotdly indis-
tinguishable from a true random bitstring. RelationshipsMaen symbolic and
cryptographic secrecy has been explored by Canetti ancoig¢t4], who show
that for protocols with universally composable encrypt{@rhich is realized
only with static corruptions) cryptographic secrecy isieglent to Blanchet'’s
“strong secrecy” [7], and by Backes and Pfitzmann [3]. Our ehgglincompa-
rable. For instance, the protocol language of [11, 3] inetudncryption, while
our language includes a restricted form of Diffie-Hellmapaxentiation.

Organization of the paper. Cryptographic assumptions are explained in sec-
tion 2. The symbolic and computational protocol models &findd in, respec-
tively, sections 3 and 4. In section 5, we describe our |layidi its proof system

in section 6. An example is in section 7, conclusions in sacs.

2 Cryptographic preliminaries

We use standard cryptographic definitions (given in appeAdlifor the digital
signature schem®S = (K,S,V) secure against the chosen message attack
(CMA); an (almost) universal hash function famiy= {h; }ic; and a family of



pseudorandom functiorfs= {f; }i¢;. Hash functions and pseudo-random func-
tions are often modeled as the same symbolic primitive, Heit purposes are
different in the protocols we consider. Universal hash fiams are employed
asrandomness extractort® extract an (almost) uniformly random key from a
joint Diffie-Hellman value, while pseudo-random functica® used to imple-
ment message authentication codes (MA&®rthe key has been derived.

Mutual authentication and key secrecy.Our definition of mutual authentica-
tion is based omatching conversatiori§]. The participants’ respective records
of sent and received messages are partitioned into setstohimg messages
with one message from each record per set. For every “récadtn by one
of the participants, there should be a matching “send” adiypanother partici-
pant, and the messages should appear in the same order irebottis.

Key secrecy requires that the established key be indidgshgble from a
random bitstring by any efficient.€., probabilistic polynomial-time) adver-
sary. Following thesimulatability paradigm [28, 12], we first define a secure-
by-designideal functionalityfor key exchange: a trusted third party generates
the key as a true random value and securely distributesiibtogol participants.

Of course, in the real protocol participants exchange ngessand compute
the key according to the protocol specification. Considegr efficient adver-
sary, and let th&kealview be the sequence of messages sent and received by
this adversary during the real protocol execution. Follm\i28], we say that
the protocol is secure if there exists an efficismhulator algorithm which,
with access only to the ideal functionality, generateddeal view such that
no efficient adversary can distinguish betwégeal andRealwith a probability
non-negligibly greater thaél. Formal definition can be found in appendix B.

Note that all occurrences of the established key or any fom¢hereof in
the Realview are replaced with the (truly random) ideal key in tbeal view.
Therefore, unlike [16], we place no restrictions on how thg knay be used by
an arbitrary higher-layer protocol. Even if the key is coetgly revealed to the
adversary and the protocol contains confirmation messamaputed with this
key, he will not be able tell the difference betwdee@alandldeal (see section 4).

Adaptive corruptions. In the adaptive corruptionsnodel [28], the real-world
adversary may issuecr r upt user query to any of the honest participants
at any point during the protocol execution. As a result of tuery, he obtains
the victim’s long-term secrets such as the private signieyg kor the purposes
of this paper, we assume that the adversary dottearn any ephemeral data
such as Diffie-Hellman exponents and nonces created jushifoprotocol ex-
ecution (In the full version of the paper [22], we discuss $teng adaptive
corruptions model, in which the adversary also learns eghaindata of the



Identities id ::= X (variable name) A (constant name)
Terms t = x (variable)| c (constant) id (identity)| r (random)|
i (index of hash function family) (t, t) (pair)| d(r) (exponentialy’) |
d(r, r) (exponentia™") | {t}i4 (signature ofid)|
h; (t) (unary hash function) £:(t) (pseudo-random functior)
Actions a:=e(null) | (vx) (generate nonce) (vi) (generate index) (t) (send ternt) |
(t) (receive ternt) | x = x (equality test) (t/t) (pattern matching)
(done) (“protocol session completed”)
AList = €| a,AList
Thread ::= (i d, sessionld
Role ::= [AList]tnread

Fig. 1. Syntax of the symbolic model

corrupted participant.) In the ideal world, corrupting atjggpant does not yield
any information, but the simulator gets the right to subtithe ideal random
key with any value of his choice. In this paper, we are notredted in denial-
of-service attacks, and, as in [28], assume that the cauyparticipant follows
the protocol faithfully even after his long-term secretgenbeen compromised.

The adversary controls the network, and invokes parti¢gohy delivering
messages. On receiving a message, the participant perddonal computation
according to his role specification and gives the output éceitiversary. Partici-
pants terminate by outputting the established key or aigpttie protocol.

In the proofs, we assume that at most one of the two partitspaas been
corrupted. Ifbothare compromised, simulatability holds vacuously: the &mu
tor corrupts both participants and substitutes the idealdwkey with the real-
world key, thus ensuring that the adversary’s view is idetin both worlds.

3 Symbolic model

Our protocol logic is inspired by the logic of Dattd al. [14, 15], but has been
extended to include Diffie-Hellman exponentiation, unéatrhash functions,
and message authentication codes based on pseudo-ranadictiorfs. The syn-
tax of terms and actions is given in fig. 1.

We use a simple “programming language” to specify the paitas a set
of roles. X, Y, ... denote the names of protocol participantsthfeadis a pair
(X,s), wheres is asessionlddenoting a particular session being executed by
X. For simplicity, we will omit thesessionldand denote a thread simply by
Each role is a sequence of actioms.{st) associated with a single thread. A
role specifies the actions that an honest participant must do

Symbolic actions include generation of nonces and indigatgern match-
ing (which subsumes equality tests and signature verifiggtoutputting a spe-



cial markerdone (as the last action of the role), sending and receiving. Rece
ing a messagét) always involves pattern matching wheis not a variable.

A (two-party) protocol I7 is a set of two roles, together with a basic term
representing the initial attacker knowledge. We definenthienal executiorof
11 to be the matching of the two roles that would occur if the geot were
executed in a secure communication environment with pemessage delivery.
In the normal execution, every send action by one of the islestched up with
a receive action by the other role, and there exists a sutistitmatch from
variables in received messages to terms such that the semeegived terms
are equal after applying the substitution. Intuitively;, évery receive actiof)
wherex is a variablematch(x) is the “intended” term sent by the other role.

Distinct signatures assumption.To simplify proofs, we impose a simple syn-
tactic constraint on protocols. All signatures receivedi®yrole must be syntac-
tically distinct,i.e., for signatureqt }3¢, ..., {ts }5¢ received by some role, for
any substitutiorr from variables to ground terms, it must be thét; ) # 7(t;)
fori,j € [1..n] andi # j. This can be ensured by adding a unique “tag” to the
plaintext of each signaturég., replacing eacl{ti}}(i in the role specification
with {(t;, 1)}y whereg’s are distinct symbolic constants. The unique match-
ing of sent and received signatures also imposes a uniquehimgton the sub-
terms of signed terms. For the rest of this paper, we will mesthat// satisfies
this constraint and thatatch describes the intended matching of the roles.

Definesymbolic traceof IT asExecStrang ::= Start(Init), AList, where
Init is some initial configuration, anfList is the sequence of actions which
respects the partial order imposed by the role&lof

4 Computational model

In the computational model, abstract symbolic terms ar&aceg with actual
bitstrings, and symbolic role specifications are instaetias stateful oracles in
the standard Bellare-Rogaway model [6]. Every symbolimteent by a honest
participant isinstantiatedto a bitstring, and every term received by an honest
participant from the adversarially controlled networkparsedto match the
symbolic term expected by this participant according tarbie specification.

Initialization. We fix the protocolll (assume that we are given its symbolic
specification), security parametgt, probabilistic polynomial-time (im) ad-
versary.A, and some randomne8sof size polynomially bounded in, which

1 n cryptography, the security parameter measures the ke dnput probleme.g, the size
of the key in bits.



is divided intoR;; = UR; (for protocol participants) and arid, (for inter-
nal use of the adversary). Each principbk)(and each thread is assigned a
unique bitstring identifier chosen from a sufficiently lagg@ynomially bound
setl C {0,1}". We run the key generation algorithkh of the digital signature
schemeDS = (K, S, V) on 1" for each principal; using randomnes®;, and
produce a public/private key pdipk;, sk ).

Correct public keys of all participants are assumed to bevknim every-
body, including.A (e.g, via a trusted certification authority). We assume that
a family of large cyclic groups, indexed by in which the Decisional Diffie-
Hellman problem is presumed hard, has been chosen in adwamt¢hat both
participants know the correct values of the group paramgieeciuding the gen-
eratorg. (For simplicity, we will assume that a Diffie-Hellman grotgfers to a
member of a family of Diffie-Hellman groups, indexed by We will also as-
sume that every signed message consists of the messafjaritéhe signature,
i.e., participants simply reject signatures that arrive witreplaintext.

Generation of computational traces.Honest participants in the computational
model are modeled as stateful oracles. The state of eacle @satefined by an
interpretation functiong : t — bitstringsfrom ground terms to bitstrings (of
size polynomially bounded in), and the countec, which is initially set to0
and increases bi/for each executed action. We fix the mapping from symbolic
constants to bitstrings prior to protocol execution. Thsludes identities of
participants, public/private key pairs for each partiaipgublicly known con-
stants,etc. Abstract Diffie-Hellman valued(x) andd(x,y) are mapped tg*
andg®, whereg is the generator of the Diffie-Hellman group.

During protocol execution, oracles are activated by theeeshry who ac-
tivates them by sending messages and collects their respoBsch oracle
proceeds in steps according to the sequence of actions iroliis symbolic
specification, when activated by the adversary. Instaotiaif symbolic actions
to concrete operations on bitstrings is performed by sty ground terms
with their interpretation and incrementing the courddor every symbolic ac-
tion [26, 15]. The adversary is allowed to obtain any pgptait’s private signing
key at any point in the protocol by performing therrupt user operation.

Let a denote the current action in thd.ist defining some role of par-
ticipanti in sessions, i.e., the symbolic thread i¢’,s') wherei = o(i’) and
s = o(9). For example, actiomn = (vx) is executed by updating so that
o(x) = vwherev is a random bitstring chosen froR). We omit the (standard)
details for other operations including signature genenagind verification, pair-
ing, unpairing, equality tesetc. We inductively extend the interpretation func-
tion o to all ground termse.g, o({t}%) = (o(t), Ssky (o (t),o(1))), whereS
is the signing algorithm of the digital signature scheg, sky is the private



a = Send(X,m) | Receive(X,m) | VerifyMAC(X,t) | New(X,t) | VerifySig(X,t)

¢ i=a | Has(X,t) | Fresh(X,t) | FollowsProt(X) | Done(X) | Contains(ti,t2)
Start(X) | IndistRand(t) [ ¢ A@ | ~¢ | IXp| Qo | Op | ¢ D¢ | o=

Y U= ppp

Fig. 2. Syntax of the protocol logic

key of principalX, ¢(1) is the randomness of the signing algorithm. Note that
the signaturg(t } is interpreted as a paib, sigx (b)) whereb is the plaintext
corresponding to term andsigx (b) is the signature obtained from the signing
algorithm of the signature scheme usiXg private key.

When an honest participant receives a message from thesadydneparses
and labels it to match the symbolic term expected accordirigd role specifi-
cation. Bitstrings which cannot be parsedg, hash of an unknown valuga)
received when the recipient expects a varial)lare labeled by fresh symbolic
constants, as in [26]. Parsing algorithm is given in appefdi

Definition 1 (Computational Traces). Given a protocolll, an adversaryA,
a security parameter), and a sequence of random bitsR {0, 1} (R =
R U Ry) used by honest participants fR and the adversary (R, a com-
putational trace of the protocol is the tupl(&, o, R) (o € {oy,0i}) , where §
is the sequence of symboalic actions executed by honestipartts, o is the
interpretation function and R is the randomness used in thepol run. Let
CExecStrang be the set of all computational traces ff.

5 Protocol logic

The syntax of the logic appears in fig. 2. Formulagand denote predicate
formulas,p, t, m andX denote a role, term, message and a thread, respectively.
For every protocol action, there is a corresponding acti@dlipate which

asserts that the action has occurred in the run. For exasglé(X, m) holds in

a run where the thread has sent the messageFollowsProt(X) means that

X faithfully executes the actions in its role specificatiore @efer not to use the
termhonestbecauseX’s private key may have been compromised by the adver-
sary).Done(X) means that the threatlhas successfully completed the protocol
session and output the kelndistRand(t) means that no efficient algorithm
can distinguisht from a random value of the same distribution (the precise se-
mantics is defined below). The special case when the dititsibis uniform is
denoted agndistURand(t) — this is usede.g, whent is the established key.
Modal formulas of the forn®[s|x, are used in the proof system. The formula
states that in a thread after actionss € AList are executed, starting from a
state in which the formulé was true, formulap is true in the resulting state.



In the adaptive corruptions model, it is no longer sound smaee that hon-
est participants’ signatures are trustworthy. This rezgua complete revision of
the authentication formulas and axioms, which is the mairtrdmution of this
paper. We introduce two new formulagerifySig(X, {t'}3) means that thread
X verified signaturesigy(c(t’)) using the public key of participant (thread)
Y. As mentioned above, we assume that every signature is aecoed by
its plaintext,i.e, termt’ is Dolev-Yao computable from the signatufe’}.
Similarly, VerifyMAC(X, f1/(c)) means thaiX has verified the MAC by re-
computing the keyed pseudo-random functfowith key o(t’) on inputo(c).

Following [15], we use two forms of implication: classicahplication D
and conditional implication=-. Conditional implicationd = ¢ is defined—6
OR the conditional probability ap given 8. Conditional implication is useful
for proving cryptographic reductions: for example, we shbat if the attacker
violatesIndistRand(t) wheret is the symbolic term representing the key, then
this attacker can be used to break the Decisional Diffierritl assumption.

Closureof a termt is the least set of terms derivable using the following:

t € closure(t)

t € closure((t,s)), s € closure((t,s))

t € closure({t}y), d(x,y) € closure(d(y, x))

r € closure(s) A's € closure(t) D r € closure(t)

Relationﬂg t x t is defined as followst’ £% t iff, for an n-ary function
f,t =f(t',t1,...,tn_1), and, given valueg, xy, ..., X,_1, it is computation-
ally infeasible to findX' # x such thaff (X, X1, ..., %—1) = f(X, X1, ..., %—-1)
holds. We say that is a weakly collision-resistant function of.

Computational semantics We define the semantics of formulas osetsof
computational traces. For most formulas, the definitiontrigightforward: ¢
holds over an individual trace if the action describeddyccurred in that trace
(e.g, theSend action predicate is true in the trace if the correspondimglisg
action occurred in the trace), and for a set of tratethe semanticgp|(T) is
the subsef’ C T consisting of traces on which holds. The formulay holds
for protocol 11, denoted as/ . ¢, if it holds for the overwhelming majority
of traces in the entire set of computational traG#sxecStrang. The precise
inductive definition has been removed to appendix D, duedio dd space.

The IndistRand(t) predicate is more challenging. It should hold when
the value oft (typically, the key established in the protocol) is indigfilish-
able from random by any efficient adversary. Unlike other el®df real-or-
random indistinguishability [16], our definition presesvimdistinguishability
regardless of how the value is used: for example, the keyirenimadistinguish-
able from random even when used to compute a key confirmatimsage. This



is achieved by defining the distinguishing game on entireoga transcripts
rather than standalone keys. This technique is similar&p [2

Given a protocolll (between rolesX and Y), computational tracé —
(ts,0,R) and termt, let t4,...,t, be the symbolic terms in the role specifi-
cations ofX andY whose interpretation is the same as that ofe., o(t;) =
... =0(ty) = o(t). Define a substitution,, as:

ot = [t1 — r,...,t, — r]; Wheret is not a Diffie-Hellman term

[t1 — d(r),...,ty — d(r)]; tis of the formd(x) or d(x,y)

wherer a fresh symbolic constant. Lél;4ea1 = 01 (I7). Lettigea1 denote the
computational trace generated by runniiigs.,; with the same adversarial al-
gorithm A and same randomneBsas used int. The randomness for instantiat-
ing r is drawn fromR\ R4. Intuitively, int;4ea1 all occurrences of the real-world
key are replaced by a random value. This includes key coriomanessages:
in the real world, they are computed wiitit); in the ideal world, witho (r).

Let ad\(t) denote the adversary’s view, i.e, the sequence of send and
receive actions in the trade Given a set of computational trac&s= {t}r
(parameterized by randomneR) define:

T = {adv(t).o(t))x
— Tigea1 = {@0\Utigea1).o(r)}R

We explicitly append the value of termto each trace of the “real” protocol,
and its random equivalent to each trace of the “ideal” prottod/e say that
[IndistRand(t)](T) = T if T and Tiqea1 are computationally indistinguish-
able, else it is the empty set

Semantics offlndistRand can be understood in terms of a game played
by the adversary. Fix randomnes® associated with the protocol participants
and A at the start of the game. A random bits tossed. Itb = 1, participants
follow the real protocol, in which the key is generated adowg to protocol
specification. Ifb = 0, the key is generated as a true random value and “mag-
ically” distributed to participantsi.g., the value of the key is independent of
protocol execution); all protocol messages involving thg kre computed us-
ing this random value. To modarbitrary usage of the key by a higher-layer
protocol, we explicitly reveal the key td in each world.A wins the game if he
guesses bib with a probability non-negligibly greater th@ i.e, if A can tell
whether he is operating in the real or ideal woflthdistRand(t)](T) = T iff
no probabilistic polynomial-time adversary can win thexabgame, else it ig.

6 Symbolic proof system

Our logic inherits some axioms and proof rules from the oagjprotocol com-
position logic of Durgin, Dattat al.[18, 14, 15], and the axioms for reasoning



about Diffie-Hellman exponentiation from our previous workkey exchange
protocols in the static corruptions model [21, 20].

The main new additions are the axioms and rules for reas@tiagt authen-
tication in the presence of adaptive corruptions, and pseaddomness axioms
for reasoning about message authentication codes (MAG8)n&w authenti-
cation axioms require an explicit confirmation message Veryeterm sent by
an honest participant. For example, MER axiom models confirmation with
digital signatures: “Alice knows that Bob has received hgnad term correctly
if she receives a signed message from Bob containing the 'ame (this rea-
soning is sound even if either party’s signing key has beempromised). More
precisely, termtz sent fromX to Y has been transmitted correctly if (i) bokh
andY follow the protocaol, (i)Y received a term containingthat was signed by
X, (iii) Y verified X’s signature, (iv)Y sent a signed term containingo X (this
is the confirmation message), and ¥K/yerified Y's signature. I1fX’s long-term
key has been compromised, the adversary will be able to f§sggignature and
substitute a different term in the message received bigut X will detect the
compromise after receiving’s confirmation message.

Similarly, theAUTH axiom models confirmation with message authentica-
tion codes (MACSs): “Alice knows that Bob has received hemteprrectly if she
receives a MAC computed as a pseudo-random function of sabiiEgonstant
with the secret key derived in part from Alice’s term.”

We focus on the new axioms only. The complete set of axiomspaoaof
rules is given in appendix 5. We s@y - ¢ if ¢ is provable using this system.

Theorem 1 (Computational soundness)Let I1 be a protocol satisfying the
distinct signatures assumption, and {ebe a formula. If the protocol is imple-
mented with a digital signature scheme secure againstestist forgery under

the adaptive chosen message attack, and assuming thenegisika universal

family of hash functions and pseudo-random functions aatlttie Decisional

Diffie-Hellman assumption holds, then

IoHt-e> I Ecp

Proof. Complete soundness proofs for all axioms and proof rulesrathe
full version of the paper [22]. To illustrate our proof tedues, we give the
soundness proof of th#ER axiom, which models confirmation with digital
signatures. As mentioned in section 2, we will only consither case when at
most one of the two participants has been corrupted by thersalny.

Soundness of VER axiomThe informal intuition behind the proof is as fol-
lows. According to the precondition of théER axiom, X sent a signed terrn
to Y, Y signed whatever he received and returned Ktaevho verified that the



VER

AUTH

FollowsProt(X) A FollowsProt(Y) A (X # Y)A [NEW]
S (VerifySig(X, {ma}y)A (OVerifySig(Y, {mi}x))) A SendAfterVer(Y,t')A
ContainedIn(m,t) A ContainedIn(m;,t’)) A (t = match(t')) D
31’.3k. Imf Im).
ActionsInOrder (Sendterm(X, {m’l}il), VerifySig(Y, {m: }X),
Sendterm(Y, {m}¥), VerifySig(X, {mo }¥))A
ContainedIn(m,t) A ContainedIn(mj,t') A (t =t')

FollowsProt(X) A FollowsProt(Y) A (X # Y)A [NEW]
S (VerifyMAC(X, £ (c)) A (©Receive(Y,m))) A IndistURand(t) A NotSent (X, f:(c))A

; wer

ContainedIn(m,t”) A SendMACAfterVer(Y,f(c),t”) At' =match(t”")A (' —1t) =
31 3w’
ActionsInOrder(Sendterm(X,m’),Receive(Y,m),
Sendterm(Y, f1(c)), VerifyMAC(X, £ (c)) A ContainedIn(m’,t’) A (t' =t")

ContainedIn(m,t) =t € closure(m)
SendAfterVer(Y,t) = Vm.(Sendterm(Y,m) A ContainedIn(m,t)) D
Amy, 1.OVerifySig(Y, {mi}x) A ContainedIn(m,t)
Sendterm(X,t) = Im.Send(X,m) A ContainedIn(m,t)
SendMACAfterVer(Y, fi(c),t’) = Vn'.(Sendterm(Y,m’) A ContainedIn(m’, f:(c))) D
Im, 1.OVerifySig(Y, {m}X) A ContainedIn(m, t’)
NotSent(X,t) =Va.(©aAa= (m) Dt ¢ closure(m)
IndistURand(t) = IndistRand(t) A
t is not of the formd(x), d(x, y) andc is a public constant

Fig. 3. Axioms for authentication

signed value is equal toSuppose the adversary hé’s signing key, and causes
Y to receive somé& # t. In this caseY sendd’ to X in the second message, yet
we know X receives signedl This means that the adversary forgéd signa-
ture on the message containing@ven though he does not knofis signing key.
Now suppose the adversary hés signing key. IfY receivest’ # t in the first
message (signed X)), then the adversary forgedis signature on the message
containingt’, even though he does not knatts signing key. In both cases, we
conclude that eitheY receivedt in the first message, or the adversary forged a
signature of the participant whose signing key he does nmivkn

We now give the formal proof. Fix protocdll, adversaryA.; and a sig-
nature schem®S = (K,S,V) secure against existential forgery. Ligt e
CExecStrang be a computational trace such that= (ts, o, R). Suppose that
tc doesnot satisfy the axiom. We will usgl. to construct a forgeB against the
digital signature schentPS. Since8 can only succeed with negligible proba-
bility, we will conclude by contradiction that the axiom nitmId overt..

Recall the existential forgery game. Given a signatureee®S and ad-
versaryl3, run the key generation algorithm to produce a key f&wv) and give
v to B. In the query phasé3 can obtainSs(m) for any message. B wins if he



WCR1 d(x) -5 d(x, ) [NEW]

WCR2 d(y) —% d(x, ) [NEW]
WCR3 Vi.t 5 h;(t) [NEW]
WCR4 t; *% £, O Vit —5 hy(t2) [NEW]
WCR5 (t1 5 t5) A (t2 —5 t3) D t1 — t5 [NEW]

WCRS FollowsProt(X) A O[vk], Dk~ he()  [NEW]

Fig. 4. Axioms for weak collision resistance

DDH1 Fresh(Y,y) A NotSent(Y,d(x,y)) A FollowsProt(Y) A ((X # Y) A FollowsProt(X)

AFresh(x, X)) A NotSent(X,d(x,y)) = IndistRand(d(x,y))

DDH2 IndistRand(d(x, y))[a]xIndistRand(d(x,y)), where ifa = (t) then

LHL

d(x,y), %,y ¢ closure(t)
IndistRand(d(x, y)) A FollowsProt(X) A &[vk|x = IndistRand(hk(d(x,y)))

PRF IndistURand(t) A NotSent(X,t) A NotSent(Y,t) = IndistURand(f:(c)) [NEW]

NotSent(X,t) =Va.(GaAa= (m)) Dt ¢ closure(m)

Fig. 5. Axioms for Diffie-Hellman, hash functions and pseudo-randanctions

produces a signature on messagen which he did not use in the query phase
such that,(o,m) = 1. A signature scheme ISMA-securdf no probabilistic
polynomial-time adversary can win this game with non-rgable probability.

Our forger B runs the protocol adversaty. in a “box” (i.e., as a subrou-
tine) and simulates the oracle environment to him as folldwesX andY be the
names of protocol participants, and & and Sy be the corresponding sign-
ing oracles B is given access to such oracles by the CMA game). Consider
the sequence of querigg, . .., g, (i.e., messages sent to protocol participants)
made byA.. For each query;, B performs the required action on behalf of the
protocol participant. Whenever an honest particip&ig required to produce a
sighature on some tert) 3 obtains the required signature from the signing or-
acleSx. When a participant is corrupted, his signing key is giveptoTo win
the CMA game B must forge a valid signature of the uncorrupted participant

Suppose the computational trace does not satf&fR. This implies that
the postcondition of the axiom is false, while the precadaodits true,i.e., the
following actions did happen in sequendéverified the signature of on some
term containingt’, signed a term containing/, and sent it toX.

Case |.Both participants were still uncorrupted whinverified the signature
of Y on some term containing. First, consider the case = t’. Since the
trace does not satisfy the axiom, there must exist some @eshich contains
the signature[m’l}% (wherem containst) which did not appear in a previous
message, or a (previously unseen) signafuftg’ wherem), containst’.



Without loss of generality, we assume that qugrgontains the signature
of X on termm) such that no earlier message contains the signature of the sa
term under the same signing key (even with a different labeThen3 simply
outputs the signaturfm’ }{ sent by the adversagt. and wins the CMA game.
This is a valid forgery becausé has not been corrupted auti successfully
produced a signature of on a term whichX did not previously sign before.
(B knows whenA_. first produced a valid signhature of some honest participant
which has not been seen before becdfian verify the signature himself.)

Now consider the case # t’. Recall that all received signatures in a role
specification are distinct,e., for {t1}y,. .., {t.}5¢ received by the role, for
any substitutionr from variables to ground termst;) are all distinct. The
precondition of the axiom states thdtverified Y’'s signature on the term con-
taining t andY previously verifiedX’s signature on a term containing # t.
Because for any valid signature receivedYbthere exists exactly one signature
sent byX, there must exist some quegy made by.A.; which contains the sig-
nature{m’}} (wheren’ containst’) under the private signing key &, but no
earlier message contaiXs signature on term’. Therefore, the adversary made
a query which contains a valid signature of an honest ppéiti but no earlier
message contains this participant’s signature on the same The forger3
simply outputs this signature and wins the CMA game.

Case Il.Suppose the adversary corrupts participabeforeY receivedX’s sig-
nature on a term containing The adversary can now forge a valid signature of
X on a message containing some=~ t (which was not signed bX in the past)
and deliver it toY. Y verifies X's signature on the message containingand
receives the value of the term . Suppose the adversary deliverstsome
signaturen. It follows from the precondition that accepits it iffo is a valid sig-
nature byY on a term containing. From the distinct signatures assumption and
the fact that = match(t’), it follows that the only sent term in the role specifi-
cation ofY which matchesy is Y’s signature on a term containing = t; # t
in the same position wheke containst. Therefore, there exists some queyry
made by the adversary which contains a signature of the wpted partici-
pantY on a message containing tetnmwhich was not previously signed by
B outputs this signature and wins the CMA game.

The proof for the case where the adversary corriydieforeX receivesy’s
signature on a message containing similar and omitted.

7 Example

We illustrate the use of the logic by proving security for eeitmove authenti-
cated Diffie-Hellman protocol (DHKE-1), which is essertiahe same as the



Init 2= {(Ar A)[(vx). (A1, Az, d(x), {d(x), A} ).

(A2,Ar1,d(x),y', ¥, 2).(z/{d(x), ¥, K, AL} 2) .(create).(A1, Az, £,:(c)).(done)]a, }

Resp:= {(A1 A2)[(vy).(vk).(A1, As, %/, 2). (,z/{x’,Ag}}\ll).
(Ao, A1, %', d(y), &, {x',d(y), &, As Z).(connect).(Al,Ag, Z).(Z/£.(c)).(done)]a, }
andmatch(x’) = d(x),match(y’) = d(y), match(k’) = k,match(z') = £, (c),
wherek is a hash function index artis a family of pseudo-random functions;
the derived key i = hy(d(x,y)) for hash functiorh indexed byk and
c is a public constant.

Fig. 6. Symbolic specification of the DHKE-1 protocol.

protocol described in section 2, except that PRFs instea@yoatures are used
in the key confirmation message. The symbolic specificatfdheprotocol is
in fig. 6. Init andRespdenote the initiator and responder roles, respectively.

Below, we specify the authentication property for the aiitr role of the
protocol (specification for the responder is similar). Theperty is proved us-
ing the formulationpre [actions] postwherepre is the precondition before the
actions in theactionslist are executed anplostis the postcondition. Note that
mutual authentication is conditional @s actually completing the protocol.

We emphasize that this doeet mean tha#\; can verify the state of tha,.
As explained in section 1, this simply means thaAdfs key is compromised,
then the adversary can successfully impersonate compedmis to A; and
authentication ofAy’s messages cannot be guaranteed. Thisegitablein the
presence of adaptive corruptions. The protocol must gtegamowever, that
A, detects that it has been compromised and dwdsomplete the protocol,
thusA; andA; never communicate using a key known to the adversary. As our
proofs in appendix F show, the protocol indeed satisfiegatuperty.

pre  =Fresh(A;,x) A FollowsProt(A;)

actions::= [Init |,

post :=FollowsProt(A;) A FollowsProt(Az) A Done(Az) D
31,.15.

ActionsInOrder(Send(Ay, {A1,As,d(x), {d(x), A }kl )
. 1/

Receive(Az, {Ar, Ao, X', {x', Ao}l )}) y
Sel’ld(/AQ7 {AQ, A17 X/7 d(Y)7 k7 {X/7 d(Y)’ k7 Al }A22 })
Receive(Aq, {Ag, A1,d(x),y, ¥/, {d(x), y’,k’,Al}kz})
Send(A, {A,Ag, f(c)})
Receive(Ag, {A1, A2, £4(c)})),

wherec denotes a symbolic constant,

¥ = d(x),y = d(y), ¥ = kand

K = he(d(x,y)).
The secrecy property is specified symbolically as follows:



pre  :=FollowsProt(A;) A Fresh(Aj,x)
actions::= [Init |5,
post ::=FollowsProt(As) A &[vk|a, = IndistURand(hy(d(x,y)))

The postcondition ensures thatAf is honest, too, then the established key
is indistinguishable from a uniform random value. Proofsiarappendix F.

8 Conclusions

We presented a symbolic logic which is sound for reasonirmutbuthenti-

cation in key establishment protocols even when if the sigrkey of one of

the participants has been compromised by the adversamre=work involves

extending the model to universally composable key exchamwbech requires

security in the presence of strong adaptive corruptioaswhen the adversary
obtains the entire internal state of the corrupted paditipincluding short-term
secrets such as Diffie-Hellman exponents. Preliminarychkean be found in
the full version of this paper [22].
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A Cryptographic primitives

Computational indistinguishability. Two ensembleX = {X}nen andyY =
{Yn}nen are (computationally)ndistinguishable in polynomial timié for ev-
ery probabilistic polynomial time algorithm, every polynomialp(.) and all
sufficiently largen's | Pr(A(Xn, 1") = 1) — Pr(A(Yn, 1") = 1) [< 55

Digital signature schemesA digital signature scheme is a triple of proba-
bilistic polynomial-time algorithm®S = (K, S,V) on a finite domairD C
{0,1}*. On input the security parameter K generates a pair of keys,v).
The deterministic verification algorithm on inpo, signaturec and verifica-
tion keyv, produces a one bit output. Algorithndsand) have the property
that on any message € D, V,(Ss(m),m) = 1 holds, except with negligible
probability. The range of includes a special symbadl¢g D.

The standard notion of security for digital signatures isusgy against
exisential forgery under the chosen message attack (CM%#) fiefined as a
game. Given a signature sche@& = (K,S,V) and PPT adversary, run K
to generate a key pafs, v) and givev to A. A can query(sign m) for any mes-
sagem € D and obtainSs(m) in response.A wins the game if he can produce
a bitstringo such thad), (¢, m) = 1 for somemthat he did not use in the query
phase. A sighature schemeGd/A-securaf no probabilistic polynomial-time
adversary can win this game with non-negligible probahilit

DDH assumption Let G be a member of a large family of groups, indexed)by
of prime orderg and generatay. Denote byOPH a “Diffie-Hellman” oracle. Fix
a PPT adversaryl, which operates in two phasdsarning andtesting In the
learning phased makes queries of the for, j) (i # j) to OP". In response to
a query, the oracle returns thg<, g%, g*%), wherex;, x; are chosen uniformly
at random fronZg. In the testing phase4 makes a distinct querfi, j) (i # j)
which he did not make in the learning phase. A doiis tossed. Ib = 0, OPH
returns(g*, g9, g¢%), else it returngg®, g, g% ), wheregz; is random. The DDH
assumption states that no probabilistic polynomial-tirdeeasary.4 can output
bit b correctly with probability non-negligibly greater thén

One-way functions, hash functions, and pseudo-random futions.

Definition 2 (One-way function). Function f: {0,1}* — {0,1}* is one-way
if (1) there exists a PPT algorithm that on input x outputs)f and (2) for every
PPT algorithm A polynomial {.), and sufficiently large n

1

/ n -1 S
| Pr(A'(f(Upn),1") e T77(f(Un))) |< p(n)

where U, denotes a random variable uniformly distributed oyér1}".



Functionf : {0,1}* — {0,1}* is weakly collision resistantf given x, it
is computationally infeasible to find a differexitsuch thaff (x) = f(x'). One-
wayness implies weak collision resistance.

LetH be a family of functions mappingp, 1}"(n) to {0, 1} (), wheren is
the security paramete is called (almostuniversalif for everyx,y € {0,1}",
X # Y, the probability thaty(x) = hi(y), for an element; € H selected uni-
formly from H, is at most; + 5. The leftover hash lemma [23] states that the
distribution {h;(x)} is statistically indistinguishable from the uniform dibtr-
tion for a uniformly random hash function index

Definition 3 (Pseudo-random function ensemble)A function ensemble £
{fn}nel, is calledpseudo-randonif for every probabilistic polynomial time or-
acle machine M, every polynomia{.pand all sufficiently large n's

fagqny — Pr Pnqny — -
| PE(MP () = 1) = Pr(M™() = 1) |<

where h= {hy}ncn is the uniform function ensemble.

To make proofs simpler, we define security of PRFs in termsgaae. For
a family of pseudorandom functioris adversary4, uniformly random index,
let 7 denote an oracle for producing pseudorandom valdesan query(prf, i)
on anyn-bit stringi. In response, the oracle returfg(i). .A wins if he produces
a pair(i,j) such thaj = f,(i) andj was not one of the values returned by the
oracle in the query phase. Say tlfats pseudorandom if no efficient adversary
can win the above game with non-negligible probability.

B Shoup’s model for key exchange protocols

We outline the definition of security for key exchange protegroposed by
Shoup in [28]. The protocol is secure if no efficient adveyszan tell whether
he is dealing with the real-world execution of the protocwlwith a simulation

in the ideal world where the ideal functionality (the “ringaster”) generates
keys as random values and distributes them securely toqmigbarticipants.

B.1 Ideal world

LetU; fori € {1,2,...} be a set of users and Igt denote the user instances,
i.e., different sessions of the protocol executed by the sanreTise ideal-world
adversary may issue the following commands:

—(initialize user,i,IDj): Assigns identityiD; to the usetJ;.



— (initialize user instance,li, |, rolej, PIDj): Specifies user in-
stancelj, whether it is an initiator or respondemlg; € {0,1}), partner
identity PIDj; (i.e., the other party in this session).

— (abort session,i,j): Aborts the session with user instarige

— (start session,i,j, connection assignmg(key)]): For an active user
instancel;j, specifies how the session ky is generated. It can be one of
create, connect, compromise. create instructs the ring master to gen-
erate a random bitstrinkj;, connect(i’,j’) instructs the ring master to set
Kij equal toKj/j/, compromise instructs the ring master to s€j to key.

Two initialized user instancely and |y are compatibleif PID;j = ID],
PIDyj» = ID; androlej # roley.. The connection assignmenbnnect
is legal if user instancely andl;;; are compatible and); is isolated (not
active). The connection assignmerimpromise is legal if one of the fol-
lowing holds: (a)PID;; is not assigned to a user, (B)D;; is assigned to a
corrupt user, (c) usdyd; himself is corrupted.

— (appl i cati on,f): This models amrbitrary use of the key by higher level
applications. It returns the result of applying functibto the session key
Kjj and a random inpuR. The adversary can seleayfunctionf (even one
that completely leaks the key!).

— (i mpl enrent at i on,comment This is a “no op” which allows the adver-
sary to record an arbitrary bitstring in the protocol traipc

— (corrupt user,i): The tuple €orruptuser, i) is recorded in the ideal-
world transcript. The adversary is given no information.

Transcriptideal(S) records all actions of the ideal-world advers&ry

B.2 Real world

Let U; be users andy; user instances. A PKI registrdr generates the pub-
lic/private key pairs PK;, SK) for the users. LetfKr, Skr) denote the (public,
private) key pair ofT. T may be online or offline. For simplicity, assume that
all user instances upon initialization obtain a public/até key pair fromT by

a protocol-specific action, which is stored as part of thgiterm (TS) of A;.

In the real world, a user instandg is a probabilistic state machine. It has
access td°Kr, long-term state. TS, and partner identity?1D;; (identity of the
other party in this session). Upon starting in some state uer updates his
state upon receiving a message and may generate a respossagmeAt any
moment, the state of a user is onecohtinue, accept,reject. These mean,
respectively, that the user is ready to receive a messageusaessfully termi-
nated a protocol session having generated a sessioKjkey has unsuccess-
fully terminated a protocol session without generatingssism key.



The real-world adversary may issue the following commands:

—(initialize user,i,ID;): This operation assigns the (previously unas-
signed) identitylD; to an uninitialized useu;.

— (regi st er, ID, registration requedt The adversary run§'’s registration
protocol directly with some identitiD. This operation allows the adversary
to operate under various aliases.

— (initialize user instance,i, |, rolej, PIDj): Specifies user in-
stancelj, whether it is an initiator or respondemlg; € {0,1}), partner
identity PID;;. After this operation we say that the user instahjcis active

— (del i ver nessage,i, |, InMsg): The adversary delivers messdg¥lsg
to an active user instandg.

— (appl i cati on, f): Same as in the ideal world: models usage of the key
by a higher-level protocol.

— (corrupt user,i): Atuple recording the long-term state of the partici-
pant in recorded in the real-world transcript.

TranscriptReal.A) records all actions of the ideal-world adversay

C Parsing messages received by honest participants

Let O denote the oracle environment for the adversdryand lety be the
parsing function that labels bitstrings received®¥ from the adversary with
symbolic terms. We define inductively on the sequence of bitstrings received
from the adversary during protocol execution. betenote the current adversar-
ial bitstring and letg be the symbolic trace constructed so far. Recall that every
receive action in the symbolic role specification includsgrabolic termt to be
received (this term may contain variables). Rddie the function from symbolic
variables to symbolic constants. The inputis a 6-tuple(b, ts, t, o, A, R). The
output is an updated tuplé, o’, \'). If o’ or \’ are unchanged when parsing the
current bitstringb, we omit them in the description of the output. The obtained
symbolic term is pattern-matched against the expected tedifnthe match is
successful(t) is appended te;. Otherwise, the bitstring sent by the adversary
does not match what the participant expects. We assumehthgiarticipant
quits in this case without establishing the key, and tertaitize symbolic trace.

Before the procedure starts, we initializeoy mapping all symbolic terms
sent by honest participants to the corresponding bitstring

1. t is a constant such that(t) = b’ (Note that all symbolic constants have
an interpretation which is defined when the constant is frested). Ifb =
b/, update the symbolic trace by appending. Mappingso and A remain



unchanged since a symbolic label forlready exists. Ib # b/, terminate
the symbolic tracés.

2. t avariable such that(t) = t’ for some ground term’, ando (t') = b'. If
b’ = b, appendt) to the symbolic trace; otherwise, terminate the trace.

3. t = (t1, t2). Apply « recursively on bitstringb, , by such thab = (by, by),
obtaining (t;, o1, A;) and (tz, o2, A,), respectively. Let’ = o1 U 02 and
N =\ U,

4. ¢ is a signature{t’}y. Letb = (b',b”) for someb’, b” (recall that every

signature is accompanied by its plaintext). If there exastanterpretation
of t’ ando(t’) = b/, then verify whetheb” is a valid signature oX onb'.
If yes, append to ts; otherwise terminatés. If o(t’) # b, terminatets. If
o contains no interpretation af, then applyy recursively on ternt’ and
bitstring b/. The recursive call would either updatg \" so thato (') = I,
or terminate the trace. If the recursive call returns swsfadlg and ifb” is a
valid signature oit, then append to ts; else terminatés.

5. t is a Diffie-Hellman termi(t’), wheret’ is a ground term and(d(t’)) =
b'.If b = b, appendt) to the symbolic trace; else terminate the trace.

6. t is a Diffie-Hellman termi(x), wherex is a variable such that(x) = t’
ando(d(t’)) = b'. If b ¢ G (G is the Diffie-Hellman group), then terminate
ts. If b € G andb = b/ then updatés accordingly, else terminate. If there
exists no symbolic terma’ such that\(x) = t’, then create a new symbolic
constant”, update\(x) = t” (i.e, A(t) = d(t”)) ando(d(t”)) = b.

7. t = h(x) andx is a constant term such thatx) = b'. If b = h(b’), then
appendt to ts; otherwise terminaté. If x is a variable such that(x) = t’
ando(t’) = b/, then perform the same check as above.iff a free variable
such that it has no mapping i then create a new symbolic constafit
update)(x) = t” ando(h(t”)) = b

. The case where = £,(y) is handled similar to the case above.

. t = xis afree variable,e., t does not have a mapping i Oracle environ-
mentO!’ maintains computational instantiations (givendjyof all terms
previously sent by honest participants. The parser chddke ivalue ofb
matches the value of any term previously sent by any honestipant. If
yes, labeb with the corresponding term and updatdf no, check whether
b is a member of the Diffie-Hellman grou®. If b € G, then create a sym-
bolic constant’, update\(t) = d(t’) ando(d(t')) = b. Else, create a new
symbolic constant”, update\(t) = t” ando(t”) = b.

o

D Computational Semantics

We define the semanti¢g|(T) of formulay over a set of traces, inductively,
as follows. The set of traceb = CExecStrang is initialized to the set of all



traces of the protocoll with adversaryA and randomnesR. For formulas

not involving IndistRand, the semantics is straightforward. For example, the

action predicat@end selects a set of traces in which send occurs.

1. [Send(X,u)](T) is the collection of alts, o, R) € T such that some action
in the tracets has the formSend(X’, v) with o(X’) = X ando(v) = u.
Recall thatr is the interpretation function which assigns computatiduita
strings to symbolic terms. The computational semanticdlufrogpredicates
(exceptIndistRand)is similar (see [15]). We provide the semantics of new
predicatederifySig andVerifyMAC which are introduced in this paper.

2. [VerifySig(X,u)|(T) is the collection of allts, s, R) € T such that some
action (executed by symbolic thread X’) in the tragbas the forrm/{t}3,
(pattern matching), such thatX’) = X ando(m) = u,i.e, mis a valid
signature on term under the private signing key of.

3. [VerifyMAC(X,u)|(T) is the collection of allts, o, R) € T such that some
action (executed by symbolic thread X’) in the traghas the fornm/f(c)
(pattern matching), such thatX’) = X ando(m) = u,i.e, mis a pseudo-
random value on some constaniising termt as the key.

4. IndistRand(t)(T) = T, whereT = {t}r (parameterized by randomness

R), if the two familiesT, Tigeat:
- T = {ad\t).o(¢)}r
— Tigear = {@0\Utigea1 )-0(r)}R
are computationally indistinguishable, else it is the gngett¢.

L0 A )(T) = [0)(T) N [](T)

[0V )(T) = [0)(T) U [](T)

- [7el(T) = T\[¢l(T)

. [Ax@)(T) = Ugle](T[x — B]), whereT[x — ] denotes the substitution of

x by bitstring 3 in T and3 is any bitstring of polynomial size.

9. 102 ¢|(T) = [-0)(T) U [¢](T)

10. [0 = ¢|(T) = [-6](T) U [¢|(T"), whereT’ = [0](T).

11. [0[P]xe)(T) = T-pU [-0](Pre(Tp)) U [¢](Pos(Tp)) whereT_p = {t € T :

t = totytz whereP does not matchy x }, Pre(Tp) = {tp : t € TAt = totita A
3 substitutions s.t.P = o (t;x) } andPos(Tp) = {tz : t € TAt = totita A 3
substitutiono s.t.P = o (tx)}

0 N o O

We say that a formula holds for protocoll] in the computational model,
denoted byIl ; o, if [¢](T), whereT = CExecStrang is the set of all
computational traces of protocfd, is an overwhelming subset & More pre-
cisely, IT = o, if, by definition, | [¢](CExecStrang) | / | CExecStrang |>
1 — v(n), wherev is some negligible function in the security parameter




E Symbolic proof system

The axioms of the logic are as follows:

AL glalea

AA2 Fresh(X, t)[a]x&(a A ©Fresh(X, t))
AN2 @[vn]|xHas(Y,n) D (Y = X)

AN3 @[vn|xFresh(X,n)

ARP SReceive(X, x)[(x/t)]yOReceive(X, t)

ORIG SNew(X,n) D Has(X,n)

REC SReceive(X,n) D Has(X,n)

TUP Has(X,x) A Has(X,y) D Has(X, (x,y))
PROJ Has(X, (x,y)) D Has(X,x) A Has(X,y)

N1 SNew(X,n) A SNew(Y,n) D (X =Y)
N2 After(New(X,n;),New(X,ny)) D (n; # ny)
F1 &Fresh(X,t) A &Fresh(Y,t) D (X=Y)

CON1 Contains((x,y),x) A Contains((x,y),y)
CON2 Contains({t}x,t)

After(a,b) = &(b A OSa)

ActionsInOrder(as,...,a,) = After(aj,as)A... AAfter(ap_1,2ay)
P1 Persist(X,t)[a]xPersist(X,t)
P2 Fresh(X, t)[a]xFresh(X,t),
where ifa = (m) thent ¢ closure(m)
P3 HasAlone(X,n)[a|xHasAlone(X,n),
where ifa = (m) thenn ¢ closure(m)
F 0[(m)]x—Fresh(X, t), where(t € closure(m))
F2 Fresh(X, t1) D Fresh(X,t,), wheret; C t,

Persist € {Has, S},
HasAlone(X,t) = Has(X,t) A (Has(Y,t) D (X =Y))

T1 S(PAY) DSPASY

T2 S(pVY) D opV oy

T3 O D Oy

AFO Start(X)[|x—~<a(X,t)

AF1 Ola; ...anxAfter(as,ap) A... A After(ay—1,ay)
AF2 (&(b1(X,t1) A OFresh(X,t)) A ©ba(Y,t2)) D

After(bi(X,ti), (bz(Y,tg)),
wheret C t,,t C t; andX # Y

The rules of the logic are as follows:



Gl if IT + O[P]xp andIl |- 0[P]xw thenIl - §[P]xp A ¢

G2  if IT + 6[P]xp andd’ D 6 andy D ¢’ thenIl i 0'[Plxy’

G3 if [T+ pthenIl F O[P]xp

MP ifII+-@andll 0= pthenll - ¢

GEN if ITF pthenll - Vx.p

TGEN if IT - p thenIl + =&y

HON if IT - Start[|xp andV P € S(IT), IT + ¢[P]xp
thenIl - Alive(X) A FollowsProt(X) D ¢

whereS(I7) denotes all possible starting configurationd band
Alive(X) means that thread has not completed the protocol yet.

F Proofs of authentication and key secrecy for DHKE-1 protool

Figs. 7, 8 and 9 contain the symbolic proofs of, respectjalyhentication and
key secrecy for the DHKE-1 protocol.



AA2,P1
AA1,P1

AF1,ARP

(3)F1,P1,G2
F1,P1,G2
HON

HON

(5),(6),(7),HON

(7),(8),HON, VER

HON

(1).(9)AF2

(1).(9)AF2

(9-12) AF2

Fresh(Ai, x) A FollowsProt(A;)[Inita,

S (Send(A, {Ar, Az, d(x), {d(x)7A2},1A11 } A ©Fresh(Ar, x)) (1)
Fresh(Aq, x)[Init]a,

VerifySig(Ai, {d(x),y", k', Ai}R2) %))
Fresh(Ai, x) A FollowsProt (Ap)[Init |a,

ActionsInOrder(

Send(A17 {A17A27 d(X)7 {d(X)7 Az },lAll })

Receive(Ar, {A2,Ar,d(x),y, K, {d(x),y, ¥/, Al},lf2 ) (3)
Fresh(Ai,x) A FollowsProt(A1)[Init]a, =<Fresh(Az,x') 4)
FollowsProt(A;)[Init]a, FollowsProt(Az) D = Fresh(Ar,y') (5)
FollowsProt(Ai) D OVerifySig(Ar, {d(x),y’, k', Ai}) (6)

FollowsProt(Az) D ActionsInOrder(
VerifySig(A27 {Xl7 Az };11 })7 ,
Send(As, {Az, A1, ', d(y), k, {x', d(y). k, Atk 1) @)
FollowsProt(Ai) D ( (~OFresh(Ar,y') A OVerifySig(Ar, {d(x),y’ k', Ai}2)) D
ActionsInOrder(
Send(A27 {A27 A17 xlv d(Y)7 k: {xlv d(Y)7 k7 Al };22 })7
VerifySig(Ai, {d(x),y", k', Ai}2))) 8)
FollowsProt(Az) A FollowsProt(Ar) A A; # Az A SendAfterVer (Az,x)A
O (VeritySig(Ar, {d(x),y', X', AL} )A (OVerifySig(As, {x', Ac}pl))) O
31;.315.3my. Imy. ActionsInOrder(
Sendterm(Ai, {ml}}\; ), VerifySig(Asz, {d(x), Ag},lg1 ),
Sendterm(Ao, {mz},lf2 ), VerifySig(Ar, {d(x),y’, k', A1 }z A
ContainedIn(mi,d(x)) A ContainedIn(mo,x’') A (x = d(x)) 9)
FollowsProt(Az) D (((©Send(Az, m)A
Contains(m, {d(x),d(y), k,Al}'lfz) A =OFresh(Ag,d(x)) D
(m = {A2,A1,d(x),d(y), X, {d(x),d(y), k, A} }A ©(Send(Az,m) A OFresh(Az, y))A

ActionsInOrder(
Receive(Ag, {A1, Ay, d(x), {d(x), Ac} 2 }), ,
Send(A27 {A27 A, d(x)7 d(Y)7 k, {d(x)v d(Y)v k,Ar }}\22 }))))) (10)

Fresh(Ai, x) A FollowsProt (A;)[Init|a,
OReceive(Ag, {Ar, Az, d(x), {d(x), A}t }) D
After(send(Ah {A17 Az, d(X)7 {d(X), Ag },lAll }) ,Receive (A27 {Al , Az, d(X), {d(X), As },]&11 })) (11)
Fresh(Ai, x) A FollowsProt (A;)[Init]a,
Send(A27 {A27 A, d(X)7 d(Y)7 k, {d(x)7 d(Y)7 k, Ay }/1&22 })/\
OFresh(A2,y) D
After(Send(As, {Az, A1, d(x),d(y), k, {d(x),d(y),k, AL }x }),
Receive(Ar, {A2, A, d(x), vy, ¥, {d(x),y, k', A1 },1;22 1) (12)
Fresh(Ai1, x) A FollowsProt(Ap)[Init]a, FollowsProt(Az)) D
31;.315.ActionsInOrder (
Send(Al, {Al, Az, d(X)7 {d(x), A }i,L_\il })
Receive (A27 {A17 Az, d(X), {d(X), Ag },lAll })
Send(Ao, {As, Ar, d(x),d(y). k, {d(x), d(y). k. At} })
Receive(Ar, {Az, A, d(x),y", ¥/, {d(x),y K, A1} })) (AUTH-1)

Fig. 7. Proof of authentication for DHKE-1 protocol



HON

(14), WCR6
Secrecy
MP

HON

(17-19),AF2

HON
(17-21) AUTH ,
WCR1-6, G2

(22), HON

(AUTH-1),(23)

FollowsProt(Az) D O[vk|a,

FollowsProt(As) A O[vk]a, Dk —5 hy(d(x,y))

Fresh(Ai,x) A FollowsProt (A;)[Init|a, FollowsProt(Az) A &[vk|a, =
IndistURand(k = (hk(d(x,y))))

Fresh(Ai, x) A FollowsProt (A;)[Init|a, FollowsProt(Az) A IndistURand(k)

)
defn.of Done, G3, HON Fresh(A1, x) A FollowsProt (A1)[Init ]a, FollowsProt(Az) A Done(Az) D

OVerifyMAC(Ag, £.(c))
FollowsProt(A;) D ActionsInOrder(
Receive (A17 {A27 A, d(X)7 Yl7 kl7 {d(X)7 y/7 kl7 A1 },IAZ; })
Send(Ar, (A, Ao, £1(c)}))
FollowsProt (A1) A FollowsProt(Az) A Done(Az) D (
(SVerifyMAC(Ag, £.(c)) A ©Fresh(Az, k) A ©Send(Ar, {A1, A2, £.(c)})) D
ActionsInOrder(Send(Ai, {Ai, Az, £.(c)})), VerifyMAC(Az, £1(c))))
FollowsProt(Ap)[Init]a, FollowsProt(Az) D NotSent(Az, f.(c))
Fresh(Ai, x) A FollowsProt (A;)[Init|a, FollowsProt(A;) A FollowsProt(Az) A (A1 # Az)A
O (VerifyMAC(As, £1:(c)) A OReceive(Ar, {Az, A1, d(x),y, k', {d(x),y, ¥/, Al}}é A
IndistURand(x) A NotSent (As, £.(c)) A (d(y) —= k) A (k 5 k) =
31}.ActionsInOrder ( Sendterm(As,m)
Receive(Ar, {A2, A, d(x), vy, k', {d(x),y’, ¥, Al}}é b
Sendterm(Ai, f.(c))
VerifyMAC(Az, f.(c)))A
ContainedIn(m, d(y)) A ContainedIn(m, k) Ay =d(y) Ak =k
Fresh(Ai,x) A FollowsProt(A;)[Init]a, FollowsProt(A;) A FollowsProt(Az) A Done(Az) D
315.ActionsInOrder ( Send(Aq, {A2, A1, d(x),d(y), k, {d(x),d(y), k, Ax },152 b
Receive(Ar, {Az, A1, d(x),d(y), k, {d(x),d(y), k, Al},lé})
Send(Ah {A1 ,Ag, f,.g(C)})
Receive(Az, {A1, Az, £ (c)}))
Fresh(Ai, x) A FollowsProt (A;)[Init]a, FollowsProt(A;) A FollowsProt(Az) A Done(Az) D
31;.315.ActionsInOrder (
Send(Ar, {Ar, Az, d(x), {d(x), Az}, })
Receive(Az, {A1,As, ', {¥/, Az},lAl1 "
Send(A27 {A27 A17 Xl7 d(Y)7 k, {Xl7 d(Y)7 k, A },]6.\22 })
Receive(Ar, {A2, A1, d(x),d(y), k, {d(x),d(y), k, A1 },1\22 b
Send(Aq, {A17A27 fﬁ(c)})
Receive(Az, {A1,Az,£.(c)}))

Fig. 8. Proof of mutual authentication for DHKE-1 protocol (contad)
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P2 Fresh(Aq, x)[Init]a, Fr esh(Aq, x) 1)
AUTH-1 from fig. 7 Fresh(As, x)[Init |a, FollowsProt(Az) A Done(Az) D
31;.315. ActionsInOrder(
Send (A1, {A1, Az, d(x), {d(x), A2 },1A11 H
Receive(Az, {A1, Az, d(x), {d(x), Ag},lé1 H
Send(As, {Az, A1, d(x),d(y), k, {d(x),d(y),k, A} })

Receive(A17 {A27A17d(x)7yl7k/7 {d(x)7yl7k/7A1},lA"; })) , (2

HON FollowsProt(Az) A Send(Az, {Az, Ar,d(x), y1,k, {d(x), 1, %k, A1 };22 H

D 3y.(y1 =d(y) AFresh(As,y1)) ®3)
(2-3) Fresh(Aq, x)[Init ], FollowsProt(Az) D

3y.(yr = d(y) AFresh(Az,y)) 4
NotSent defn Fresh(Ai, x)[Init ]a, NotSent (A1, d(x,y)) (5)
NotSent defn (2) Fresh(Ai, x)[Init ]a, FollowsProt(Az) D (NotSent(Az,d(x,y))) (6)
(1),(4-6) FollowsProt(A;) A Fresh(As, x)[Init]a, FollowsProt(A;) A Fresh(Ai, x)A

ANotSent (Ar,d(x,y)) A (FollowsProt(Az) D

Jy.Fresh(As,y) A NotSent(Az,d(x,y))) (7)
(7)DDH1-2,G2,G3 FollowsProt(A;) A Fresh(Ay, x)[Init]a, FollowsProt(Az) =

IndistRand(d(x,y)) (8)
(8),LHL,G3 FollowsProt(A;) A Fresh(As, x)[Init s, FollowsProt(Az) A &[vk]a, =

IndistRand(he(d(x,y))) 9)
IndistURand defn(9) FollowsProt(Ai) A Fresh(Ar, x)[Init|a, FollowsProt(Az) A S[vk]a, =

IndistURand(hk(d(x,y))) (10)

Fig. 9. Proof of key secrecy for DHKE-1 protocol



