
Reputation-Based Trust Management∗

Vitaly Shmatikov and Carolyn Talcott

Computer Science Laboratory
SRI International

Menlo Park, CA 94025 USA
{shmat,clt }@csl.sri.com

Abstract

We propose a formal model for reputation-based trust management. In con-
trast to credential-based trust management, in our framework an agent’sreputation
serves as the basis for trust. For example, an access controlpolicy may consider
the agent’s reputation when deciding whether to offer him a license for accessing a
protected resource. The underlying semantic model is an event semantics inspired
by the actor model, and assumes that each agent has only partial knowledge of the
events that have occurred. Restrictions on agents’ behavior are formalized asli-
censes, with “good” and “bad” behavior interpreted as, respectively, license fulfill-
ment and violation. An agent’s reputation comprises four kinds of evidence: com-
pletely fulfilled licenses, ongoing licenses without violations or misuses, licenses
with violated obligations, and misused licenses. This approach enables precise
formal modeling of scenarios involving reputations, such as financial transactions
based on credit histories and information sharing between untrusted agents.

1 Introduction

Reputationis a fundamental concept in many situations that involve interaction be-
tween mutually distrusting parties. Before issuing a credit card, a bank usually checks
the applicant’s credit history, which includes independently certified evidence that the
applicant has fulfilled his prior financial obligations. At Internet auction sites such as
eBay, the seller’s reputation,i.e., the evidence that past buyers were satisfied with his
or her behavior, is considered an asset of great value. Many solutions for the “free-rider
problem” [2] in peer-to-peer file sharing networks (the problem of users downloading
a large number of files without contributing anything in return) rely on the evidence of
past contributions when granting access to popular files [12].

We propose a formal model that gives a precise meaning to the notion of reputation
and uses it in reasoning about trust. Our approach extends anevent-based semantics in-
spired by the actor model of distributed computation [5, 10]to incorporateincomplete

∗Supported by ONR grant N00014-01-1-0837.

1

Agent’s View of the World
(events reported by trusted agents)

Reputation of Other Agents

Trust
creation of new trust

(compliance or abuse of licenses)

Figure 1: Reputation-based trust management

knowledge. Agents are assumed to have only partial knowledge of the event history.
When deciding whether to trust another agent or not, they rely on the evidence of past
behavior supplied by trusted sources. By contrast, trust inconventional trust manage-
ment [6] is based on access control credentials.

Inspired by license-based digital rights languages [13, 16], we use licenses to for-
malize both “good” and “bad” behavior. Each license restricts the behavior of the
agent who accepts it by specifying obligations (what the agent mustdo) as well as for-
bidden actions (what the agentmust notdo). Evidence of compliance or violation then
becomes part of the licensee’s reputation. Another agent may decide to grant a new
license on the basis of this evidence, even though he has not personally observed the
licensee’s good or bad behavior.

To illustrate by example, consider a consumer applying for an auto loan. The lender
requests the consumer’s credit history from a credit reporting bureau, and uses the
information to decide whether to grant the loan and on what terms. The lender’s trust
in the consumer is not based on the consumer’s identity credentials and, in contrast to
conventional trust management, the credit bureau is not vouching for the consumer’s
creditworthiness (i.e., there is no delegation of trust). The bank trusts the creditbureau
to accurately report theevidence, i.e., a summary of past events, such as the fact that
the consumer had signed up for a credit card and fulfilled his obligations by making
timely payments.

Our general approach to trust management is summarized in figure 1. We formal-
ize our framework in an object-oriented “language,” which is mapped to the rewrit-
ing logic based system, MAUDE [9]. Rewriting logic is a logical formalism well-
suited for modeling and reasoning about concurrent and interactive systems [15]. It
is based on two simple ideas: states of a system are represented as elements of an
algebraic data type, and the behavior of a system is given by localized transitions be-
tween states described as abstractions called rewrite rules. MAUDE provides several
strategies for simulating system behavior as well as searchand model-checking capa-
bilities for exploring the reachable state space. The MAUDE system implementation,
documentation, examples, and related papers can be found onthe MAUDE website
http://maude.cs.uiuc.edu .

The main benefit of this approach is that it enables formal verification of reputations
and trust policies. We can also use MAUDE to explore the dynamic aspects of any given
configuration of trust management policies as well as their evolution over time. For
example, we can obtain answers to questions such as “If a certain event occurs, what
will be its impact on agents’ reputations?,” and “If some agent switches to a particular

2

policy for granting new trust on the basis of reputation, howwill this affect other trust
relationships in the system?”

We also present two case studies, using our framework to formalize reputation-
based trust in an anonymized peer-to-peer file distributionsystem and a multi-player
game scenario, respectively. The former, described using asemi-formal object-oriented
language, demonstrates how reputation is created from the evidence of license fulfill-
ment, while the latter, presented as a MAUDE specification, illustrates the use of li-
censes in an environment with multiple untrusted agents.

The structure of the paper is as follows. In section 2, we introduce the basic con-
cepts of our framework. We formalize licenses and reputations in sections 3 and 4,
respectively. In section 5, we describe how reputations areformed on the basis of an
agent’s past behavior. In section 6, we present the peer-to-peer file distribution network
example, and in section 7, the multi-player game example. Wesurvey related work in
section 8. Conclusions follow in section 9.

2 Model

We use a semi-formal “object-oriented” notation to presentthe constructs of our frame-
work. After introducing basic types, we define concepts suchasevent, license, prin-
cipal, etc. as object types with fields and methods. Fields may be interpreted simply
as the corresponding object’s data structures, and the methods as operations on these
data structures. Some methods should be interpreted as messages as they correspond
to communication between active objects rather than directoperations on the object
structure. The framework is presented using an informal mathematical notation. Se-
lect segments of the MAUDE representation are included to give a flavor of the formal
notation.

For some methods, we specify the semantics that we expect anypolicy to satisfy
(unless stated otherwise, as in the example of section 6). For other methods, we delib-
erately leave the semantics unspecified. If the semantics isnot specified, the method is
unconstrained: policy and license writers are free to choose any semantics depending
on their preferred trust policy, desired security properties, and so on. We use a special
font for the names of unconstrained methods.

Our types are intended to serve as the roots of a type hierarchy in any actual im-
plementation of a trust management system based on our framework. For example, we
define a general-purposeLicensetype, but only provide a type signature for thevio-
lated method, without specifying precisely what it means for a license to be violated. A
specific policy — for example, in the context of anOnlineAuctiontrust management
system — will refine our definition by introducing new types, such asSellerLicense
andBuyerLicense, which are subtypes ofLicenseand supply semantics for the meth-
ods left unspecified in ourLicensedefinition. Other policies may refine the semantics
of Licensein different ways. In our examples, we use “A refinesB” syntax to indicate
thatA is a refinement ofB.

3

We use the following syntax for type definitions:

ObjectType
field FieldName1: Type1

. . .
field FieldNamek: Typek

methodMethodNamek+1 (Type1
k+1

,. . . ,Typerk+1

k+1
):Typek+1 [= 〈semantics〉]

. . .
methodMethodNamen (Type1

n,. . . ,Typern

n): Typen [= 〈semantics〉]

If we specify the field type as?Typei whereTypei is some type, this means that the
value of the field may be undefined, but when it is defined, it must be of typeTypei.

In MAUDE, types are calledsorts and we use mixfix notation to represent field
selection. The corresponding declaration of an object typein MAUDE has the form

sort <ObjectType> .
op _. <FieldName_1> : <ObjectType> -> Type_1 .
...
op _. <FieldName_k> : <ObjectType> -> Type_k .

op _. <MethodName_k+1>(_,...,_) :
<ObjectType> Type_k+1,1 ... Type_k+1,r_k+1 -> Type_k+1 .

...

declaring<ObjectType> to be a sort, and declaring operators for the fields and
methods. The underscores (_) give the argument positions in a mixfix declaration.

To specify creation of a new object of typeα, we use the following syntax:

newα(FieldName1← value1, . . . ,FieldNamek ← valuek)

wherevaluei is the initial value for the fieldFieldNamei. If we refer to the object’s own
methods or fields when specifying some method’s semantics, we use “this” keyword as
in C++. Finally, we use “letv = valuein . . . ” syntax for standard scoping.

2.1 Basic types

Our framework contains the following types with an infinite number of values:
Natural Natural numbers
UniqueName Unique agent names
Timestamp Ordered time values
LicenseId Unique license identifiers

Naming and authentication issues lie outside the scope of this paper. We assume
that each agent is assigned a unique name, and that the communication medium used
for information exchange between agents implements an appropriate authentication
mechanism, thus ensuring that agents are not confused abouteach other’s identity.

We also define the following enumerated types:

4

Bool = { True, False }
ActionType = { ResourceUse, LicenseOffer, LicenseAccept, . . .}
ResourceStatus = { Public, Licensed, Protected }
LicenseKind = { . . .} (user-defined, e.g., eBaySeller)

We define the standard polymorphic set type:
Setα Set of values of typeα

We define the standard projection and size operations on sets:
project(S:Setα,P :α→Bool): Setα = {s ∈ S | P (s) = True}
size(Setα): Natural

To define the projection predicateP :α→Bool, we use standardλ-expressions.
For example,project(globalHistory,λ e. e.action.type=LicenseAccept) extracts from
globalHistory only the events in which some license was accepted.

2.2 Actions and events

An action is an atomic interaction between several agents, or an agentand a resource.
We’ll use the termsprincipal andagentinterchangeably.

Action
field type: ActionType
field actors: Set UniqueName
field subject: ?Resource
field license: ?LicenseId

The actorsfield specifies agents involved in the action,subjectspecifies the re-
source (if any), andlicensespecifies the identifier of the license associated with the
action (if any). For example, an objecta:Action such thata.type=ResourceUse,
a.actors= {Pirate99}, a.subject=HackedTunez, a.license=L7198 models an agent
calledPirate99 using a resource calledHackedTunez under a license whose identi-
fier isL7198.

The following is the MAUDE declaration of theActionobject type.

sort Action .
op _. type : Action -> ActionType .
op _. actors : Action -> UNameSet .
op _. subject : Action ˜> Resource .
op _. license : Action ˜> LicenseId .

The possibility that a field value is undefined is representedby declaring the corre-
sponding operator to be a partial function (indicate by˜>). MAUDE supports partial
functions by associating aKind (think “error” sort) with each sort, to represent error or
undefined terms.

When constructing each agent’s partial view of the event history, we assume that
only agents listed in theactorsfield have direct knowledge of the event in which the
action has occurred. We also provide a mechanism for agents to share information
about events.

An eventis a time-stamped action occurrence.

5

Event
field time: Timestamp (not necessarily unique for each event)
field action: Action
method<(e:Event): Bool = this.time< e.time

To simplify presentation, we use infix notation for<. Because two events may have
the same timestamp,< defines only a partial order on events. We define eventhistory
simply as a set of events.

EventHistory = Set Event

2.3 Resources

A resourceis an item of value (program, website, database, credential) that agents may
wish to access or use.

Resource
field owner: ?UniqueName
field status: ResourceStatus
methoduseOk(EventHistory,License): Bool

A resource may or may not have an owner. If there is an owner, heor she specifies
how the resource may be used by defining theuseOkmethod. Ifr.useOk(h,l)=True for
some resourcer, event historyh, and licensel, this is interpreted as “given event history
h, the resourcer may be used (accessed) on the basis of licensel.” The owner is free to
defineuseOkin any way he or she sees fit. Normally, the definition ofuseOkdepends
on the access policy for the resource and involves checking whether the licensel is
valid (see section 3). In general,useOkdefines both permissible and (via its negation)
forbidden uses of the resource.

The status of the resource isPublic, Licensed, or Protected. The owner must be
specified for aLicensed orProtected resource. Given a resourcer, if r.status=Public,
then there should be no restrictions on the use of the resource. Ownership ofr does
not matter in this case, and it is assumed thatr.useOk(h,l)=True for any event history
h and any licensel.

If r.status=Licensed, using the resource is always feasible,i.e., the event history
may contain an actiona such thata.type=ResourceUse, a.subject=r anda.license=l
for an arbitrary licensel. If, however,r.useOk(h,l)=False, then such action constitutes
a misuse of licensel (see section 3).

If r.status=Protected, then using the resource is impossible ifr.useOk(h,l)=False,
i.e., the correspondingResourceUse event may not appear in the event history. This
is used, for example, to model cryptographically protectedresources, which cannot be
feasibly accessed unless the license contains the right key.

Intuitively, the difference betweenLicensed andProtected is thatuseOkfor Li-
censed resources simply determines whether the use of the resourceis “good” or
“bad,” while useOkfor Protected resources makes “bad” uses computationally infea-
sible. As explained in section 3, there aretwo kinds of misuse in our model: an action
forbidden by the license, and an action permitted by the license but forbidden by the

6

resource itself. The latter is only meaningful if the resource isLicensed. We do not
treat a failed attempt to use aProtected resource without a proper license as a misuse.

For simplicity, neither ownership, nor status depends on event history. In a more
sophisticated framework,ownerandstatusmay be viewed as updatable fields, whose
values change as the system evolves.

3 Licenses

We use a license language inspired by [13, 16] to define the permissible behavior of
agents. Licenses are very important in our framework since compliance with past li-
censes is the basis of an agent’s reputation. Each license defines (i) what the licensee
is permitted to do with the license, and (ii) the licensee’s obligations.

License
field id: LicenseId
field kind: LicenseKind
field issuer: UniqueName
field licensee: UniqueName
field resource: Resource
methodpermits(EventHistory,Event): Bool
methodviolated(EventHistory): Bool
methodmisuse(h:EventHistory,e:Event): Bool =

(not permitted by the license itself)
¬ this.permits(h,e) ∨

(. . . or not permitted by the resource being used)
e.action.license= this.id ∧ this.licensee∈ e.action.actors ∧
e.action.type= ResourceUse ∧ ¬ e.action.subject.useOk(h,this)

methodvalid(h:EventHistory): Bool =
∃e1, e2 ∈ h such thate1 < e2 ∧
e1.action.type= LicenseOffer ∧ e1.action.license= this.id ∧
{this.issuer, this.licensee} ⊆ e1.action.actors ∧
e2.action.type= LicenseAccept ∧ e2.action.license= this.id ∧
{this.issuer, this.licensee} ⊆ e2.action.actors

methoddone(EventHistory): Bool

Given a licensel, l.issuer identifies the agent who issued the license,l.licensee
identifies the licensee,i.e., the agent to whom obligations and permissions apply, and
l.resourceidentifies the subject of the license.

A license isvalid in some event history if it has been offered by the issuer and
accepted by the licensee. Validity is monotonic: ifh ⊆ h′, then l.valid(h) implies
l.valid(h′). If the issuer wants the license to expire at some point (e.g., once a certain
time has been announced, or a particular combination of events has occurred), he or
she can do this by defining adonemethod. Ifl.done(h) returnsTrue on some event
historyh, this is interpreted as stating that licensel has expired in historyh. While the
license issuer is free to choose any semantics for thedonemethod, most licensees will

7

expect that expiration is monotonic: ifh ⊆ h′, thenl.done(h) impliesl.done(h′). Note
that if ¬ l.valid(h), thenl.done(h) is meaningless.

Permissions. By defining thepermitsmethod, the license issuer specifies the set of
actions permitted by the license. There are noa priori constraints on the semantics of
this method. If an action is not permitted, the licensee may still be able to perform it,
but the corresponding event will be considered a misuse of the license and reported as
such in the licensee’s reputation.

We’d like to emphasize the difference betweenuseOkmethods, which are associ-
ated with resources, andpermitsmethods, which are associated with licenses. This
distinction is necessary in complex licensing scenarios, where it is difficult for the li-
cense issuer to foresee all possible situations in which thelicensee may attempt to use
the license. Consider, for example, a driver’s license which entitles the holder to oper-
ate cars, but not motorcycles. The no-motorcycles restriction is explicitly spelled out
in the driver licensing code, which can be thought of as thepermitsmethod associated
with the driver’s license. Note, however, that a typical licensing code doesnot con-
tain an explicit prohibition on using the license to operateairplanes. In general, many
improper uses of the license cannot be envisioned by the license issuer and are thus
not spelled out as part of the license terms. Preventing suchuses is the responsibility
of the resource owners (in our example, the civil aviation authority). Therefore, the
corresponding prohibitions should be encoded as part of theuseOkmethod associated
with each resource.

Intuitively, theuseOkmethod specifies the access policy from the viewpoint of the
resource owner. Therefore, it applies in the same way to all licenses. The resource
owner is free to ignore permissions stipulated in the license, or else consider them by
invoking the license’spermitsmethod when deciding whether to grant access to the
license holder (as in the example of section 6).

On the other hand, thepermitsmethod is used by thelicense issuerto specify
what he or she views as permissible behavior. Different licenses for the same resource
may thus contain different permissions. Thepermitsmethod may take into account
the resource’s access policy by invoking theuseOkmethod of the resource (as in the
example of section 7). In the extreme case, the same action may be permitted by the
resource owner and forbidden by the license issuer, or vice versa.

Obligations. By defining theviolatedmethod, the license issuer specifies the obliga-
tions imposed on the licensee by the license. Formally, ifl.violated(h)=True for some
licensel and event historyh, this means thath doesnotcontain the fulfillment of every
obligation imposed by the license. For example, if licensel models taking a loan, then
l.violated(h)=True if h contains a timestamp event corresponding to the repayment
deadline, but does not contain a preceding repayment event.

The license issuer is free to define theviolatedmethod as he wishes, but a well-
defined license cannot be violated unless it has been accepted by the licensee. Formally,
this means that¬ l.valid(h) should imply¬ l.violated(h).

We say that the licenseepartially fulfilled the license if, up to date, he has performed
all obligations specified by the license, but the license hasnot expired yet and may

8

contain future obligations. There is thus a possibility that the licensee will violate the
license in the future. If the licensee has fulfilled the license up to date and there are no
future obligations, we say that the license iscompletely fulfilled.

Violation and misuse. Permissions associated with the license are independent of
the obligations. A license circumscribes the licensee’s behavior “from above” (permits
restricts the set of actions hemaydo) as well as from “from below” (violatedspecifies
what hemustdo). A license may be passively violated bynotdoing something (e.g., not
repaying a loan), or actively misused by doing something forbidden (e.g., overdrawing
a credit line), or both. We will call the former aviolation, and the latter amisuse.
Another form of misuse is one that is not associated with license terms at all. It occurs
when the license is used to perform an action on a resource which is permitted by the
license, but is forbidden by the resource owner.

The license issuer explicitly specifies what constitutes a violation (i.e., an unful-
filled obligation) by defining theviolatedmethod. Themisusemethod is defined auto-
matically by combining actions forbidden by the license itself (permitsmethod returns
False on the corresponding events) and those forbidden by resource owners (useOk
method returnsFalse). Having a singlemisusemethod is a design decision. One could
also envision a framework in which the two forms of misuse areseparated, thus dif-
ferentiating license misuse (performing an action forbidden by the license issuer) from
resource misuse (performing an action forbidden by the resource owner). We plan to
investigate this framework in other application scenarios.

The definition of themisusemethod in MAUDE is the following direct mapping of
the mathematical notation.

op _. misuse(_,_) : License EventHistory Event -> Bool .
eq lic . misuse(h, e) =

not(lic . permits(h,e))
or
(e . action . license == lic . id

and
e . action . type == ResourceUse
and
e . action . actors == lic . licensee
and
not((e . action . subject) . useOk(h,lic)))

.

License issuers are free to defineviolated andpermitsmethods in any way they
wish, and the same is true for resource owners anduseOkmethods, respectively. Our
frameworkper sedoes not enforce any consistency checks on these predicates. It is
up to each licensee to decide whether the restrictions encoded in the license and the
resource description are acceptable. These restrictions may even be inconsistent. Our
objective is not to ensure that every license is meaningful or to prevent incompetence
in license writing. Instead, we develop a general frameworkthat supports any access
policy and any license terms as specified by the resource owners and license issuers.

9

4 Reputation

An agent’sreputationin our framework is simply the evidence of the agent’s past be-
havior. Since we rely on fulfillment, violation, and misuse of licenses to give meaning
to “good” and “bad” behavior, each piece of evidence consists of a license identifier
together with the supporting event history. When the evidence is distributed as part of
some agent’s reputation, this history can be used by other agents to verify whether the
reputation is accurate. For instance, when the reputation claims that the agent has vio-
lated some license, this event history can be used to verify that obligations associated
with the license in question have indeed been left unfulfilled.

Evidence
field license: LicenseId
field justification: EventHistory

In scenarios where privacy and anonymity are important (such as that described in
section 6), the event history listed in thejustificationfield may be left incomplete or
even empty. In this case, an agent who analyzes another agent’s reputation can still
identify each piece of evidence by the corresponding license id, butcannotverify that
the reputation is accurate by inspecting the supporting event history, since this history
is not made available as part of the evidence.

EvidenceSet= Set Evidence

Reputation is a tuple of four evidence sets, corresponding to four kinds of behavior
that are used as the basis for reputation. The sets are, respectively, completely fulfilled
licenses, partially fulfilled licenses (i.e., licenses that are fulfilled to date but have out-
standing future obligations), violations (i.e., licenses with unfulfilled obligations), and
misuses (i.e., licenses used to perform an action which is forbidden either by the license
issuer, or by the resource owner).

Reputation
field name: UniqueName
field compFulfilled: EvidenceSet
field partFulfilled: EvidenceSet
field violations: EvidenceSet
field misuses: EvidenceSet

We also define some auxiliary functions:

mergeEvidenceSets(e1:EvidenceSet, e2:EvidenceSet): EvidenceSet=
{ ev | ev ∈ e1 ∪ e2 ∧ 6 ∃ ev′ ∈ e1 ∪ e2 s.t.ev′ 6= ev ∧ ev.license=ev′.license})

⋃

{ newEvidence(license← ev.license,
justification← ev.justification∪ ev′.justification) |

ev, ev′ ∈ e1 ∪ e2 ∧ ev′ 6= ev ∧ ev.license=ev′.license}

10

mergeReputations(r1:Reputation, r2:Reputation): Reputation=
newReputation(

name← r1.name, (not well-defined if r1.name 6= r2.name)
compFulfilled← mergeEvidenceSets(r1.compFulfilled, r2.compFulfilled),
partFulfilled← mergeEvidenceSets(r1.partFulfilled, r2.partFulfilled),
violations← mergeEvidenceSets(r1.violations, r2.violations),
misuses←mergeEvidenceSets(r1.misuses, r2.misuses))

5 Reputation management

We are now ready to describe how reputations are formed, and how they are used
by agents to construct trust relationships with each other.We do this by defining a
Principalobject type. The types of all agents in the system are intended to be subtypes
of thePrincipal type.

Principal
field name: UniqueName
field licenses: Set License
field trusted: Set UniqueName
methodexportEvents(): EventHistory
methodview(): EventHistory =

project(globalHistory,λ e. this.name∈ e.action.actors)
⋃

p.exportEvents() ∀p such thatp.name∈ this.trusted
methodlocalRep(a: UniqueName): Reputation=

let v=this.view() in
let lsa={ l ∈ this.licenses| l.licensee=a } in
newReputation(name← a,

compFulfilled← cf , partFulfilled← pf ,
violations← uo, misuses←mu)

where
(completely fulfilled licenses:)

cf = {
newEvidence(license← l.id, justification← le) | l ∈ lsa ∧

(license is fulfilled and there are no future obligations)
l.valid(v) ∧ ¬ l.violated(v) ∧ l.done(v) ∧

(evidence may be incomplete)
le ⊆ project(v, λ e. e.action.license=l.id)

},
(partially fulfilled licenses:)

pf = {
newEvidence(license← l.id, justification← le) | l ∈ lsa ∧

(license is fulfilled but there may be future obligations)
l.valid(v) ∧ ¬ l.violated(v) ∧ ¬ l.done(v) ∧

(evidence may be incomplete)
le ⊆ project(v, λ e. e.action.license=l.id)

11

},
(licenses with unfulfilled obligations:)

uo = {
newEvidence(license← l.id, justification← le) | l ∈ lsa ∧

(obligations associated with the license are violated)
l.valid(v) ∧ l.violated(v) ∧

(evidence may be incomplete)
le ⊆ project(v, λ e. e.action.license=l.id)

},
(misused licenses:)

mu = {
newEvidence(license← l.id, justification← le) | l ∈ lsa ∧

(history contains a misuse event)
∃e ∈ v such thatl.misuse(h,e)

(evidence may be incomplete)
le ⊆ project(v, λ e. e.action.license=l.id)

}
methodexportGlobalRep(a:UniqueName, excl:Set UniqueName): Reputation=

mergeReputations(this.localRep(a), p.exportGlobalRep(a, excl ∪ this.name))
∀p such thatp.name∈ this.trusted∧ p.name/∈ excl

methodisTrusted(Reputation): Bool

We explain the fields and methods ofPrincipal in the order they are defined. The
namefield contains the principal’s name. Thelicensesfield contains the licenses issued
by the principal. Thetrustedfield contains the names of other agents trusted by this
principal. When the principal computes the reputation of some agent, in addition to
the local information he also collects evidence from the agents listed in thetrusted
field. Thetrustedfield may be updated by theisTrustedmethod, which is used by the
principal to encode the trust creation policy and to decide when to trust another agent
on the basis of his or her reputation.

Information sharing between agents. MethodexportEventsis used by the princi-
pal to give other agents information about the events known to him. Together with
exportGlobalRep, which is used to share information about reputations,exportEvents
is the basis of information sharing in our framework. We impose no constraints on the
semantics of theexportEventsmethod. A principal is free to export as much or as little
information as he wishes. A malicious principal may even lieand export event histo-
ries that do not correspond to actual events. Our aim is to enable realistic information
sharing between independent agents, which sometimes includes lying. In MAUDE,
the exportGlobalRepmethod is implemented using message passing. In particular,
the clause∀p such thatp.name∈ this.trustedquantifying the recursiveexportGlobal-
Repinvocation becomes a multicast ofexportGlobalRepmessages addressed to unique
names from thetrustedset that aren’t excluded.

Partial view of event history. The view method simply computes the entire event
history known to the principal by combining the events that he knows about by virtue

12

of having been one of the actors in the corresponding action with the events reported
by trusted agents (and resolving inconsistencies, if necessary). Technically, we assume
that there exists a single unified global history of all events that have occurred. We refer
to this history as globalHistory. We use standard set projection to restrict this history to
the events in which the principal participated directly. Information about other events
is obtained from trusted sources by invoking theirexportEventsmethods (implemented
in MAUDE as messages). As explained above, other agents are free to decide which
events to share by defining theexportEventsmethod accordingly.

In the actual MAUDE specification,viewis implemented as an updatable field rather
than a method. Its value is updated every time an event occursin which the principal
is one of the participants, and whenexportEventsmessage arrives from one of the
principals in thetrustedset.

Construction of reputation. The localRepmethod is used by the principal to con-
structanotheragent’s reputation on the basis of the event history known tothe princi-
pal. This method is the core of our framework. An agent’s reputation comprises four
parts, containing the evidence of, respectively, completely fulfilled licenses, partially
fulfilled licenses, licenses with violated obligations, and misused licenses. Since per-
missions associated with a license are independent of the obligations (see section 3),
the same license identifier may appear in several componentsof the reputation.

For each license used as evidence, the supporting event history may be included
as justification. We do not require that the evidence include the entire eventhistory
associated with a particular license. To preserve privacy and anonymity, it may be
necessary for the reputation object to hide all informationabout the events on which
the agent’s reputation is based (for an example of this, see section 6). If justification
is included, then other agents may use it to verify that the reputation is accurate. For
example, if the reputation object claims that the agent has misused some license, the
event history supplied as part of the evidence object may be inspected to confirm that
it indeed contains a misuse event.

For completely fulfilled, partially fulfilled, and violatedlicenses, the license must
be valid in the event history (i.e., offered by the issuer and accepted by the licensee) in
order to be used as evidence. The only exception is misused licenses, since an agent
may misuse a license (e.g., by improperly using it to gain access to a licensed resource)
even if he has not accepted its terms.

Reputation depends on the principal’s partial view of the event history. New events,
either observed directly by the principal, or reported by trusted agents via theex-
portEventsmethod, may cause the reputation to change. In particular, unfulfilled
obligations (e.g., absence of a promised payment) may be rectified by presenting the
evidence (e.g., a signed bank statement) that the event fulfilling the obligation has oc-
curred. In this case, the license and the supporting evidence will move from thevio-
lationscomponent of the reputation to thecompFulfilledor partFulfilled component.
While violationsare based on the absence of a fulfilling event,misusesare based on the
presence of a specific misuse event, and typically cannot be rectified, unlesspermitsor
useOkmethods are nonmonotonic.

TheexportGlobalRepmethod combines the principal’s local reputation for another

13

agent with the same agent’s reputations reported by trustedsources. Theexcl argument
is necessary to avoid infinite recursion when constructing the spanning tree of the trust
relationships graph.

Creation of new trust. Given an agent’s reputation, theisTrustedmethod decides
whether the agent should be trusted and, if so, whether he or she should be offered
some license and/or his or her name added to thetrusted list. We impose no con-
straints on the semantics of theisTrustedmethod. The policy writer is free to choose
any local reputation-based trust policy for a given principal depending on the specific
requirements and security objectives.

6 Example: Peer-to-Peer File Distribution System

In this case study, we use our framework to encode a reputation-based trust manage-
ment policy for a peer-to-peer file distribution system, roughly similar to Gnutella or
Freenet [8], implemented on top of a network of anonymizing routers such as an onion
routing network [18].

The following types model generic upload and download resources:

Upload refinesResource
field status: ResourceStatus= Public
methoduseOk(h:EventHistory,l:License): Bool = True

DownloadrefinesResource
field status: ResourceStatus= Licensed
methoduseOk(h:EventHistory,l:License): Bool =

let ua = newAction(
type← ResourceUse, actors← { l.licensee},
subject← this, license← l) in

let e = newEvent(time← newTimestamp, action← ua) in
l.valid(h) ∧ l.issuer=this.owner ∧ l.permits(h,e)

Intuitively, these definitions state that anybody can upload (since resources of type
Upload are public), but downloads, modeled as uses of aDownload resource, are
only permitted with a license issued by the server’s owner. Moreover,useOkchecks
whether, given an event history, the use is permitted by the license.

Consider a single file server consisting of two resources,dl andul, of typeDown-
load andUpload, respectively, wheredl andul are unique resource identifiers. Also,
assume that there exists alookupPrincipal(UniqueName): Principal table that maps
principals’ names to the corresponding objects of typePrincipal.

A sample license for thedl resource can be defined as follows:

DownloadLicenserefinesLicense
field resource: ResourceId= dl
methoddone(EventHistory): Bool =

nU ≥ 5

14

methodpermits(h:EventHistory,e:Event): Bool =
isDownload(e) ∧
(nD < nU × 3 ∨ p.isTrusted(p.exportGlobalRep(this.licensee,{}))

methodviolated(EventHistory): Bool =
nD > nU × 2

where
p=lookupPrincipal(dl.owner),
isDownload(Event): Bool = λ e.

(e.action.type= ResourceUse ∧ e.action.actors= { this.licensee} ∧
e.action.subject= dl),

isUpload(Event): Bool = λ e.
(e.action.type= ResourceUse ∧ e.action.actors= { this.licensee} ∧
e.action.subject= ul),

nD=size(project(h, isDownload)),
nU=size(project(h, isUpload))

By accepting this license, the licensee promises to upload at least once for every 2
downloads. If he fails to do this, however, he is not prevented from further downloads
as long as the event history contains at least 1 upload for every 3 downloads. This
means thatpermitsallows some violating actions (i.e., obligations accepted by the
licensee may be left unfulfilled to a limited extent). For example, if 2 uploads and 4
downloads have occurred, the 5th download will be allowed (5 < 2 × 3), even though
it’s a violation of the obligation (5 > 2× 2), but the 6th download will not be allowed.

Note thatpermitsallows unlimited downloads if the licensee is trusted by there-
source owner on the basis of his reputation (i.e., the resource owner’sisTrustedmethod
evaluates toTrue). The licensee can thus gain access todl in two ways: by maintain-
ing the proper ratio of uploads to downloads, or by relying ona previously acquired
reputation.

A possible trust policy for an owner of aDownloadresource is as follows:

DownloadOwnerrefinesPrincipal
methodexportEvents(): EventHistory = this.view()
methodisTrusted(r:Reputation): Bool =

size(r.compFulfilled)≥ 3 ∧ size(r.violations) = 0 ∧ size(r.misuses) = 0

According toDownloadLicense, a principal is permitted unlimited uses of thedl
resource if he is trusted by the resource owner. Note, however, that he cannot improve
his reputation by doing so,i.e., reputation cannot be “amplified” by using it repeatedly.
Only if the licensee complies with at least 3 different licenses the “hard” way, with 1
upload for every 2 downloads and at least 5 uploads per license, will he be trusted by
anotherprincipal, who may then permit him to access some other resource.

Anonymization. An anonymized reputation can serve as the proof that the licensee
has fulfilled multiple licenses (in particular, that he has uploaded multiple files), but
it cannot be linked to specific uses of anUpload resource, specific license identifiers,
or specific files. This can be achieved by routing all upload and download requests

15

via a chain of anonymizing routers, each of which is similar to Chaum’s MIX [7]. At
each link of the chain, the user is known under a different pseudonym. As reputation
is passed down the chain, each router re-maps the user’s pseudonym and license iden-
tifiers contained in the reputation, and purges event histories on which the reputation
is based. This prevents eavesdroppers from relating requests that arrive to and leave
from each router. Even if some routers in the chain are corrupt, reputations will be
anonymized as long as at least one router is honest.

We assume that each router has two secret internal tables:

nameTranslate(UniqueName): UniqueName
licenseTranslate(LicenseId): LicenseId

ThenameTranslatetable is set up when the router chain is initialized. It tellsthe
router the correspondence between the user’s pseudonyms onthe incoming and outgo-
ing link. If the user is known on the outgoing link asp, thennameTranslate(p) returns
his pseudonym on the incoming link.

We definepurgeEvidencefunction as follows:

purgeEvidence(e:EvidenceSet): EvidenceSet=
{ newEvidence(license← licenseTranslate(ev.license), justification← {}) | ev ∈ e }

Our policy for anonymizing routers changes the semantics oftheexportGlobalRep
method in order to anonymize reputations.

AnonymizingRouterrefinesPrincipal
methodnameTranslate(UniqueName): UniqueName
methodlicenseTranslate(LicenseId): LicenseId
methodexportGlobalRep(a:UniqueName, excl:Set UniqueName): Reputation=

let r = mergeReputations(this.localRep(this.nameTranslate(a)),
p.exportGlobalRep(a, excl ∪ this.name))

∀p such thatp.name∈ this.trusted∧ p.name/∈ excl
in
newReputation(

name← a,
compFulfilled← purgeEvidence(r.compFulfilled),
partFulfilled← purgeEvidence(r.partFulfilled),
violations← purgeEvidence(r.violations),
misuses← purgeEvidence(r.misuses))

In the new policy forexportGlobalRep, the router constructs the user’s reputation,
but then issues it under a different pseudonym, with licenseidentifiers re-mapped, and
event histories purged.

7 Example: Untrusted Allies

Instead of the semi-formal object-oriented notation, in this example we use MAUDE

directly to model an online role-playing game (inspired by Clan Lord [14]), in which

16

characters belong to clans that are competing in a search forvaluable items. One clan
can impede another by setting traps. Maps of regions that must be traversed help make
the search safer and faster. A player may also be a free agent.A clan leader wants to
avoid traps, and for this purpose might trade information inorder to discover where
traps have been placed and then send scout groups to disable them. When a trap is
found and successfully disabled, the scout group leader reports this to the clan leader.
A free agent wants map information to aid his own search or to trade. The agent may
discover traps or learn about them by hanging out with other clans.

In the following we give MAUDE versions of resource and license definitions that
a clan leader and an free agent might use to build trust in order to interact for mutual
benefit, and sketch an interaction scenario illustrating how they might be used. The
resource is a clan map owned by the clan leader. We abstract access to map data to
a simpleuseaction. The clan leader issues single-use licenses for the clan’s map in
exchange for confirmed good information about traps. Accepting the licenseobliges
the agent to provide information whether or not he accesses the map. Confirmation is in
the form of the scout group leader saying that good information was received from the
licensee, that is, the trap was found and disabled. The clan leader trusts the scout group
leader to report receipt of good information, and for simplicity we omit consideration
of bad information.

We now present the main components of the MAUDE specification. We assume the
following variable declarations:

vars u u0 u1 u2 sc cl fa : UniqueName .
var lic : License .
vars li li1 : LicenseId .
var h : EventHistory .
var ev : Event .
var act : Action .

In general, instances of object types are defined in MAUDE by declaring a constructor
and giving equations defining the field selection methods. Inorder to allow for multiple
clans, we define aclanMap constructor that takes the name of the owner (clan leader)
as an argument, and give equations defining the field selectors.

op clanMap : UniqueName -> Resource [ctor] .
eq clanMap(cl) . owner = cl .
eq clanMap(cl) . status = Licensed .

Constructors for the basicuse, offer, acceptactions are defined as follows

op use : UniqueName Resource LicenseId -> Action .
eq use(u, r, li) . type = ResourceUse .
eq use(u, r, li) . actors = u .
eq use(u, r, li) . subject = r .
eq use(u, r, li) . license = li .

ops offer accept : License -> Action .
eq offer(lic) . type = LicenseOffer .

17

eq accept(lic) . type = LicenseAccept .
eq offer(lic) . actors = (lic . issuer) (lic . licensee) .
eq offer(lic) . subject = lic . resource .
eq offer(lic) . license = lic . id .
...

Here (lic . issuer) (lic . licensee) denotes a set consisting of the
unique names(lic . issuer) and(lic . licensee) (which could be the
same). In addition we introduce a new action type,Tell , and twoTell actions.

op Tell : -> ActionType .

op giveInfo : UniqueName UniqueName UniqueName LicenseId
-> Action .

eq giveInfo(sc, fa, cl, li) . type = Tell .
eq giveInfo(sc, fa, cl, li) . actors = sc fa .
eq giveInfo(sc, fa, cl, li) . subject = clanMap(cl) .
eq giveInfo(sc, fa, cl, li) . license = li .

op goodInfo : UniqueName UniqueName LicenseId -> Action .
eq goodInfo(cl, sc, li) . type = Tell .
eq goodInfo(cl, sc, li) . actors = cl sc .
eq goodInfo(cl, sc, li) . subject = clanMap(cl) .
eq goodInfo(cl, sc, li) . license = li .

The termgiveInfo(sc,fa,cl,li) abstracts the action in which an agentfa gives
information to scoutsc as required by the license with identifierli issued bycl . The
termgoodInfo(cl,sc,li) names the action in which the scoutsc reports receipt of
good information to the clan leadercl . The termmapLic(li,cl,fa,sc) denotes
a clan map license with fields defined as follows.

op mapAccess : -> LicenseKind .
op mapLic : LicenseId UniqueName UniqueName UniqueName

-> License [ctor] .
eq mapLic(li,cl,fa,sc) . id = li .
eq mapLic(li,cl,fa,sc) . kind = mapAccess .
eq mapLic(li,cl,fa,sc) . resource = clanMap(cl) .
eq mapLic(li,cl,fa,sc) . issuer = cl .
eq mapLic(li,cl,fa,sc) . licensee = fa .

The argumentsc specifies the scout to whom information is to be given. To sim-
plify definition of some license methods, a partial functionvalidate(h,li) is
defined. If the license with identifierid has been offered and accepted in historyh,
then validate(h,li) is a triple oas(e-offer,e-accept,l-events) of
sortOfferAcceptSplit wheree-offer is the offer event,e-accept is the ac-
cept event,l-events is the set of events after the accept event that are associated
with the license. Otherwisevalidate(h,li) is an element of the “error” super-
sort [OfferAcceptSplit] . Map licenses are single-use only. A clan map license
is donein an event history if it is validated—oas :: OfferAcceptSplit tests

18

membership in sortOfferAcceptSplit —and the associated event set contains an
event whose action is a use of the license by the licenseefa .

var oas : [OfferAcceptSplit] .
ceq mapLic(li,cl,fa,sc) . done(h) =

if (oas :: OfferAcceptSplit)
then isUsed(events(oas),li, fa)
else false fi

if oas := validate(h,li) .

It is ok for an agentfa to use a clan map owned by leadercl with a map license issued
by that leader in the context of historyh if the license is valid in the history and the
scoutsc has verified that the agent has provided good information.

eq clanMap(cl) . useOk(h,mapLic(li,cl,fa,sc)) =
(mapLic(li,cl,fa,sc) . valid(h)

and
not(mapLic(li,cl,fa,sc) . done(h))
and
hasGoodInfoFor(h,li,cl,sc)) .

eq clanMap(u) . useOk(h,lic) = false [owise] .

The [owise] attribute of the second equation says that for any map and license not
matching the previous equation,useOk is false.

Thepermitsmethod is defined as follows:

eq mapLic(li,cl,fa,sc) . permits(h, ev)
= mapLic(li,cl,fa,sc) . permits(before(ev, h), ev.action) .

eq mapLic(li,cl,fa,sc) . permits(h, use(fa, clanMap(cl), li))
= clanMap(cl) . useOk(h,mapLic(li,cl,fa,sc)) .

eq mapLic(li,cl,fa,sc) . permits(h, act) = false [owise] .

Permission for auseaction reduces to theuseOktest, and no other action is permitted
by a map license.

A map license is violated in a history if it can be validated and there is a use event
with no report of good information.

ceq mapLic(li,cl,fa,sc) . violated(h) =
if (oas :: OfferAcceptSplit)
then (isUsed(events(oas),li, fa)

and
not(hasGoodInfoFor(events(oas), li,cl,sc)))

else false fi
if oas := validate(h,li) .

To see how these policies work in practice, we definedactiveprincipals — actors that
communicate via message passing or joint actions — and gave rules for the behavior of
a clan leader, a scout, and a free agent. A configuration is a set of actors and messages
together with a clock object used to generate time stamps. Active principals and other
objects have the form

19

[name : ClassId | attributes]

whereattributes (of sortAtts) consists of the set of field values and other inter-
nal state information.

The following is an initial configuration with a clock, a scout (fred), a clan leader
(joe, ClassId isCL), a free agent (sam), and a message to start things off. For con-
venience, to define specific configurations, the operatoru is defined to map strings to
unique names.

op ic : -> Conf .
eq ic =

[u("clock") : Clock | time(0)]
[u("fred") : ScoutC |

licenses(mt),trusted(mt),view(mt),pend(nil)]
[u("joe") : CL |

licenses(mt),trusted(mt),view(mt),pend(nil),lctr(0)]
[u("sam") : freeAgentC |

licenses(mt),trusted(mt),view(mt),pend(nil)]
msg(u("joe"), u("sam"), mapReq(u("fred")))

The clock has atime attribute. The principals have the requiredlicenses ,
trusted , andview attributes, and in addition apend attribute whose value is a list
of pending actions, initiallynil (empty). The clan leader also has an attributelctr
used to generate fresh license identifiers. There are rules for each of the actions that a
principal can participate in. When such a rule is applied, anevent is created with a new
timestamp and each participant adds the event to itsview . As an example, here is the
rule for anoffer action.

vars al0 al1 : ActionList .
vars aatts catts : Atts .
rl[offer]:

[clk : Clock | time(m)]
[cl : CL | catts, view(v0),

pend(offer(mapLic(l(cl,n),cl,fa,sc)) al0)]
[fa : freeAgentC | aatts, view(v1), pend(al1)]
=>
[clk : Clock | time(s m)]
[cl : CL | catts, pend(al0),

view(v0 event(t(m),offer(mapLic(l(cl,n),cl,fa,sc))))]
[fa : freeAgentC | aatts,

pend(al1 accept(mapLic(l(cl,n),cl,fa,sc))),
view(v1 event(t(m),offer(mapLic(l(cl,n),cl,fa,sc))))]

.

Timestamps are isomorphic to natural numbers, witht(m) being the timestamp cor-
responding to the numberm. The additional rule action rules are for

• accept(mapLic(l(cl,n),cl,fa,sc)) for clan leader and free agent

• giveInfo(sc,fa,cl,l(cl,n)) for free agent and scout

20

• goodInfo(cl,sc,l(cl,n)) for scout and clan leader

• use(fa,clanMap(cl),l(cl,n)) for free agent and clan leader

In addition, there are application-independent rules for principals to exchange event
and reputation information, which implement theexportEventsandexportGlobalRep
methods.

Delivering the message to the clan leaderjoe results in an offer action being put in
the pending action list.

We can use MAUDE’s rewrite engine to see one way in which the configuration
might evolve. In the resulting configuration the pending action lists are all empty and
five events have happened.

event(t(0),
offer(mapLic(l(u("joe"),0),u("joe"),u("sam"),u("fre d"))))

event(t(1),
accept(mapLic(l(u("joe"),0),u("joe"),u("sam"),u("fr ed"))))

event(t(2),giveInfo(u("fred"),u("sam"),u("joe"),l(u ("joe"),0)))
event(t(3),goodInfo(u("joe"),u("fred"),l(u("joe"),0))),
event(t(4),use(u("sam"),clanMap(u("joe")),l(u("joe"),0)))

We can ask if it is possible for the map license to be misused starting with the above
initial configuration using the MAUDE search command as follows:

search ic =>! C:Conf
[u("joe") : CL | atts:Atts, licenses(lic:License),

view(v e:Event)]
such that (e:Event . action . type == ResourceUse and

not(lic:License . permits(v e:Event, e:Event))) .

The answer is yes, if theuse event occurs before thegoodInfo event.
For simplicity, the above scenario focuses on a setting withone clan leader, one

scout group, and one free agent. Scenarios involving multiple clan leaders, free agents,
and/or scouts can easily be analyzed by starting with largerconfigurations. The clan
map license model can be used as a starting point for modelinghow the clan leader
and the free agent might build mutual [dis]trust and use thisreputation-based trust to
develop simple strategies for deciding when to trade information. For example, since
the clan leader trusts the scout group leader to reliably report when good information
has been given and the map use license has thus been complied with, such reports could
be used to add agents to the leader’strustedset.

8 Related work

The framework for reputation-based trust developed in thispaper is most closely related
to trust systems for peer-to-peer and ubiquitous computing. The existing techniques
mainly focus on differentiating and quantifying levels of trust assigned to different
agents in the system, whereas our objective is to give precise formal semantics to the

21

notion of reputation, while leaving trust decisions to individual agents. In this sense,
our approach is complementary to those explored in the literature.

Abdul-Rahman and Hailes [1] model reputation as a tuple of “very good,” “good,”
“bad,” and “very bad” experiences, which is similar to our model for reputation de-
scribed in section 4. Precise semantics of “good” and “bad” is left unspecified in [1].
By contrast, we interpret “good” and “bad” as compliance with and misuse of licenses.
The focus of [1] is on computing weighted trust values based on the relative trustwor-
thiness of information sources.

Shankar and Arbaugh [17] also focus on assigning different values of trust to agents
depending on their identity and physical context. Their approach is thus complemen-
tary to ours. We plan to investigate extensions of our framework with multiple and
possibly dynamically evolving levels of trust.

Azzedin and Maheswaran [3, 4] interpret reputation as expectation of behavior
based on collective information. Their model takes into account trustworthiness of
information sources. They view information about reputation supplied by individual
agents as numerical values, whereas we focus on low-level interpretation of reputation
as fulfillment and misuse of licenses.

Damianiet al.[11] propose an overlay protocol for peer-to-peer networks, in which
reliability of a resource can be established by distributedpolling. Again, the semantics
of reputation is not as refined as in our framework.

9 Conclusions

We have presented a formal model for reputation-based trustmanagement that allows
mutually distrusting agents to develop a basis for interaction even in the absence of a
central credential authority. The model can be applied in the context of peer-to-peer
applications, online games, or military simulation, amongothers.

We have started with a very simple model and there are severalelaborations that
can be considered, such as treating temporal aspects in moredetail, mechanisms for
allowing reputation (good or bad) to degrade over time, and taking trustworthiness of
the source into account when evaluating evidence and reputation.

We plan to develop a set of standard high-level policies for creating new trust judg-
ments on the basis of reputation. Another direction of future work is to introduce
economic notions such as cost-benefit ratios and their relation to reputation and trust.

Acknowledgements. The authors thank the anonymous reviewers for helpful com-
ments and Tim McCarthy for suggesting the game application.

References

[1] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In
Proc. 33rd IEEE Hawaii International Conference on System Sciences (HICSS) -
Volume 6. IEEE Computer Society, 2000.

[2] E. Adar and B. Huberman. Free riding on Gnutella.First Monday, 5(10), 2000.

22

[3] F. Azzedin and M. Maheswaran. Integrating trust into grid resource management
systems. InProc. 31st International Conference on Parallel Processing, pages
47–54. IEEE Computer Society, 2002.

[4] F. Azzedin and M. Maheswaran. Trust modeling for peer-to-peer based comput-
ing systems. InProc. 12th IEEE Heterogeneous Computing Workshop, 2003.

[5] H. Baker and C. Hewitt. Laws for communicating parallel processes. InProc.
IFIP Congress, pages 987–992. IFIP, 1977.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. InProc.
IEEE Symposium on Security and Privacy, pages 164–173. IEEE Computer So-
ciety, 1996.

[7] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms.Communications of the ACM, 24(2):84–88, 1981.

[8] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet:A distributed anony-
mous information storage and retrieval system. InProc. International Work-
shop on Design Issues in Anonymity and Unobservability, volume 2009 ofLNCS,
pages 46–66. Springer-Verlag, 2000.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L.
Talcott. The Maude 2.0 system. InProc. 14th International Conference on
Rewriting Techniques and Applications (RTA), volume 2706 ofLNCS, pages 76–
87. Springer-Verlag, 2003.

[10] W. D. Clinger. Foundations of Actor Semantics. PhD thesis, MIT, 1981. MIT
Artificial Intelligence Laboratory AI-TR-633.

[11] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,P. Samarati, and F. Vi-
olante. A reputation-based approach for choosing reliableresources in peer-to-
peer networks. InProc. ACM Conference on Computer and Communications
Security (CCS), pages 207–216. ACM, 2002.

[12] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives enforcing commu-
nication and storage complexity. InProc. Financial Cryptography, volume 2357
of LNCS, pages 120–135. Springer-Verlag, 2002.

[13] C. Gunter, S. Weeks, and A. Wright. Models and languagesfor digital rights. In
Proc. 34th IEEE Hawaii International Conference on System Sciences (HICSS) -
Volume 9. IEEE Computer Society, 2001.

[14] Clan Lord.http://www.clanlord.com/ .

[15] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.The-
oretical Computer Science, 96(1):73–155, 1992.

[16] R. Pucella and V. Weissman. A logic for reasoning about digital rights. InProc.
15th IEEE Computer Security Foundations Workshop (CSFW), pages 282–294.
IEEE Computer Society, 2002.

23

[17] N. Shankar and W. Arbaugh. On trust for ubiquitous computing. In Proc. Work-
shop on Security for Ubiquitous Computing, 2002.

[18] P. Syverson, D. Goldschlag, and M. Reed. Anonymous connections and onion
routing. InProc. IEEE Symposium on Security and Privacy, pages 44–54. IEEE
Computer Society, 1997.

24

