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ABSTRACT
Software developers are increasingly choosing memory-safe lan-
guages. As a result, semantic vulnerabilities—omitted security
checks, misconfigured security policies, and other software design
errors—are supplanting memory-corruption exploits as the primary
cause of security violations. Semantic attacks are difficult to de-
tect because they violate program semantics, rather than language
semantics. This paper presents PECAN, a new dynamic anomaly
detector. PECAN identifies unusual program behavior using his-
tory sensitivity and depth-limited context sensitivity. Prior work on
context-sensitive anomaly detection relied on stack-walking, which
incurs overheads of 50% to over 200%. By contrast, the aver-
age overhead of PECAN is 5%, which is low enough for practi-
cal deployment. We evaluate PECAN on four representative real-
world attacks from security vulnerability reports. These attacks
exploit subtle bugs in Java applications and libraries, using legal
program executions that nevertheless violate programmers’ expec-
tations. Anomaly detection must balance precision and sensitivity:
high sensitivity leads to many benign behaviors appearing anoma-
lous (false positives), while low sensitivity may miss attacks. With
application-specific tuning, PECAN efficiently tracks depth-limited
context and history and reports few false positives.

1. INTRODUCTION
With the increasing popularity of memory-safe languages such as
Java, C#, JavaScript, and Ruby, semantic vulnerabilities are over-
taking memory corruption bugs as the primary cause of security
violations in software applications [25]. Exploitable semantic bugs
include accidental omission of access-control checks, unintentional
exposure of security-sensitive methods to untrusted code, miscon-
figuration of security policies, and other security-logic errors.

Detecting attacks that target semantic vulnerabilities is a diffi-
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cult task. Unlike memory-corruption exploits, semantic attacks do
not rely on a violation of the underlying programming language
semantics, nor, typically, do they inject malicious code.

To understand and characterize semantic security exploits, we
examined hundreds of reports in the National Vulnerability Data-
base and reproduced four representative attacks. Detection of these
and similar attacks requires both context sensitivity and history sen-
sitivity. Static analysis-based intrusion detection methods, which
ensure that the program’s dynamic behavior conforms to the stati-
cally inferred control flow graph and memory access patterns [1, 3,
8, 14, 33], are ineffective against semantic attacks because the ma-
licious code paths and memory accesses are already present in the
original code. Static and dynamic taint-tracking can detect injec-
tion attacks on Web applications [5, 23, 27, 35], but cannot detect
semantic attacks, e.g., when a malicious Java applet exploits a sen-
sitive method that is mistakenly left accessible by a misconfigured
security policy. Prior dynamic techniques for detecting anomalous
contexts are either too imprecise, or too inefficient, or both. (A de-
tailed comparison with related work can be found in Section 3 is
and summarized in Table 1.)

Dynamic anomaly detection recognizes unusual rather than ille-
gal code paths, thus practical implementations face two major chal-
lenges: precision and efficiency. Detailed analysis of real-world
exploits shows that detecting semantic attacks requires context sen-
sitivity, i.e., the defense must consider a method’s calling context
when making the security decision. Furthermore, some attacks re-
quire history sensitivity in order to detect whether or not certain
calls, such as mandatory security checks, have occurred. Simplistic
approaches such as blindly increasing the size of the context and/or
history can dramatically increase the number of false positives (re-
porting anomalies when there is no actual attack) when monitoring
legitimate executions.

The second challenge is efficiency. Naïve solutions for context
sensitivity, such as direct stack inspection, result in prohibitive per-
formance overheads of 100% or more, precluding their deployment
in production applications. Efficient context sensitivity is espe-
cially challenging for modern, object-oriented languages, which
exercise millions of distinct calling contexts [7]. Prior work on
probabilistic calling context (PCC) tracks calling context efficiently
for the purpose of detecting anomalous context-sensitive behav-
ior [7]. However, PCC tracks only full (infinite depth) context sen-
sitivity, which, as we show, incurs many false positives.

Inspired by real-world semantic attacks, this paper presents the
design and implementation of a dynamic anomaly detector for Java
called PECAN (Precise, Efficient, Context-sensitive ANomaly de-
tection). PECAN uses training runs to compile the list of typical
contexts and histories, and then monitors execution in production
runs to find anomalies. We chose Java because of its popularity,



but our approach applies to other memory-safe languages. To effi-
cient track depth-limited context and history at the sites of security-
sensitive calls, PECAN extends prior work on PCC [7].

We evaluate PECAN’s performance and effectiveness on standard
benchmarks, as well as on four real-world exploits that have been
fixed, but are representative of several important categories of se-
mantic security vulnerabilities. We show that context sensitivity is
essential for detecting semantic attacks. Although the tension be-
tween false positives and negatives remains a challenge, we show
that there exists a PECAN configuration (with the context depth of 3
and history length of 1) that detects all of our sample exploits while
reporting few false positives. Further exploration and application-
specific tuning would be necessary for real deployments. The aver-
age performance overhead of PECAN is 5%.

To the best of our knowledge, PECAN is the first system that pro-
vides context sensitivity of arbitrary depth and history in a practi-
cally efficient manner. We emphasize that there is a qualitative dif-
ference between a precise and efficient dynamic defense that can
be feasibly deployed in a production system and techniques that
may be of academic interest, but impose prohibitive run-time over-
heads and/or result in an overwhelming number of false positives
when monitoring complex applications and libraries. In contrast to
previous techniques for context-sensitive anomaly detection, which
were evaluated only on artificial attacks, we evaluate PECAN on
real-world exploits and use this evaluation to guide our design de-
cisions.

2. REPRESENTATIVE EXPLOITS
To better understand which types of semantic vulnerabilities actu-
ally occur in managed code, we combed through hundreds of re-
ports in the National Vulnerability Database,1 tried to reproduce
around twenty exploits, and successfully reproduced four in our ex-
perimental environment. This section surveys these four exploits,
which illustrate common categories of semantic vulnerabilities and
motivate our approach. Section 5 explains each exploit in more
detail.

Three of the four exploits, SlashPath, LiveConnect, and Oper-
aPolicy, are applets that take advantage of misconfigured security
policies or bugs in the Java libraries. The fourth exploit, called
XSLT, represents insufficient checking of untrusted code in which
XML executable code is not sandboxed.

SlashPath. The first vulnerability is a bug in the Sun Java Virtual
Machine 1.3.2 It permits a malicious applet to circumvent the se-
curity manager by providing a class path with “/” instead of “.”.
We identify the general category that each exploit represents. This
exploit is representative of the “mistakenly omitted security check”
category. A conventional history-based anomaly detector would
not detect this attack because there are legitimate call sequences—
for example, when the class is loaded from the root package—in
which the security check is not performed. Therefore, it is im-
possible to differentiate between legitimate and malicious behavior
simply by asking whether the execution history contains a check-
Permission call. Furthermore, detection must take place inside
the Java API libraries and not just at the boundary between the ap-
plet and the libraries.

LiveConnect. This vulnerability represents a common bug class,
where untrusted code executes in the wrong security context (e.g.,
outside the normal Java sandbox). The particular bug we reproduce
is in the Java 2 Runtime Environment 1.4, which permits a mali-

1http://nvd.nist.gov/
2http://www.securityfocus.com/bid/8879/info

cious applet to load unsafe classes and execute arbitrary code via
the reflection API.3 This exploit is representative of the “sensitive
methods mistakenly exposed to untrusted code” category.

XSLT. This vulnerability is a bug in the Sun Java System Portal
Server 7.0, which allows untrusted code contained in a malicious
XSLT stylesheet to bypass the standard security checks.4 This ex-
ploit is representative of the “untrusted code executed in the wrong
security context” category. It is fundamentally context-dependent,
requiring a non-trivial context-sensitive defense. This exploit is
also interesting because the vulnerable application is a recursive
XML parser, and the depth of recursion depends on the structure of
the input. This structure makes it infeasible to enumerate all valid
contexts during training, presenting a challenge for any context-
sensitive attack detection method.

To the best of our knowledge, none of the context-sensitive ano-
maly detection systems in the literature have been evaluated on re-
cursive applications such as XSLT. While model-based techniques
can handle recursive calls [14, 33], these techniques cannot detect
any of the exploits we consider in this paper because, by design,
they are only capable of detecting statically infeasible calls (e.g.,
those caused by code injection). We solve the problem by using
depth-limited context sensitivity, which is still precise enough to
detect the attack.

OperaPolicy. This vulnerability is a bug in the custom security
manager of the Opera Web browser version 7.24, which permits
untrusted applets to elevate their privileges.5 This exploit is repre-
sentative of the “misconfigured security policy” category.

Summary. While OperaPolicy and LiveConnect do not require
context or history sensitivity, SlashPath and XSLT need context
sensitivity to be detected, and SlashPath also needs history. Al-
though these exact exploits are now fixed, they represent a general
class of security errors. As we show below, prior approaches do not
detect these attacks or are too inefficient for practical deployment,
thus motivating our approach.

3. RELATED WORK
Much of the prior work on run-time detection of maliciously be-
having applications focused on memory-corruption exploits. These
attacks subvert language semantics for programs implemented in
memory-unsafe languages such as C and C++. In contrast, this
paper focuses on attacks that exploit program semantics and thus
subvert programs implemented in memory-safe languages such as
Java.

Table 1 summarizes the differences between PECAN and the re-
lated work on detecting security anomales. Column 2 (Only Lan-
guage Semantics) shows that much of the related work only fo-
cuses on illegal program paths. While some prior work combines
context and history (columns 3–4), the performance overheads are
prohibitive (columns 5–6). No related work except the approaches
by Inoue and Forrest [20, 21] has been evaluated on real-world se-
mantic attacks.

Our approach is based on anomaly detection. The training phase
constructs a model of correct application behavior and then dur-
ing production executions the system detects deviations from this
model. Anomalies have proven broadly useful for finding semantic

3http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2004-1029
4http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-3716
5http://www.securityfocus.com/archive/1/
381634



Only Language Program Semantics Overhead Real-World
Attack Detection Semantics History Context Sensitive ≥ 100% < 10% Exploits

Statically infeasible paths [1, 3, 8, 14, 33] X X∗
System call history [12, 17, 31] X X
Memory-safe anomaly detection [20, 21] X† X X
Dynamic context sensitivity [11, 19, 28, 36] X X X
PECAN X X X X

Table 1: Comparison of PECAN with previous anomaly detectors. *Some but not all static analysis-based approaches incur less than
10% run-time overhead. †Inoue and Forrest infer Java security policies, which are inherently context sensitive because the Java
security model uses stack inspection [21].

errors [9, 16]. For example, DIDUCE establishes and records dy-
namic invariants such as variable values, variable inequalities, and
branch directions [16]. This work shows that anomalous paths and
values often reveal security violations in programs.

Memory-unsafe languages. Forrest et al. observed that system-
call histories associated with security violations often appear anoma-
lous with respect to correct executions. They developed a history-
sensitive, context-insensitive anomaly detector that operates at the
level of system calls [12,17]. Sekar et al. next showed how to learn
a finite state automaton (FSA), which provides a compact repre-
sentation of system-call histories [31]. Because these approaches
target memory-unsafe languages, monitoring must be performed
beyond the reach of injected malicious code and requires system-
call interposition. The latter imposes overheads between 100% and
250% [29, 31].

For some vulnerabilities analyzed here (e.g., SlashPath, Sec-
tion 5.2), this simple method would miss the attack because ma-
licious and benign behavior cannot be differentiated on the basis of
system-call history alone. Context-insensitive detection methods
can be evaded by “mimicry attacks” [34], in which the malicious
code executes the same sequence of calls as the correct application.

Much work combines static analysis with anomaly detection in
order to accurately detect execution of infeasible control paths [1,
3, 8, 33]. Because the statically computed control-flow graph over-
approximates the set of feasible paths, this approach suffers from
false negatives, which can be reduced by adding context sensitivity,
e.g., using the Dyck model [14], or Dyck with stack-walking [10].
A combination of static and dynamic analysis can find infeasi-
ble code paths [38]. On the other hand, Kruegel et al. present
a mimicry attack against context-sensitive anomaly detection that
uses adversarial static analysis of the vulnerable application to con-
struct a fake call stack and then return control back to the injected
code [24]. This entire line of research focuses on memory-unsafe
languages. By contrast, semantic attacks on Java code do not in-
volve execution of any paths that are not already present in the
original code, so techniques for detecting execution of infeasible
paths are not useful.

Dynamic context sensitivity. Feng et al. and others observed that
context sensitivity is essential for improving precision of anomaly
detection [11, 19, 28, 36, 37]. Feng et al. record the calling con-
text at each system call and compare successive histories of length
two. They prune any stack context that the two successive system
calls have in common and store the context differences, which re-
sults in more precise detection than using just history [11]. Perfor-
mance overhead is reported in milliseconds per system call, mak-
ing it difficult to determine the penalty on realistic benchmarks, but
the mechanism fundamentally depends on system-call interposition
and walking the stack, both of which are prohibitively expensive in

production systems. The overhead of system call interposition can
exceed 100% [29,31], and as we show in Figure 1, the overhead of
walking the stack depends on the application and can be very high,
too. Xu et al. introduce waypoints, which make the stack more vis-
ible to the monitor, but reduce efficiency [36]. Zhuang et al. effi-
ciently find anomalous interprocedural paths, which include calling
context, but their approach requires new hardware [37]. It appears
very challenging to extend these techniques to object-oriented lan-
guages like Java, with many small methods and virtual methods,
while achieving practical efficiency.

The Java security model is context sensitive: it inspects the exe-
cution stack to determine whether an operation is permissible [26].
Inoue and Forrest automatically infer Java security policies based
on training [20, 21]. Abadi and Fournet propose access control
based on history rather than on stack inspection [2]. PECAN is
also sensitive to context and history, but instead of relying on se-
curity checks inserted by programmers, it infers security policies
from observing dynamic program behavior.

Our approach. Our work differs substantially from prior work
on context-sensitive anomaly detection. (1) We target an entirely
different class of attacks than most of the prior work, focusing
on semantic attacks that exploit existing code paths as opposed
to memory-corruption attacks that introduce new code paths. (2)
Our approach provides an efficient implementation of continuously
available context of configurable depth that requires neither walk-
ing the stack, nor special hardware, and has a demonstrated over-
head of 2-9% on realistic applications. (3) We evaluate our ap-
proach on real-world semantic attacks taken from the National Vul-
nerability Database, as opposed to artificially constructed memory-
corruption exploits.

4. CONTEXT- AND HISTORY-SENSITIVE
DETECTION OF SEMANTIC ATTACKS

We now describe the design and implementation of PECAN. Our
approach uses the standard two-stage paradigm for dynamic ano-
maly detection. First, we train PECAN to learn normal behaviors.
Then during deployment, PECAN monitors the code to detect exe-
cution of unusual behaviors, i.e., those not observed during train-
ing.

We assume that training is sufficiently thorough to exercise all
normal behaviors and thus reduce the false positive rate. Training
can be easily “piggybacked” onto standard quality assurance test-
ing, which executes the program with comprehensive test inputs.
The tools for systematic, exhaustive testing of legitimate code paths
are now widely available [15, 22, 30].

PECAN’s deployment phase observes program behavior and re-
ports history/context combinations that it did not observe during
training. PECAN may be configured to terminate the application



when anomalous behavior is detected, or to write a warning to a
log. Developers can examine the report to decide whether the ano-
maly represents an attack or a false positive, i.e., legitimate but
previously unobserved behavior. Developers can add the latter to
the training set to avoid future false positives.

The critical design issue for any anomaly detection system is
the four-way tradeoff between (i) granularity of monitoring, i.e.,
which method invocations to monitor and how often, (ii) efficiency
and scalability, (iii) false positive rate, and (iv) comprehensiveness
of training. Frequent monitoring of many methods, with context
and history sensitivity, yields more precise and timely detection of
anomalies, but it imposes larger performance overheads, making
it more likely that the system will generate a false positive due to
valid behavior that was not observed during training. Finer granu-
larity requires much more comprehensive training.

4.1 Security Calls
To limit the number of false positives and restrict the amount of in-
formation that the system must maintain, PECAN restricts its atten-
tion to methods that can potentially throw a java.lang.Security-
Exception, which we refer to as security calls. Security calls are
important because they can affect the system outside the JVM, e.g.,
I/O and system calls. Similarly, prior work on anomaly-based in-
trusion detection for memory-unsafe languages typically tracks be-
havior at the level of system calls [17].

We consider two types of security calls: (1) calls to methods that
perform security-sensitive actions such as I/O and system calls, and
(2) calls to methods in Java’s SecurityManager that check if the
application is allowed to perform some security-sensitive action.
Programs typically make the call of the second type prior to the
first. Applications use the SecurityManager class to implement
their own security policies. This flexible model leaves applications
that need special security policies open to bugs of omission and
misconfiguration. For example, the developer can forget a corner
case and omit a needed check in a new policy. This bug can go
undetected during testing, leaving the application vulnerable. Dy-
namic anomaly detection is the last line of defense in this case.

In our experience, limiting monitoring to security calls provides
a good balance between efficiency and precision, while ensuring a
low false positive rate. Because these methods are an inherent part
of the application’s security policy, the context and history of their
behavior are indicative of security violations, as confirmed by our
experiments.

4.2 Context Sensitivity
Dynamic calling context is the sequence of active call sites that
lead to a program location. Depending on context, the same call
may be malicious or benign. Context is a critical element of pro-
gram behavior for programs written in modern, object-oriented lan-
guages, which tend to have small methods and use virtual method
dispatch [7]. Obtaining context is expensive if it is needed more
than rarely [11,28,36,37]. In prior work, Bond and McKinley intro-
duce probabilistic calling context (PCC), which continuously com-
putes a PCC value that represents the current calling context [7]. It
uses the PCC function to compute the next PCC value at a call site,
from the current value V and the current call site ID cs:

f(V, cs) ≡ 3× V + cs

To detect anomalous context-sensitive behavior, clients check, at
program locations of interest, whether a PCC value observed in de-
ployment was also observed during training. For PECAN, the pro-
gram locations of interest are security calls. We use PCC and ex-
tend it in two ways. First, we apply PCC to a real client (anomaly-

based intrusion detection) and evaluate its performance and effec-
tiveness. Second, we introduce a variant of PCC called k-PCC that
supports depth-limited context sensitivity.

4.3 Depth-Limited Context Sensitivity
While the PCC function from prior work represents an infinite-
depth calling context [7], it is challenging to design a function that
produces values that represent only a fraction of context, particu-
larly so that each call site in the depth-limited context affects many
bits of the value (to reduce the potential for conflicts between sim-
ilar contexts). The difficulty arises because, at each call site, the
function needs to “eliminate” the kth call site from the calling con-
text value so that the value represents only the top k call sites on
the stack. We propose an approach called k-limited probabilistic
calling context (k-PCC), and we introduce the k-PCC function as
follows:

f(V, cs) ≡ 2dbits/ke × V + cs

The function takes two inputs: the k-PCC value, V , and an iden-
tifier for the call site at which the function is computed, cs. In
our implementation, both of these inputs are 32-bit values. On the
right-hand side, bits is the size of the k-PCC value (32), and k is
context depth. For example, if k = 3,

f(V, cs) ≡ 211 × V + cs

This function shifts the current k-PCC value 11 bits to the left and
then adds the call site value. Bits affected by call sites lower on the
stack are pushed off the end of the value, thus only the top k call
sites affect the PCC value. Note that the function is only suitable
for k ≤ bits.

We modify the dynamic, just-in-time (JIT) compiler in the JVM
to insert instrumentation at each call site that computes the next k-
PCC value from the current k-PCC value and the current call site
ID. At security calls only, PECAN also checks whether the k-PCC
value is anomalous. The following example shows the instrumen-
tation added by the compiler to a method that, prior to instrumen-
tation, makes calls at the three labeled call sites.

void applicationMethod() {
int tmp = V; / / save c u r r e n t k−PCC

...

V = f(tmp, cs_1); / / compute k−PCC
/∗ cs_1 : ∗ / foo();

...

V = f(tmp, cs_2); / / compute k−PCC
check(V); / / check k−PCC

/∗ cs_2 : ∗ / SecurityManager.checkPermission(...);

...

V = f(tmp, cs_3); / / compute k−PCC
check(V); / / check k−PCC

/∗ cs_3 : ∗ / readFile(...);

...
}

The check() method looks up the k-PCC value in a global hash
table.

void check(int V) {
if (!table.contains(V)) {

table.add(V);
if (deployed) {

context = walkStack();
reportAnomaly(context);

} } }



If the value is anomalous, then the resulting context is guaranteed
to be anomalous. In training mode, PECAN simply adds the new
k-PCC value to the table. In deployed mode, it reports the new
context, which it obtains (after detection) by walking the stack, as
anomalous.

A disadvantage of the k-PCC function is that only the top call
site affects all bits in the k-PCC value. For example, with k = 3,
the top call site affects all 32 bits of the PCC value, the second
call site affects 21 bits, and the third call site affects only 10 bits.
Thus the chance of a conflict may increase because another call site
only needs to share the third call site’s 10 lowest bits for a conflict
to occur. This pitfall is mitigated by the fact that for a conflict to
occur, this call site must be capable of calling the second call site
and causing it to invoke the top call site. In practice, we find that k-
PCC is sufficient for accurately recognizing anomalies associated
with real attacks. Future work could evaluate k-PCC’s conflict rate
for all program calling contexts, as in the original PCC work [7].

4.4 History Sensitivity
Program history is also an essential ingredient of accurate ano-
maly detection [12, 17, 31]. For example, Java API methods often
call a security check method, such as SecurityManager.check-
Permission(), prior to a security call that performs some poten-
tially dangerous action, e.g., reading a file. If the file read occurs
without a prior SecurityManager check, this anomaly represents
a possible attack. Remember that there are two types of security
calls: (1) calls to SecurityManager methods that check whether
an action is permitted and (2) calls that actually perform some po-
tentially dangerous task. To reduce the number of histories and mit-
igate false positives, PECAN only considers the program’s history
of calls to SecurityManager, because correctly executing these
checks is critical to enforcing security policies.

PECAN naturally combines history and context sensitivity by
combining prior k-PCC values for SecurityManager calls with
the current k-PCC value. Each thread uses a variable that maintains
the SecurityManager call history, if any. The check() method
hashes this value together with the current k-PCC value V to ob-
tain a new value H . Whenever check() is called by a Security-
Manager call, which occurs at some, but not all security calls, it
updates H to include this latest SecurityManager call. We have
found that, as with context sensitivity, using unlimited history pro-
vides too much sensitivity, resulting in many false positives. Thus,
PECAN uses only the k-PCC value from the most recent security
call and combines it with the current k-PCC value (using a variant
of the original PCC function, 5×Vprev +Vcurrent), which we refer
to as history of level 1.

In the rest of the paper, we refer to k-limited probabilistic context
with history as the k-PCH value.

4.5 Component Granularity
Modern software is usually assembled from independently devel-
oped components. PECAN training and monitoring may be applied
to a subset of the components. For example, an application devel-
oper may configure PECAN to instrument only the application that
she is implementing, and in the deployment stage only monitor for
anomalies in that application, as opposed to the Java libraries. Sim-
ilarly, an implementor of a library routine may only be interested
in anomalous executions inside the code he is responsible for, as
opposed to the entire context from the application to the library.
This decision makes sense especially for general-purpose libraries
such as the Java API. Otherwise, each call to the library by a new
application would appear anomalous.

When PECAN is applied to libraries only, it resets history before

each application→ library call. Note that PECAN does not instru-
ment these calls because the call sites are inside the application,
not the libraries. This approach helps avoid mimicry attacks. For
example, consider a library method that omits a necessary security
check. A malicious applet may try to avoid detection by calling this
check itself, prior to exploiting the vulnerable method.

4.6 Implementation
We implemented PECAN in Jikes RVM 2.9.2, a research Java Vir-
tual Machine [4].6 Jikes RVM is a research tool, but its perfor-
mance compares well with commercial VMs.7 Our performance
measurements are thus relative to an excellent baseline. We have
made our implementation of PECAN publicly available on the Jikes
RVM Research Archive.8

Like other VMs, Jikes RVM uses just-in-time compilation to pro-
duce machine code for each method at run time. When a method
executes for the first time, a baseline compiler quickly generates
machine code directly from bytecode. If a method executes many
times and becomes hot, the VM recompiles it with an optimizing
compiler at successively higher optimization levels. We modify
both compilers to insert instrumentation that (1) maintains the k-
PCH value and (2) records (in training) or checks (in deployment)
the k-PCH value at security calls.

5. EVALUATION
This section analyzes PECAN’s performance and ability to detect
attacks. First, we measure PECAN’s performance and compare the
overhead of using k-PCH values to walking the stack. We then
evaluate PECAN’s ability to detect real-world semantic exploits.
Finally, we perform leave-one-out cross-validation on benign pro-
grams to evaluate PECAN’s false positive rate.

5.1 Performance
PECAN adds overhead to applications because it inserts instrumen-
tation to track the k-PCH value and check it at security calls. This
section shows that using k-PCH for context sensitivity has consis-
tently low overhead across all benchmarks, whereas walking the
stack at each security call sometimes adds very high overhead.

Figure 1 shows the normalized execution time of our approach
for the DaCapo benchmarks and fixed-workload version of SPEC-
jbb2000 called pseudojbb [6, 32]. Each bar is the median of three
trials. We use an execution methodology called replay compilation
to reduce nondeterminism due to timer-based sampling [13,18]. We
exclude the bloat benchmark since its performance is erratic even
with replay compilation.

Each bar is the overhead compared with the execution time on
unmodified Jikes RVM.9 Pecan is the overhead of continuously
maintaining k-PCH values and checking them at security calls. Pe-
can adds 5% on average and at most 9%. We have found that almost
all of this overhead comes from maintaining the k-PCH value; less
than a tenth of the overhead comes from checking the k-PCH value
at security calls. The experiments use k = 3, but the overhead is
the same for larger values of k up to k =∞.

The Walk stack configurations show the overhead of walking the
stack when context is needed, rather than keeping track of context
6http://www.jikesrvm.org
7http://jikesrvm.anu.edu.au/performance/
2009-07/
8http://www.jikesrvm.org/Research+Archive
9Overheads are negative (shown as zero overhead in Figure 1) in a
few cases because of architectural effects, e.g., instrumentation per-
turbs code layout, which can affect caching performance for better
or worse.
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Figure 1: Application execution time overhead of maintaining the k-PCH value and querying it at calls to SecurityException
methods, compared with walking the stack.

continuously with k-PCH. These configurations walk the top three
call sites and all call sites on the stack, respectively. We note that
walking the stack is semantically equivalent to k-PCH, but not per-
formance equivalent! Stack-walking is deterministic, whereas k-
PCH has a small probability of a numeric collision. In practice, the
two techniques should report the same vulnerabilities. The stack-
walking configurations have low overhead for most programs, but
for two programs (antlr and pseudojbb) they add very high over-
head. Walking the entire stack is very expensive for these pro-
grams, but, admittedly, full context sensitivity produces too many
false positives in practice, as we show in Section 5.3. For context
sensitivity with depth 3, overheads are lower, but as high as 18%
and 31% for antlr and pseudojbb, which have relatively frequent
security calls. Programs with more frequent security calls will in-
cur higher overheads. In short, stack-walking does not scale well
to higher levels of context sensitivity, nor to more frequent secu-
rity checks. In contrast, k-PCH’s overhead scales well with these
factors.

5.2 Detecting Real Attacks
This section evaluates PECAN’s ability to detect semantic attacks.
For each of the exploits, we train the system using a benign in-
put that leads to functionality that is similar to the exploit but not
malicious. For example, SlashPath loads a class in a malicious
way. To train PECAN, we load a class in a benign way. We then
execute the exploits in the trained system and observe whether PE-
CAN reports anomalous behavior. Our experiments explore several
combinations of granularity, context, and history sensitivity. How-
ever, they are not comprehensive, and a production system would
likely need application-specific training to appropriately configure
the parameters of context sensitivity and history sensitivity.

The granularity of PECAN’s checks is important for avoiding
both false positives and false negatives. As discussed previously,
PECAN checks the k-PCH value only at security calls. The first
three exploits, SlashPath, LiveConnect, and OperaPolicy, are ap-
plets that take advantage of misconfigured security policies or bugs
in the Java libraries. To detect these classes of vulnerabilities, we
restrict instrumentation to the libraries because exploits trigger ano-
malies in the library code. Furthermore, it does not make sense to
check for anomalies in the applets because each applet has different
code, which may not even be known in advance, and will generate
many false positives. The fourth exploit, XSLT, takes advantage
of a semantic bug in a specific application. To detect this class of
vulnerabilities, we perform monitoring inside that application. De-

velopers would need to make similar decisions.
Finally, we experiment with different levels of context sensitiv-

ity. By default, PECAN uses context sensitivity of depth 3. We
compare it to lower levels of context sensitivity: 0, which uses the
callee method as the program location, and 1, which uses the caller
method as the program location. We also compare to full (infinite)
context sensitivity. We experiment with two levels of history sen-
sitivity: 0 (none) and 1 (includes the previous SecurityManager
call). Deeper context sensitivity leads to a richer set of behaviors
and thus more false positives, but is required for detection of some
attacks (e.g., SlashPath). Additional history sensitivity beyond 1 is
likely to result in many false positives, but this paper does not ex-
plore this direction because history level of 1 is sufficient to detect
all of our sample attacks. We have, however, verified that the Slash-
Path vulnerability cannot be detected with history alone: even with
infinite history, detection requires context sensitivity.

The rest of this section refers to configurations of PECAN us-
ing the notation CkHh, where k is the context depth and h is the
amount of history used. Our recommended configuration, bolded
in the tables, is C3H1, which detects all of our sample attacks while
producing few false positives.

We now present the details of the four vulnerabilities and eval-
uate PECAN’s ability to detect them. Two exploits, SlashPath and
XSLT, need context sensitivity to be detected; SlashPath also needs
history. The other two exploits do not need context or history sen-
sitivity.

SlashPath. The SlashPath vulnerability is representative of a com-
mon mistake in the implementation of security managers, where
the enforcement mechanism forgets to perform a mandatory secu-
rity check. The vulnerability exploits the fact that Sun JVM 1.3
does not correctly check whether it is okay to load a class or not
if that class’s package name is delimited with slashes (e.g., sun/
applet/AppletClassLoader) instead of dots (e.g., sun.
applet.AppletClassLoader).10

The vulnerability occurs because of a mismatch between two
pieces of code. The code that potentially performs a security check
assumes that class names are delimited only with dots, while the
code that actually loads the class allows names to be delimited with
dots or slashes. We found that this vulnerability is also present in
the system class loader in Jikes RVM. The code in Figure 2 shows
a simplified version of the vulnerable class loader. Note that the
call to checkPackageAccess() does not occur if the class name

10http://www.securityfocus.com/bid/8879/info



No history 1-level history
k Config Anoms. (All) Config Anoms. (All)
0 C0H0 0 (35) C0H1 0 (59)
1 C1H0 0 (54) C1H1 1 (90)
3 C3H0 0 (110) C3H1 2 (145)
∞ C∞H0 0 (194) C∞H1 2 (222)

Table 2: Intrusion detection results for SlashPath. Detection
requires both context sensitivity and history.

Class loadClass(String name,
boolean resolve) {

int lastDot = name.lastIndexOf(’.’);
if (lastDot != -1)
String pkg = name.substring(0, lastDot);
SecurityManager.checkPackageAccess(pkg);

}
return super.loadClass(name, resolve);

}

Figure 2: Vulnerable loadClass() method from Jikes RVM’s
system class loader.

is delimited with slashes instead of dots.
Our exploit code is an applet that loads a class in a package that

applets should not be able to access. We execute this applet with
a custom-defined security manager that allows all operations. This
setup makes sense because one important application of PECAN is
to detect malicious behavior allowed by a faulty security manager
or security policy. Our training code models benign behavior by
loading a class whose package name is delimited with dots and also
a class without a package name (no dots or slashes). Table 2 shows
results for executing the SlashPath attack in a system monitored by
PECAN. Each row is a configuration with varying levels of context
and history sensitivity. The cells show the number of anomalous
behaviors associated with the attack and, in parentheses, the total
number of behaviors observed during training.

Table 2 shows that context and history sensitivity are required
for PECAN to detect the SlashPath attack. Sometimes the number
of anomalies is greater than 1 because the attack behavior results in
anomalous k-PCH values at multiple security calls. In general, Ta-
bles 2–5 can be interpreted as follows. If Anoms. is 0, the PECAN
configuration cannot detect the attack; otherwise, the PECAN con-
figuration detects the attack. Detection is contingent on the training
set and could potentially fail if the training set were such that the
malicious call(s) would no longer appear anomalous.

We also implemented a mimicry attack that calls Security-

Manager.checkPackageAccess() immediately prior to attempt-
ing to load a class name delimited with slashes (not shown). This
attack would defeat naïve history-based detection, but PECAN de-
tects it because PECAN resets history on each applet→ library call
(Section 4.5).

XSLT. This vulnerability represents a common class of bugs, where
untrusted code mistakenly executes in the wrong security context
(e.g., outside the normal Java sandbox). EXtensible Stylesheet
Language (XSL) documents specify XSL Transformations (XSLT)
to perform on XML documents. XSLT processing may use XSL
documents to generate Java code that the host JVM then executes.
Typically this code is sandboxed, but in a specific context, XSLT
may be “tricked” into executing arbitrary code without security
checks. The following is an excerpt from the vulnerability report:11

11http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-3716

k Config Anoms. (All)
0 C0H1 0 (20)
1 C1H1 0 (40)
3 C3H1 2 (42)
∞ C∞H1 222 (1573)

Table 3: Intrusion detection results for XSLT. Detection re-
quires context sensitivity. SecurityManager history is not rel-
evant since PECAN profiles only the application, which does not
make SecurityManager calls.

No history 1-level history
k Config Anoms. (All) Config Anoms. (All)
0 C0H0 6 (6) C0H1 6 (6)
1 C1H0 6 (6) C1H1 6 (6)
3 C3H0 6 (6) C3H1 6 (6)
∞ C∞H0 6 (6) C∞H1 6 (6)

Table 4: Intrusion detection results for LiveConnect. Detection
does not require context or history sensitivity.

The Java XML Digital Signature implementation in
Sun JDK and JRE 6 before Update 2 does not properly
process XSLT stylesheets in XSLT transforms in XML
signatures, which allows context-dependent attackers
to execute arbitrary code via a crafted stylesheet.

To reproduce this exploit in our Jikes RVM-based experimental
setup, we use the Xalan XML parsing library, which comes with
Sun JVM. Based on more details from the report quoted above, we
wrote an XSL file with embedded code in the select attribute
of the xsl:variable tag. If a user gives this XSL file as an
input for parsing an XML command, the JVM executes the em-
bedded code on the client machine. The embedded code can then
perform arbitrary illegal actions, such as accessing local data on the
machine.

Table 3 shows that context sensitivity is essential for detecting
the attack. We do not show various levels of history because the
XSLT application does not directly call any SecurityManager

methods. PECAN only instruments the application for this exploit,
since it is a standalone application and not an applet. The results
do not depend on the amount of history sensitivity.

Context is essential because executing arbitrary security-sensi-
tive methods from the context of parsing XSL files is semanti-
cally incorrect, but it is reasonable for the XSLT application to call
security-sensitive methods in some other context (e.g., to load local
configuration files). Our training set calls security-sensitive meth-
ods outside the context of XSL parsing, which demonstrates the
need for context sensitivity.

LiveConnect. This vulnerability involves gaining access to security-
sensitive methods that are not normally available to untrusted code.
A design error in a web browser feature called LiveConnect mis-
takenly allows Java and JavaScript code to communicate with one
another on a web page, i.e., a Java applet accesses JavaScript ob-
jects illegally, and JavaScript code illegally accesses Java runtime
libraries.12 A malicious applet can then use a JavaScript object
to determine the user’s browser and obtain a reference to a class
sun.plugin.liveconnect.SecureInvocation. The applet can
use this class to disable the current security manager.

To reproduce LiveConnect, we use exploit code provided by an-
other security researcher [39]. The vulnerability occurs in Sun’s
browser plugin, so PECAN instruments only the plugin, not the

12http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2004-1029



No history 1-level history
k Config Anoms. (All) Config Anoms. (All)
0 C0H0 3 (3) C0H1 3 (3)
1 C1H0 4 (4) C1H1 4 (4)
3 C3H0 5 (5) C3H1 5 (5)
∞ C∞H0 6 (6) C∞H1 6 (6)

Table 5: Intrusion detection results for OperaPolicy. Detection
does not require context or history sensitivity.

other Java libraries. We could configure PECAN to instrument all
libraries, although this would result in additional anomalous behav-
iors.

Table 4 shows the anomalies reported by PECAN for different
amounts of context sensitivity and history. PECAN detects anoma-
lous behavior regardless of the amounts of context or history. The
reason is that the exploit relies on calling a method that should not
be accessible to applets, so a benign applet will not call it. Thus,
calling this method always triggers an anomaly, even without con-
text or history sensitivity. A more thorough training set or a poten-
tial mimicry attack might increase the precision needed to detect
this exploit.

OperaPolicy. This vulnerability is representative of logic errors
and misconfiguration in custom security policies. The Opera 7.54
web browser specifies its own Java security policy for applets. The
default policy Opera.policy allows unprivileged applets access
to internal packages:13

grant {
permission java.lang.RuntimePermission

"accessClassInPackage.sun.*";
};

Our test exploit uses the getBootstrapClassPath() method of
the sun.misc.Launcher class to obtain private URLs and access
core JVM library classes of the sun.* package.

We reproduce the exploit in Jikes RVM with a security manager
that allows all behaviors. Table 5 shows that PECAN detects the
attack at all levels of context and history sensitivity. Similar to Live-
Connect, this exploit calls a method that should not be accessible.
This call looks anomalous regardless of the amount of context or
history sensitivity, so any PECAN configuration detects it.

5.3 Evaluating False Positives with Benign
Programs

The prior results showed how well PECAN detects semantic ex-
ploits, i.e., how well it avoids false negatives. Now we estimate
PECAN’s false positive rate by evaluating it on benign applications,
since any anomalies must be false positives. We use two classes of
programs: applets, which are similar to the first three vulnerabili-
ties, and XSL inputs, which are similar to the XSLT exploit.

We use leave-one-out cross-validation to measure false positives
fairly. For each of n programs, PECAN trains on the other n − 1
programs.

Table 6 shows the number of false positives (anomalous k-PCH
values) using leave-one-out cross-validation for 12 sample applets
obtained quickly via Google search. The methodology of training
on one set of applets and deploying on a different applet is rea-
sonable because PECAN profiles only the libraries called by the
applets, not the applets themselves (Section 4.5). The number in
parentheses is the total number of distinct k-PCH values. For higher

13http://www.securityfocus.com/archive/1/
381634

False positives (total distinct behaviors)
ArcTest AtomViewer CardTest DiffEq

C0H0 0 (31) 0 (31) 0 (31) 0 (33)
C0H1 0 (53) 0 (53) 0 (52) 0 (60)
C1H0 0 (45) 0 (45) 0 (45) 0 (56)
C1H1 0 (75) 0 (74) 0 (71) 0 (100)
C3H0 0 (96) 0 (93) 0 (93) 0 (125)
C3H1 1 (127) 9 (125) 0 (111) 1 (184)
C∞H0 32 (196) 113 (318) 0 (146) 125 (287)
C∞H1 40 (221) 61 (251) 10 (211) 131 (314)

DitherTest DrawTest Euler Gas
C0H0 0 (31) 0 (31) 0 (33) 0 (31)
C0H1 0 (54) 0 (52) 0 (60) 0 (54)
C1H0 0 (45) 0 (45) 0 (56) 0 (45)
C1H1 0 (75) 0 (71) 0 (100) 0 (75)
C3H0 4 (100) 0 (93) 2 (127) 0 (99)
C3H1 7 (133) 0 (123) 6 (189) 1 (130)
C∞H0 77 (218) 10 (182) 46 (281) 14 (194)
C∞H1 94 (253) 5 (207) 101 (328) 28 (219)

Matrix Puzzle ReflFrame StringWave
C0H0 0 (33) 0 (31) 0 (31) 0 (31)
C0H1 0 (54) 0 (52) 0 (43) 0 (42)
C1H0 0 (56) 0 (45) 0 (44) 2 (47)
C1H1 0 (100) 0 (74) 0 (62) 0 (55)
C3H0 0 (121) 0 (93) 4 (89) 0 (65)
C3H1 0 (173) 0 (123) 6 (114) 0 (84)
C∞H0 56 (250) 10 (156) 74 (178) 9 (240)
C∞H1 73 (285) 12 (209) 93 (170) 0 (124)

Table 6: Leave-one-out cross-validation for 12 non-vulnerable
applets. Even though there is relatively little training compared
with expected industrial efforts, false positive rates are low for
the C3H1 PECAN configuration.

levels of context and history sensitivity, there are many more false
positives. This highlights the advantage of using depth-limited
(rather than infinite) context sensitivity.

For our recommended configuration, C3H1, the number of false
positives is always less than 10 and often equal to 0. For the four
applets with more than one false positive, the number of anoma-
lous behaviors is fewer than the number of false positives because
a single anomalous execution path often executes several security
calls. AtomViewer, DitherTest, Euler, and ReflFrame execute just
1, 3, 3, and 2 distinct anomalous behaviors. Even if the false pos-
itive rate shown for C3H1 is too high for production use, standard
industrial testing will be much more comprehensive than the lim-
ited test programs that we use here, further reducing the number of
false positives (Section 4).

Table 7 shows false positives using leave-one-out cross-valida-
tion when XSLT is executed on eight XSL inputs found by a quick
Google search. History sensitivity is omitted because XSLT does
not call SecurityManager methods directly, so results are not af-
fected by history sensitivity (Section 5.2). The number of false
positives is low: 0 in most cases and 2 at most. The false positive
rate could be even lower with a more comprehensive test suite.

Additional evaluation is needed, but even these results indicate
that developers may need to configure PECAN for a given appli-
cation by setting the right levels of context sensitivity and history
sensitivity. Because different applications have different security
requirements and implementations, requiring developers to config-
ure an anomaly detector in such a manner does not seem unreason-
able.



False positives (total distinct behaviors)
ui resume testcase testcase2

C0H1 0 (5) 0 (5) 0 (6) 0 (5)
C1H1 0 (21) 0 (21) 0 (23) 2 (22)
C3H1 0 (22) 0 (22) 1 (25) 2 (23)
C∞H1 15 (69) 3 (44) 63 (141) 1409 (1476)

testcase3 testcase4 testcase5 testcase6
C0H1 0 (5) 0 (5) 0 (6) 0 (5)
C1H1 0 (21) 1 (22) 0 (23) 0 (21)
C3H1 0 (22) 1 (22) 0 (23) 0 (21)
C∞H1 6 (54) 2 (43) 49 (82) 1 (42)

Table 7: Leave-one-out cross-validation for eight non-
vulnerable XSLT inputs. The C3H1 PECAN configuration gen-
erates few false positives. SecurityManager history is not rel-
evant since PECAN profiles only the application, which does not
make SecurityManager calls.

6. SUMMARY
Semantic attacks on programs implemented in memory-safe lan-
guages are hard to detect because they violate informal coding rules
rather than the semantics of the programming language. Anomaly
detection can help, but many existing methods suffer from poor
precision and performance. PECAN is a novel anomaly detection
system for Java with probabilistic, depth-limited context sensitiv-
ity, history sensitivity, and low performance overhead.

We evaluate PECAN on four real-world exploits and with vari-
ous levels of context and history sensitivity. Context and history
sensitivity are both important, but limiting them is key to keep-
ing the number of false positives low. While the tension between
false negatives and false positives remains challenging, PECAN’s
demonstrated ability to detect attacks precisely, accurately, and effi-
ciently on real-world programs makes a compelling case for its use
in deployed systems. These initial results are promising, but fur-
ther evaluation is needed. For production use, application-specific
configuration would likely be required, but we believe developers
would be willing to invest this effort in order to increase the secu-
rity of critical applications.
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