Reputation-Based Trust Managemeént
Vitaly Shmatikov and Carolyn Talcott

Computer Science Laboratory
SRI International
Menlo Park, CA 94025 USA
{shmat,clt }@csl.sri.com

Abstract

We propose a formal model for reputation-based trust manage In con-
trast to credential-based trust management, in our framesrmoagent'seputation
serves as the basis for trust. For example, an access cpotioy may consider
the agent’s reputation when deciding whether to offer hilenkse for accessing a
protected resource. The underlying semantic model is amt eegnantics inspired
by the actor model, and assumes that each agent has onbl padwledge of the
events that have occurred. Restrictions on agents’ behawoformalized a$i-
censeswith “good” and “bad” behavior interpreted as, respedyiviicense fulfill-
ment and violation. An agent's reputation comprises fondkiof evidence: com-
pletely fulfilled licenses, ongoing licenses without viddas or misuses, licenses
with violated obligations, and misused licenses. This apgih enables precise
formal modeling of scenarios involving reputations, sushimancial transactions
based on credit histories and information sharing betwe#sted agents.

1 Introduction

Reputationis a fundamental concept in many situations that involveraattion be-
tween mutually distrusting parties. Before issuing a dredlid, a bank usually checks
the applicant’s credit history, which includes indeperntjecertified evidence that the
applicant has fulfilled his prior financial obligations. Attérnet auction sites such as
eBay, the seller’s reputatione., the evidence that past buyers were satisfied with his
or her behavior, is considered an asset of great value. Madatians for the “free-rider
problem” [2] in peer-to-peer file sharing networks (the peob of users downloading
a large number of files without contributing anything in refurely on the evidence of
past contributions when granting access to popular filep [12

We propose a formal model that gives a precise meaning todti@rof reputation
and uses it in reasoning about trust. Our approach extenelseat-based semantics in-
spired by the actor model of distributed computation [5, tbGhcorporaténcomplete

*Supported by ONR grant NO0014-01-1-0837.

Trust

/ V\:reation of new trust

Agent’s View of the World—> Reputation of Other Agents
(events reported by trusted agents) (compliance or abuse of licenses)

Figure 1: Reputation-based trust management

knowledge Agents are assumed to have only partial knowledge of thetéistory.
When deciding whether to trust another agent or not, thgyaelthe evidence of past
behavior supplied by trusted sources. By contrast, trusbnventional trust manage-
ment [6] is based on access control credentials.

Inspired by license-based digital rights languages [13, W6 use licenses to for-
malize both “good” and “bad” behavior. Each license retdribie behavior of the
agent who accepts it by specifying obligations (what thenagwistdo) as well as for-
bidden actions (what the agemtist notdo). Evidence of compliance or violation then
becomes part of the licensee’s reputation. Another agegtdeaide to grant a new
license on the basis of this evidence, even though he hasensdmally observed the
licensee’s good or bad behavior.

To illustrate by example, consider a consumer applyingficato loan. The lender
requests the consumer’s credit history from a credit répgibureau, and uses the
information to decide whether to grant the loan and on whatse The lender’s trust
in the consumer is not based on the consumer’s identity otede and, in contrast to
conventional trust management, the credit bureau is nathiag for the consumer’s
creditworthinessi(e., there is no delegation of trust). The bank trusts the cirdiau
to accurately report thevidencei.e., a summary of past events, such as the fact that
the consumer had signed up for a credit card and fulfilled higations by making
timely payments.

Our general approach to trust management is summarizeduireflg We formal-
ize our framework in an object-oriented “language,” whishmapped to the rewrit-
ing logic based system, MUDE [9]. Rewriting logic is a logical formalism well-
suited for modeling and reasoning about concurrent andactige systems [15]. It
is based on two simple ideas: states of a system are repedsasmtelements of an
algebraic data type, and the behavior of a system is giveodalized transitions be-
tween states described as abstractions called rewrite. rideUDE provides several
strategies for simulating system behavior as well as seardhmodel-checking capa-
bilities for exploring the reachable state space. TheuME system implementation,
documentation, examples, and related papers can be foutiteoMAUDE website
http://maude.cs.uiuc.edu

The main benefit of this approach is that it enables formadigation of reputations
and trust policies. We can also use\lWbE to explore the dynamic aspects of any given
configuration of trust management policies as well as thaiution over time. For
example, we can obtain answers to questions such as “If aic@tent occurs, what
will be its impact on agents’ reputations?,” and “If someragavitches to a particular

policy for granting new trust on the basis of reputation, el this affect other trust
relationships in the system?”

We also present two case studies, using our framework todiienreputation-
based trust in an anonymized peer-to-peer file distribugistiem and a multi-player
game scenario, respectively. The former, described usiegéformal object-oriented
language, demonstrates how reputation is created fromvitlerece of license fulfill-
ment, while the latter, presented as a\lbE specification, illustrates the use of li-
censes in an environment with multiple untrusted agents.

The structure of the paper is as follows. In section 2, weothice the basic con-
cepts of our framework. We formalize licenses and reputatio sections 3 and 4,
respectively. In section 5, we describe how reputations@araed on the basis of an
agent’s past behavior. In section 6, we present the pepe¢ofile distribution network
example, and in section 7, the multi-player game examplesikieey related work in
section 8. Conclusions follow in section 9.

2 Modd

We use a semi-formal “object-oriented” notation to preseetconstructs of our frame-
work. After introducing basic types, we define concepts saagévent license prin-
cipal, etc. as object types with fields and methods. Fields may be irdggrsimply
as the corresponding object’s data structures, and theogets operations on these
data structures. Some methods should be interpreted asgessas they correspond
to communication between active objects rather than dpetations on the object
structure. The framework is presented using an informaheraatical notation. Se-
lect segments of the MUDE representation are included to give a flavor of the formal
notation.

For some methods, we specify the semantics that we expegidiay to satisfy
(unless stated otherwise, as in the example of section 6)ther methods, we delib-
erately leave the semantics unspecified. If the semantia# ispecified, the method is
unconstrained: policy and license writers are free to ch@my semantics depending
on their preferred trust policy, desired security progesitand so on. We use a special
font for the names of unconstrained methods.

Our types are intended to serve as the roots of a type higran@my actual im-
plementation of a trust management system based on ounfrareror example, we
define a general-purpogécensetype, but only provide a type signature for thie-
lated method, without specifying precisely what it means for artise to be violated. A
specific policy — for example, in the context of @&mnlineAuctiontrust management
system — will refine our definition by introducing new typesack asSellerLicense
andBuyerLicensewhich are subtypes dficenseand supply semantics for the meth-
ods left unspecified in ouricensedefinition. Other policies may refine the semantics
of Licensein different ways. In our examples, we usé fefinesB” syntax to indicate
that A is a refinement oB.

We use the following syntax for type definitions:

ObjectType
field FieldName: Type

field FieldName: Typey
methodMethodNamey, (Type . ;.. .. ,TypeZ’fll):TypekH [= (semantics]

methodViethodName (Type.,... Typ€e): Type, [= (semantics]

If we specify the field type a8Type whereType, is some type, this means that the
value of the field may be undefined, but when it is defined, ittrbasf typeType,.

In MAUDE, types are calledortsand we use mixfix notation to represent field
selection. The corresponding declaration of an object iypéAUDE has the form

sort <ObjectType> .
op _. <FieldName_1> : <ObjectType> -> Type_1 .

op _. <FieldName_k> : <ObjectType> -> Type_k .

op _. <MethodName_k+1>(_,...,_) :
<ObjectType> Type_k+1,1 ... Type_k+1,r_k+1 -> Type_k+1 .

declaring<ObjectType> to be a sort, and declaring operators for the fields and
methods. The underscoreg @give the argument positions in a mixfix declaration.
To specify creation of a new object of type we use the following syntax:

newa(FieldName « value, ..., FieldName < valug,)

wherevalug is the initial value for the fieldFieldName. If we refer to the object’'s own
methods or fields when specifying some method’s semantesise “this” keyword as
in C++. Finally, we use “let = valuein ...” syntax for standard scoping.

2.1 Basictypes

Our framework contains the following types with an infinitemnber of values:
Natural Natural numbers
UniqueName Unique agent names
Timestamp Ordered time values
Licenseld Unique license identifiers
Naming and authentication issues lie outside the scopeioptper. We assume
that each agent is assigned a unique name, and that the cocatimmmedium used
for information exchange between agents implements anogpipte authentication
mechanism, thus ensuring that agents are not confused @actubther’s identity.
We also define the following enumerated types:

Bool = { True, False }
ActionType = { ResourceUse, LicenseOffer, LicenseAccept, ...}
ResourceStatus = { Public, Licensed, Protected }

LicenseKind = {...} (user-defined, e.g., eBaySeller)
We define the standard polymorphic set type:

Seta Set of values of type
We define the standard projection and size operations on sets

projeci(S:Seta,P:a—Bool): Seta = {se S| P(s)=True}

sizg Seta): Natural

To define the projection predicate:a— Bool, we use standard-expressions.

For exampleproject(globalHistory,\ e. e.actiontype=LicenseAccept) extracts from
globalHistory only the events in which some license was piszk

2.2 Actionsand events

An actionis an atomic interaction between several agents, or an ageld resource.
We'll use the termprincipal andagentinterchangeably.

Action
field type ActionType
field actors Set UniqueName
field subject ?Resource
field license ?Licenseld

The actorsfield specifies agents involved in the acti@ubjectspecifies the re-
source (if any), andicensespecifies the identifier of the license associated with the
action (if any). For example, an objegtAction such thata.type=ResourceUse,
a.actorss {Pirate99}, a.subjectHackedTunez, alicenseL719s models an agent
called Pirate99 using a resource callell ackedTunez under a license whose identi-
fieris L719s.

The following is the MauDE declaration of thé\ctionobject type.

sort Action .

op _. type : Action -> ActionType .

op _. actors : Action -> UNameSet .
op _. subject : Action "> Resource .
op _. license : Action > Licenseld .

The possibility that a field value is undefined is represeitedeclaring the corre-
sponding operator to be a partial function (indicat€’by. MAUDE supports partial
functions by associatingkaind (think “error” sort) with each sort, to represent error or
undefined terms.

When constructing each agent’s partial view of the everitbhiswe assume that
only agents listed in thactorsfield have direct knowledge of the event in which the
action has occurred. We also provide a mechanism for agergkare information
about events.

An eventis a time-stamped action occurrence.

Event
field time Timestamp (not necessarily unique for each event)
field action Action
method< (e:Even): Bool = thistime < e.time

To simplify presentation, we use infix notation far Because two events may have
the same timestamg; defines only a partial order on events. We define eliestory
simply as a set of events.

EventHistory= Set Event

2.3 Resources

A resourcds an item of value (program, website, database, credgtitaiagents may
wish to access or use.

Resource
field owner ?UniqueName
field status ResourceStatus
methoduseOk(EventHistoryl icensg: Bool

A resource may or may not have an owner. If there is an ownest bbe specifies
how the resource may be used by definingubeOkmethod. Ifr.useOKh,l)=True for
some resource event historyh, and licensé, this is interpreted as “given event history
h, the resource may be used (accessed) on the basis of liceh3de owner is free to
defineuseOkin any way he or she sees fit. Normally, the definitiorus€Okdepends
on the access policy for the resource and involves checkimgttver the licenséis
valid (see section 3). In generakeOkdefines both permissible and (via its negation)
forbidden uses of the resource.

The status of the resourceRaiblic, Licensed, or Protected. The owner must be
specified for d.icensed or Protected resource. Given a resourcgf r.statusPublic,
then there should be no restrictions on the use of the reso@uanership of- does
not matter in this case, and it is assumed thaseOKh,l)=True for any event history
h and any licensé.

If r.statusLicensed, using the resource is always feasible, the event history
may contain an actioa such that.type=ResourceUse, a.subjectr anda.license#
for an arbitrary licensé If, however,;r.useOKh,l)=False, then such action constitutes
a misuse of licensk(see section 3).

If r.statusProtected, then using the resource is impossible.ifseOkh,/)=False,

i.e., the correspondinBesourceUse event may not appear in the event history. This
is used, for example, to model cryptographically protecesturces, which cannot be
feasibly accessed unless the license contains the right key

Intuitively, the difference betweelnicensed andProtected is thatuseOkfor Li-
censed resources simply determines whether the use of the res@irgmod” or
“bad,” while useOkfor Protected resources makes “bad” uses computationally infea-
sible. As explained in section 3, there & kinds of misuse in our model: an action
forbidden by the license, and an action permitted by thenieebut forbidden by the

resource itself. The latter is only meaningful if the resmuisLicensed. We do not
treat a failed attempt to usePaotected resource without a proper license as a misuse.

For simplicity, neither ownership, nor status depends anehistory. In a more
sophisticated frameworlownerandstatusmay be viewed as updatable fields, whose
values change as the system evolves.

3 Licenses

We use a license language inspired by [13, 16] to define thaipsible behavior of
agents. Licenses are very important in our framework sireeptiance with past li-
censes is the basis of an agent’s reputation. Each licerfisesl€i) what the licensee
is permitted to do with the license, and (i) the licensed&kgations.

License
fieldid: Licenseld
field kind: LicenseKind
field issuer UniqueName
field licensee UniqueName
field resource Resource
methodpermits(EventHistoryEven): Bool
methodviolated(EventHistory: Bool
methodmisuséh: EventHistorye:Even): Bool =
(not permitted by the license itself)
- thispermitgh,e) Vv
(... or not permitted by the resource being used)
e.actionlicense= thisid A thislicenseec e.actionactors A
e.actiontype= ResourceUse A - e.actionsubjectuseOKh,this)
methodvalid(h:EventHistory: Bool =
Jeq,es € hsuchthak; < ey A
ey .actiontype= LicenseOffer A ej.actionlicense= thisid A
{thisissuer thislicenseé C e;.actionactors A
es.actiontype= LicenseAccept A eq.actionlicense= thisid A
{thisissuer thislicenseé C es.actionactors
methoddone(EventHistory: Bool

Given a licensd, l.issueridentifies the agent who issued the licenskcensee
identifies the licenseé.e., the agent to whom obligations and permissions apply, and
l.resourceidentifies the subject of the license.

A license isvalid in some event history if it has been offered by the issuer and
accepted by the licensee. Validity is monotonichifC k', thenl.valid(h) implies
l.valid(h'). If the issuer wants the license to expire at some p@rt,(once a certain
time has been announced, or a particular combination ofteves occurred), he or
she can do this by defining@onemethod. Ifi.dongh) returnsTrue on some event
history h, this is interpreted as stating that licerideas expired in historyt. While the
license issuer is free to choose any semantics fodtimemethod, most licensees will

expect that expiration is monotonic:AfC i/, thenl.dondh) impliesi.don€h’). Note
that if — [.valid(h), thenl.don€h) is meaningless.

Permissions. By defining thepermitsmethod, the license issuer specifies the set of
actions permitted by the license. There areamqriori constraints on the semantics of
this method. If an action is not permitted, the licensee ntidlyog able to perform it,
but the corresponding event will be considered a misuseedlitense and reported as
such in the licensee’s reputation.

We'd like to emphasize the difference betwaeseOkmethods, which are associ-
ated with resources, aneermitsmethods, which are associated with licenses. This
distinction is necessary in complex licensing scenaridere it is difficult for the li-
cense issuer to foresee all possible situations in whiclideesee may attempt to use
the license. Consider, for example, a driver’s license tviiatitles the holder to oper-
ate cars, but not motorcycles. The no-motorcycles restniés explicitly spelled out
in the driver licensing code, which can be thought of agtlenitsmethod associated
with the driver’s license. Note, however, that a typicaéhising code doesot con-
tain an explicit prohibition on using the license to opemtelanes. In general, many
improper uses of the license cannot be envisioned by thedeéssuer and are thus
not spelled out as part of the license terms. Preventing sseh is the responsibility
of the resource owners (in our example, the civil aviatiothatity). Therefore, the
corresponding prohibitions should be encoded as part aisk©kmethod associated
with each resource.

Intuitively, theuseOkmethod specifies the access policy from the viewpoint of the
resource owner Therefore, it applies in the same way to all licenses. Tleurce
owner is free to ignore permissions stipulated in the liegs else consider them by
invoking the license'permitsmethod when deciding whether to grant access to the
license holder (as in the example of section 6).

On the other hand, thpermitsmethod is used by thkcense issueito specify
what he or she views as permissible behavior. Differenhkes for the same resource
may thus contain different permissions. Tpermitsmethod may take into account
the resource’s access policy by invoking teeOkmethod of the resource (as in the
example of section 7). In the extreme case, the same actigrbmpermitted by the
resource owner and forbidden by the license issuer, or \écgav

Obligations. By defining theviolatedmethod, the license issuer specifies the obliga-
tions imposed on the licensee by the license. Formallyyiblated h)=True for some
licensel and event history, this means that doesnotcontain the fulfillment of every
obligation imposed by the license. For example, if licehs®dels taking a loan, then
l.violated h)=True if h contains a timestamp event corresponding to the repayment
deadline, but does not contain a preceding repayment event.

The license issuer is free to define tielated method as he wishes, but a well-
defined license cannot be violated unless it has been acdeptee licensee. Formally,
this means that [.valid(h) should imply— [.violated h).

We say that the licenseartially fulfilled the license if, up to date, he has performed
all obligations specified by the license, but the license riatsexpired yet and may

contain future obligations. There is thus a possibilityt tie licensee will violate the
license in the future. If the licensee has fulfilled the lisemip to date and there are no
future obligations, we say that the licensednpletely fulfilled

Violation and misuse. Permissions associated with the license are independent of
the obligations. A license circumscribes the licensee'sbr “from above” permits
restricts the set of actions Ineaydo) as well as from “from below™\jolatedspecifies
what hemustdo). A license may be passively violatediytdoing somethingd.g, not
repaying a loan), or actively misused by doing somethinbittiten €.g, overdrawing

a credit line), or both. We will call the former @olation, and the latter anisuse
Another form of misuse is one that is not associated witmbegterms at all. It occurs
when the license is used to perform an action on a resouraghvidpermitted by the
license, but is forbidden by the resource owner.

The license issuer explicitly specifies what constitutesodation (.e., an unful-
filled obligation) by defining the@iolatedmethod. Themisusemethod is defined auto-
matically by combining actions forbidden by the licenselitgpermitsmethod returns
False on the corresponding events) and those forbidden by resamwoers seOk
method return&alse). Having a singlamisusamethod is a design decision. One could
also envision a framework in which the two forms of misuse sparated, thus dif-
ferentiating license misuse (performing an action forkiuty the license issuer) from
resource misuse (performing an action forbidden by theuresoowner). We plan to
investigate this framework in other application scenarios

The definition of themisusemethod in MAUDE is the following direct mapping of
the mathematical notation.

op _. misuse(_,) : License EventHistory Event -> Bool .
eq lic . misuse(h, e) =

not(lic . permits(h,e))

or

(e . action . license == lic . id
and
e . action . type == ResourceUse
and
e . action . actors == lic . licensee
and

not((e . action . subject) . useOk(h,lic)))

License issuers are free to defivielated and permitsmethods in any way they
wish, and the same is true for resource ownersusaDkmethods, respectively. Our
frameworkper sedoes not enforce any consistency checks on these predidates
up to each licensee to decide whether the restrictions ecimdthe license and the
resource description are acceptable. These restrictiaysewen be inconsistent. Our
objective is not to ensure that every license is meaningftb @revent incompetence
in license writing. Instead, we develop a general framevtoak supports any access
policy and any license terms as specified by the resourcersvanel license issuers.

4 Reputation

An agent’'sreputationin our framework is simply the evidence of the agent’s past be
havior. Since we rely on fulfillment, violation, and misuddicenses to give meaning
to “good” and “bad” behavior, each piece of evidence coasi$ta license identifier
together with the supporting event history. When the evigas distributed as part of
some agent’s reputation, this history can be used by ottertago verify whether the
reputation is accurate. For instance, when the reputal@ms that the agent has vio-
lated some license, this event history can be used to véwdlydbligations associated
with the license in question have indeed been left unfudfille

Evidence
field license Licenseld
field justification EventHistory

In scenarios where privacy and anonymity are important{sscthat described in
section 6), the event history listed in thestificationfield may be left incomplete or
even empty. In this case, an agent who analyzes anothersgegmitation can still
identify each piece of evidence by the corresponding lieedsbutcannotverify that
the reputation is accurate by inspecting the supportingtavistory, since this history
is not made available as part of the evidence.

EvidenceSet= Set Evidence

Reputation is a tuple of four evidence sets, correspondiffigur kinds of behavior
that are used as the basis for reputation. The sets arectioshe completely fulfilled
licenses, partially fulfilled licenses €., licenses that are fulfilled to date but have out-
standing future obligations), violationsd, licenses with unfulfilled obligations), and
misusesi(e., licenses used to perform an action which is forbidden eliighe license
issuer, or by the resource owner).

Reputation
field name UniqueName
field compFulfilled EvidenceSet
field partFulfilled: EvidenceSet
field violations EvidenceSet
field misuses EvidenceSet

We also define some auxiliary functions:

mergeEvidenceSéts: EvidenceSet,:EvidenceSét EvidenceSet=
{ev|eveerUea A Aev' € e; Ueg S.t.ev’ # ev A ev.licensesev’ license}) |J
{ newEvidencélicense— ev.license
justification« ewv.justificationu ev’ justificatior) |
ev,ev’ € e; Uey A ev’ # ev A ev.licensesev’ license}

10

mergeReputatiolis, : Reputationry: Reputatioly. Reputation=
new Reputatiof
name«— ri;.name (not well-defined if r1.name # ry.name)
compFulfilled— mergeEvidenceSéts.compFulfilled r».compFulfilled,
partFulfilled — mergeEvidenceS¢ts.partFulfilled, ro.partFulfilled),
violations«< mergeEvidenceSéts.violations r;.violationg,
misuses— mergeEvidenceSéts.misusesrs.misusey)

5 Reputation management

We are now ready to describe how reputations are formed, andtlhey are used
by agents to construct trust relationships with each othée. do this by defining a
Principalobject type. The types of all agents in the system are ingbtwlbe subtypes
of the Principaltype.

Principal
field name UniqueName
field licenses Set License
field trusted Set UniqueName
methodexportEvents(): EventHistory
methodview(): EventHistory =
projectglobalHistory A e. thisnamec e.actionactorg |
p.exportEvent§ Vp such thap.namee thistrusted
methodocalRefa: UniqueNamé Reputation=
let v=thisview() in
letisa={ | € thislicenseq l.licenseea } in
new Reputatiofname— a,
compkFulfilled— cf, partFulfilled — pf,
violations« uo, misuses— mu)
where
(completely fulfilled licenses:)
of ={
new Evidencdlicense— [.id, justification— le) | | € lsa A
(license is fulfilled and there are no future obligations)
lvalid(v) A — l.violatedv) A l.dondv) A
(evidence may be incomplete)
le C projeci(v, A e. e.actionlicenses!.id)

(partially fulfilled licenses:)
pf={
new Evidencélicense— [.id, justification«<— le) | | € lsa A
(license is fulfilled but there may be future obligations)
l.valid(v) A — l.violatedv) A — l.dongv) A
(evidence may be incomplete)
le C project(v, A e. e.actionlicense=l.id)

11

|2
(licenses with unfulfilled obligations:)
uo =4
new Evidencdlicense— [.id, justification— le) | | € lsa A
(obligations associated with the license are violated)
l.valid(v) A L.violatedv) A
(evidence may be incomplete)
le C projeci(v, A e. e.actionlicenses!.id)
(misused licenses:)
mu = {
new Evidencélicense— [.id, justification«<— le) | | € lsa A
(history contains a misuse event)
Je € v such that.misuséh,e)
(evidence may be incomplete)
le C project(v, A e. e.actionlicense=l.id)

methodexportGlobalRefu: UniqueNameexcl:Set UniqueNamye Reputation=
mergeReputatiorfthislocalRefa), p.exportGlobalRefx, excl U thisnamg)
Vp such thap.namee thistrustedA p.name¢ excl
methodisTrusted(Reputationy: Bool

We explain the fields and methods Bfincipalin the order they are defined. The
namefield contains the principal’s name. Theensedield contains the licenses issued
by the principal. Therustedfield contains the names of other agents trusted by this
principal. When the principal computes the reputation sheagent, in addition to
the local information he also collects evidence from thengégdisted in thetrusted
field. Thetrustedfield may be updated by thsTrustedmethod, which is used by the
principal to encode the trust creation policy and to decitlemto trust another agent
on the basis of his or her reputation.

Information sharing between agents. MethodexportEventss used by the princi-
pal to give other agents information about the events knawhnim. Together with
exportGlobalRepwhich is used to share information about reputati@exportEvents

is the basis of information sharing in our framework. We irs@oo constraints on the
semantics of thexportEventsnethod. A principal is free to export as much or as little
information as he wishes. A malicious principal may everaliel export event histo-
ries that do not correspond to actual events. Our aim is tblemaalistic information
sharing between independent agents, which sometimesdexllying. In MAUDE,

the exportGlobalRepmethod is implemented using message passing. In particular
the clause’p such thap.namec thistrustedquantifying the recursivexportGlobal-
Repinvocation becomes a multicast@tportGlobalRepnessages addressed to unique
names from thérustedset that aren’t excluded.

Partial view of event history. The view method simply computes the entire event
history known to the principal by combining the events thakhows about by virtue

12

of having been one of the actors in the corresponding actitmtive events reported
by trusted agents (and resolving inconsistencies, if saecgs Technically, we assume
that there exists a single unified global history of all eseéhat have occurred. We refer
to this history as globalHistory. We use standard set ptiojeto restrict this history to
the events in which the principal participated directlyfohmation about other events
is obtained from trusted sources by invoking theiportEventsnethods (implemented
in MAUDE as messages). As explained above, other agents are freeide aéhich
events to share by defining tegportEventsnethod accordingly.

In the actual MaUDE specificationyiewis implemented as an updatable field rather
than a method. Its value is updated every time an event oatwvkich the principal
is one of the participants, and whemportEventsmessage arrives from one of the
principals in thetrustedset.

Construction of reputation. ThelocalRepmethod is used by the principal to con-
structanotheragent’s reputation on the basis of the event history knowtheqrinci-
pal. This method is the core of our framework. An agent’s tafion comprises four
parts, containing the evidence of, respectively, compldtdfilled licenses, partially
fulfilled licenses, licenses with violated obligationsdanisused licenses. Since per-
missions associated with a license are independent of thigatbns (see section 3),
the same license identifier may appear in several compoaogtits reputation.

For each license used as evidence, the supporting eveatyhisy be included
asjustification We do not require that the evidence include the entire enistory
associated with a particular license. To preserve privaa @anonymity, it may be
necessary for the reputation object to hide all informatbout the events on which
the agent’s reputation is based (for an example of this, eetos 6). If justification
is included, then other agents may use it to verify that the tatjon is accurate. For
example, if the reputation object claims that the agent hiasisad some license, the
event history supplied as part of the evidence object may$gected to confirm that
it indeed contains a misuse event.

For completely fulfilled, partially fulfilled, and violatelicenses, the license must
be valid in the event history.é., offered by the issuer and accepted by the licensee) in
order to be used as evidence. The only exception is misusedsies, since an agent
may misuse a license (g, by improperly using it to gain access to a licensed resQurce
even if he has not accepted its terms.

Reputation depends on the principal’s partial view of thengwhistory. New events,
either observed directly by the principal, or reported hysted agents via thex-
portEventsmethod, may cause the reputation to change. In particutdylfilled
obligations €.g, absence of a promised payment) may be rectified by pregethtin
evidence €.g, a signed bank statement) that the event fulfilling the alian has oc-
curred. In this case, the license and the supporting eveailt move from thevio-
lations component of the reputation to tikempFulfilledor partFulfilled component.
While violationsare based on the absence of a fulfilling everisusesre based on the
presence of a specific misuse event, and typically cannatdidied, unlespermitsor
useOkmethods are nonmonotonic.

TheexportGlobalRemethod combines the principal’s local reputation for aeoth

13

agent with the same agent’s reputations reported by trgstettes. Thexcl argument
is necessary to avoid infinite recursion when constructiegspanning tree of the trust
relationships graph.

Creation of new trust. Given an agent'’s reputation, th€lrustedmethod decides
whether the agent should be trusted and, if so, whether haeoslsould be offered
some license and/or his or her name added totriigted list. We impose no con-
straints on the semantics of tielrustedmethod. The policy writer is free to choose
any local reputation-based trust policy for a given priatigepending on the specific
requirements and security objectives.

6 Example: Peer-to-Peer File Distribution System

In this case study, we use our framework to encode a repothtised trust manage-
ment policy for a peer-to-peer file distribution system,gbly similar to Gnutella or
Freenet [8], implemented on top of a network of anonymizmgers such as an onion
routing network [18].

The following types model generic upload and download resesi

UploadrefinesResource
field status ResourceStatus Public
methoduseOk(h: EventHistoryl:Licensg: Bool = True

DownloadrefinesResource
field status ResourceStatus Licensed
methoduseOk(h: EventHistoryi:Licensg: Bool =
letua = newAction(
type«— ResourceUse, actors— { l.licensee},
subject— this, license«— [) in
let e = new Even{time «— new Timestampaction«— ua) in
l.valid(h) A Llissuerthisowner A [.permitgh,e)

Intuitively, these definitions state that anybody can uglsince resources of type
Upload are public), but downloads, modeled as uses @awvnloadresource, are
only permitted with a license issued by the server's ownearédver,useOkchecks
whether, given an event history, the use is permitted byitease.

Consider a single file server consisting of two resouréeandul, of type Down-
load and Upload respectively, wherdl andul are unique resource identifiers. Also,
assume that there existda@kupPrincipa{UniqueNamé: Principal table that maps
principals’ names to the corresponding objects of tipacipal

A sample license for theél resource can be defined as follows:

DownloadlLicenseefinesLicense
field resource Resourceld= di
methoddone(EventHistory: Bool =

nU >5

14

methodpermits(h: EventHistorye: Even): Bool =
isDownloade) A
(nD < nU x 3 V p.isTrustedp.exportGlobalRefthislicenseg{}))
methodviolated(EventHistory: Bool =
nD >nU x 2
where
p=lookupPrincipa(dl.ownel),
isDownloadEven): Bool = X e.
(e.actiontype= ResourceUse A e.actionactors= { thislicensee} A
e.actionsubject=dl),
isUpload Evend: Bool = \ e.
(e.actiontype= ResourceUse A e.actionactors= { thislicensee} A
e.actionsubject= ul),
nD=sizgproject(h, isDownload),
nU=sizgproject(h, isUpload)

By accepting this license, the licensee promises to uplobehat once for every 2
downloads. If he fails to do this, however, he is not prevefitem further downloads
as long as the event history contains at least 1 upload fay &/elownloads. This
means thapermitsallows some violating actions.€., obligations accepted by the
licensee may be left unfulfilled to a limited extent). For exde, if 2 uploads and 4
downloads have occurred, the 5th download will be allowieet (2 x 3), even though
it's a violation of the obligationq > 2 x 2), but the 6th download will not be allowed.

Note thatpermitsallows unlimited downloads if the licensee is trusted by riére
source owner on the basis of his reputatioa.,(the resource ownerisTrustedmethod
evaluates tdrue). The licensee can thus gain accesditon two ways: by maintain-
ing the proper ratio of uploads to downloads, or by relyingagpreviously acquired
reputation.

A possible trust policy for an owner ofBownloadresource is as follows:

DownloadOwnerefinesPrincipal
methodexportEvents(): EventHistory = thisview()
methodisTrusted(r:Reputatiofy. Bool =
sizgr.compFulfilled > 3 A sizdr.violationg =0 A siz€r.misusep= 0

According to DownloadLicensga principal is permitted unlimited uses of thie
resource if he is trusted by the resource owner. Note, hawtgt he cannot improve
his reputation by doing sa.g., reputation cannot be “amplified” by using it repeatedly.
Only if the licensee complies with at least 3 different lisea the “hard” way, with 1
upload for every 2 downloads and at least 5 uploads per kgemd he be trusted by
anotherprincipal, who may then permit him to access some other resou

Anonymization. An anonymized reputation can serve as the proof that thedee
has fulfilled multiple licenses (in particular, that he hagdoaded multiple files), but
it cannot be linked to specific uses of iploadresource, specific license identifiers,
or specific files. This can be achieved by routing all upload download requests

15

via a chain of anonymizing routers, each of which is simitaChaum’s MIX [7]. At
each link of the chain, the user is known under a differentgeaym. As reputation
is passed down the chain, each router re-maps the userdgrsgu and license iden-
tifiers contained in the reputation, and purges event héstamn which the reputation
is based. This prevents eavesdroppers from relating resjtiest arrive to and leave
from each router. Even if some routers in the chain are correputations will be
anonymized as long as at least one router is honest.
We assume that each router has two secret internal tables:

nameTranslat@JniqueNamé UniqueName
licenseTranslatg icenseld: Licenseld

The nameTranslatéable is set up when the router chain is initialized. It tétis
router the correspondence between the user’s pseudonytie stoming and outgo-
ing link. If the user is known on the outgoing link asthennameTranslat@) returns
his pseudonym on the incoming link.

We defingpurgeEvidencéunction as follows:

purgeEvidencg:EvidenceSéat EvidenceSet=
{ newEvidencélicense— licenseTranslatgv.licensg, justification— {}) | ev € e }

Our policy for anonymizing routers changes the semanti¢tsextxportGlobalRep
method in order to anonymize reputations.

AnonymizingRouterefinesPrincipal
methodnameTrang ate(UniqueNamé: UniqueName
methodicenseTrandate(Licenseld: Licenseld
methodexportGlobal Rep(a: UniqueNameezxcl:Set UniqueName Reputation=
letr = mergeReputationghislocalRefthisnameTranslati)),
p.exportGlobalRefu, excl U thishamg)
Vp such thap.namee thistrustedA p.name¢ excl
in
new Reputatiof
name«— a,
compFulfilled— purgeEvidencg-.compFulfilled,
partFulfilled < purgeEvidence.partFulfilled),
violations«+ purgeEvidencg-.violationsg,
misuses— purgeEvidencg.misusep)

In the new policy forexportGlobalRepthe router constructs the user’s reputation,
but then issues it under a different pseudonym, with licédeetifiers re-mapped, and
event histories purged.

7 Example: Untrusted Allies

Instead of the semi-formal object-oriented notation, iis txample we use WMUDE
directly to model an online role-playing game (inspired dgrCLord [14]), in which

16

characters belong to clans that are competing in a searcfalioable items. One clan
can impede another by setting traps. Maps of regions that Ibeusaversed help make
the search safer and faster. A player may also be a free afyetéin leader wants to
avoid traps, and for this purpose might trade informatiowrder to discover where
traps have been placed and then send scout groups to dikabie ¥When a trap is
found and successfully disabled, the scout group leadertethis to the clan leader.
A free agent wants map information to aid his own search oratbet. The agent may
discover traps or learn about them by hanging out with otlaersc

In the following we give MhUDE versions of resource and license definitions that
a clan leader and an free agent might use to build trust inrdodiateract for mutual
benefit, and sketch an interaction scenario illustrating teey might be used. The
resource is a clan map owned by the clan leader. We abstreessato map data to
a simpleuseaction. The clan leader issues single-use licenses forldmésanap in
exchange for confirmed good information about traps. Adngphe licenseobliges
the agent to provide information whether or not he accessamap. Confirmationisin
the form of the scout group leader saying that good inforomatias received from the
licensee, that is, the trap was found and disabled. The etader trusts the scout group
leader to report receipt of good information, and for simipfiwe omit consideration
of bad information.

We now present the main components of thelde specification. We assume the
following variable declarations:

vars u u0 ul u2 sc cl fa : UniqueName .
var lic : License .

vars i lil1 : Licenseld .

var h : EventHistory .

var ev : Event .

var act : Action .

In general, instances of object types are defined ARUNE by declaring a constructor
and giving equations defining the field selection methodserdier to allow for multiple
clans, we define elanMap constructor that takes the name of the owner (clan leader)
as an argument, and give equations defining the field segector

op clanMap : UniqueName -> Resource [ctor] .
eq clanMap(cl) . owner = cl .
eq clanMap(cl) . status = Licensed .

Constructors for the basicse offer, acceptactions are defined as follows

op use : UnigueName Resource Licenseld -> Action .
eq use(u, r, l) . type = ResourceUse .

eq use(u, r, l) . actors = u .

eq use(u, r, li) . subject = r .

eq use(u, r, li) . license li .

ops offer accept : License -> Action .
eq offer(lic) . type = LicenseOffer .

17

eq accept(lic) . type = LicenseAccept .
eq offer(lic) . actors = (lic . issuer) (lic . licensee) .
eq offer(lic) . subject = lic . resource .

eq offer(lic) . license = lic . id .
Here (lic . issuer) (lic . licensee) denotes a set consisting of the
unique nameglic . issuer) and(lic . licensee) (which could be the

same). In addition we introduce a new action typell , and twoTell actions.
op Tell : -> ActionType .

op givelnfo : UniqueName UniqueName UniqueName Licenseld
-> Action .

eq givelnfo(sc, fa, cl, li) . type = Tell .

eq givelnfo(sc, fa, cl, li) . actors = sc fa .

eq givelnfo(sc, fa, cl, li) . subject = clanMap(cl) .

eq givelnfo(sc, fa, cl, li) . license = Ii .

op goodinfo : UniqueName UniqgueName Licenseld -> Action .
eq goodinfo(cl, sc, li) . type = Tell .

eq goodinfo(cl, sc, li) . actors = cl sc .

eq goodinfo(cl, sc, li) . subject = clanMap(cl) .

eq goodinfo(cl, sc, li) . license = Ii .

The termgivelnfo(sc,fa,cl,li) abstracts the action in which an agémt gives
information to scousc as required by the license with identifier issued bycl . The
termgoodinfo(cl,sc,li) names the action in which the scaat reports receipt of
good information to the clan leadelr . The termmapLic(li,cl,fa,sc) denotes
a clan map license with fields defined as follows.

op mapAccess : -> LicenseKind .

op mapLic : Licenseld UniqgueName UniqgueName UniqgueName
-> License [ctor] .

eq maplic(liclfa,sc) . id = li .

eq maplLic(licl,fa,sc) . kind = mapAccess .

eq maplLic(licl,fa,sc) . resource = clanMap(cl) .
eq maplic(licl,fa,sc) . issuer = cl .
eq maplLic(licl,fa,sc) . licensee = fa .

The argumensc specifies the scout to whom information is to be given. To sim-
plify definition of some license methods, a partial functialidate(h,li) is
defined. If the license with identified has been offered and accepted in history
then validate(h,li) is a triple oas(e-offer,e-accept,l-events) of
sortOfferAcceptSplit wheree-offer is the offer eventg-accept is the ac-
cept event]-events is the set of events after the accept event that are assiciate
with the license. Otherwisealidate(h,li) is an element of the “error” super-
sort[OfferAcceptSplit] . Map licenses are single-use only. A clan map license
is donein an event history if it is validated-eas :: OfferAcceptSplit tests

18

membership in so®fferAcceptSplit —and the associated event set contains an
event whose action is a use of the license by the licefisee

var oas : [OfferAcceptSplit] .
ceq maplic(li,cl,fa,sc) . done(h) =
if (oas :: OfferAcceptSplit)
then isUsed(events(oas),li, fa)
else false fi
if oas := validate(h,li)

Itis ok for an agenta to use a clan map owned by leadérwith a map license issued
by that leader in the context of histohyif the license is valid in the history and the
scoutsc has verified that the agent has provided good information.

eq clanMap(cl) . useOk(h,mapLic(li,cl,fa,sc)) =
(mapLic(li,cl,fa,sc) . valid(h)
and
not(mapLic(li,cl,fa,sc) . done(h))
and
hasGoodInfoFor(h,li,cl,sc)) .
eq clanMap(u) . useOk(h,lic) = false [owise] .

The[owise] attribute of the second equation says that for any map aadde not
matching the previous equatiamseOK is false.
Thepermitsmethod is defined as follows:

eq maplic(licl,fa,sc) . permits(h, ev)
= maplLic(li,cl,fa,sc) . permits(before(ev, h), ev.action) .

eq maplic(licl,fa,sc) . permits(th, use(fa, clanMap(cl), i)
= clanMap(cl) . useOk(h,mapLic(li,cl,fa,sc)) .
eq maplLic(licl,fa,sc) . permits(h, act) = false [owise] .

Permission for aiseaction reduces to theseOktest, and no other action is permitted
by a map license.

A map license is violated in a history if it can be validated éimere is a use event
with no report of good information.

ceqg maplic(li,cl,fa,sc) . violated(h) =
if (oas :: OfferAcceptSplit)
then (isUsed(events(oas),li, fa)
and
not(hasGoodInfoFor(events(oas), li,cl,sc)))
else false fi
if oas := validate(h,li)

To see how these policies work in practice, we defiaetive principals — actors that
communicate via message passing or joint actions — and g&&for the behavior of
a clan leader, a scout, and a free agent. A configuration is& aetors and messages
together with a clock object used to generate time stampsveigrincipals and other
objects have the form

19

[name : Classld | attributes]

whereattributes (of sortAtts) consists of the set of field values and other inter-
nal state information.

The following is an initial configuration with a clock, a sdadgred), a clan leader
(joe, Classld isCL), a free agentgan), and a message to start things off. For con-
venience, to define specific configurations, the openaisrdefined to map strings to
unigue names.

op ic : -> Conf .
eq ic =
[u("clock™ : Clock | time(0)]
[u("fred") : ScoutC |
licenses(mt),trusted(mt),view(mt),pend(nil)]
[u("joe™ : CL |
licenses(mt),trusted(mt),view(mt),pend(nil),lctr(0)]
[u("sam™) : freeAgentC |
licenses(mt),trusted(mt),view(mt),pend(nil)]
msg(u(“joe), u("sam"), mapReq(u("fred")))

The clock has d@ime attribute. The principals have the requirktbnses
trusted , andview attributes, and in additiongend attribute whose value is a list
of pending actions, initiallynil (empty). The clan leader also has an attridate
used to generate fresh license identifiers. There are roife=ath of the actions that a
principal can participate in. When such a rule is appliedg\ant is created with a new
timestamp and each participant adds the event waéts . As an example, here is the
rule for anoffer action.

vars al0 all : ActionList .
vars aatts catts : Atts .
rl[offer]:
[clk : Clock | time(m)]
[cl : CL | catts, view(v0),
pend(offer(mapLic(l(cl,n),cl,fa,sc)) al0)]
[fa : freeAgentC | aatts, view(vl), pend(all)]
=>
[clk : Clock | time(s m)]
[cl : CL | catts, pend(al0),
view(v0 event(t(m),offer(mapLic(l(cl,n),cl,fa,sc))))]
[fa : freeAgentC | aatts,
pend(all accept(mapLic(l(cl,n),cl,fa,sc))),
view(vl event(t(m),offer(mapLic(l(cl,n),cl,fa,sc))))]

Timestamps are isomorphic to natural numbers, with) being the timestamp cor-
responding to the number The additional rule action rules are for

e accept(mapLic(l(cl,n),cl,fa,sc)) for clan leader and free agent

e givelnfo(sc,fa,cl,l(cl,n)) for free agent and scout

20

e goodinfo(cl,sc,l(cl,n)) for scout and clan leader
e use(fa,clanMap(cl),I(cl,n)) for free agent and clan leader

In addition, there are application-independent rules famgipals to exchange event
and reputation information, which implement teeportEventand exportGlobalRep
methods.

Delivering the message to the clan leajberresults in an offer action being put in
the pending action list.

We can use MUDE's rewrite engine to see one way in which the configuration
might evolve. In the resulting configuration the pendindaactists are all empty and
five events have happened.

event(t(0),

offer(mapLic(I(u("joe™),0),u("joe"),u("sam"),u("fre d"))))
event(t(1),

accept(mapLic(l(u("joe™),0),u("joe"),u("sam"),u("fr ed")))
event(t(2),givelnfo(u("fred"),u("sam"),u("joe"),l(u ("joe"),0)))
event(t(3),goodInfo(u("joe"),u("fred"),l(u("joe"),0 N),
event(t(4),use(u("sam"),clanMap(u(joe")),l(u("joe"),0)))

We can ask if it is possible for the map license to be misusadirsg with the above
initial configuration using the MUDE search command as follows:

search ic =>! C:Conf
[u("joe™) : CL | atts:Atts, licenses(lic:License),
view(v e:Event)]
such that (e:Event . action . type == ResourceUse and
not(lic:License . permits(v e:Event, e:Event))) .

The answer is yes, if these event occurs before ttgoodinfo event.

For simplicity, the above scenario focuses on a setting ot clan leader, one
scout group, and one free agent. Scenarios involving nelktian leaders, free agents,
and/or scouts can easily be analyzed by starting with lazgefigurations. The clan
map license model can be used as a starting point for modetimgthe clan leader
and the free agent might build mutual [dis]trust and use rifyigitation-based trust to
develop simple strategies for deciding when to trade infdiom. For example, since
the clan leader trusts the scout group leader to reliablgrtephen good information
has been given and the map use license has thus been comipieslwh reports could
be used to add agents to the lead#tistedset.

8 Redated work

The framework for reputation-based trust developed inghfger is most closely related
to trust systems for peer-to-peer and ubiquitous computirfte existing techniques
mainly focus on differentiating and quantifying levels ofigt assigned to different
agents in the system, whereas our objective is to give mdoisnal semantics to the

21

notion of reputation, while leaving trust decisions to indual agents. In this sense,
our approach is complementary to those explored in thatitee.

Abdul-Rahman and Hailes [1] model reputation as a tuple efyrngood,” “good,”
“bad,” and “very bad” experiences, which is similar to ourdebfor reputation de-
scribed in section 4. Precise semantics of “good” and “badéft unspecified in [1].
By contrast, we interpret “good” and “bad” as compliancehvéihd misuse of licenses.
The focus of [1] is on computing weighted trust values basethe relative trustwor-
thiness of information sources.

Shankar and Arbaugh [17] also focus on assigning differaluias of trust to agents
depending on their identity and physical context. Theirrapph is thus complemen-
tary to ours. We plan to investigate extensions of our fraorewith multiple and
possibly dynamically evolving levels of trust.

Azzedin and Maheswaran [3, 4] interpret reputation as espiea of behavior
based on collective information. Their model takes intooat trustworthiness of
information sources. They view information about repatatsupplied by individual
agents as numerical values, whereas we focus on low-lelegpiretation of reputation
as fulfillment and misuse of licenses.

Damianiet al.[11] propose an overlay protocol for peer-to-peer netwgarka/hich
reliability of a resource can be established by distribyteing. Again, the semantics
of reputation is not as refined as in our framework.

9 Conclusions

We have presented a formal model for reputation-basedrirastgement that allows
mutually distrusting agents to develop a basis for intésactven in the absence of a
central credential authority. The model can be applied enabntext of peer-to-peer
applications, online games, or military simulation, amotigers.

We have started with a very simple model and there are segkiabrations that
can be considered, such as treating temporal aspects indetaié, mechanisms for
allowing reputation (good or bad) to degrade over time, akihy trustworthiness of
the source into account when evaluating evidence and riéputa

We plan to develop a set of standard high-level policies feating new trust judg-
ments on the basis of reputation. Another direction of fitwork is to introduce
economic notions such as cost-benefit ratios and theiioaltd reputation and trust.

Acknowledgements. The authors thank the anonymous reviewers for helpful com-
ments and Tim McCarthy for suggesting the game application.

References

[1] A. Abdul-Rahman and S. Hailes. Supporting trust in v@teommunities. In
Proc. 33rd IEEE Hawaii International Conference on Systane&ces (HICSS) -
Volume 6 IEEE Computer Society, 2000.

[2] E. Adar and B. Huberman. Free riding on Gnutel@st Monday 5(10), 2000.

22

[3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

F. Azzedin and M. Maheswaran. Integrating trust intalggsource management
systems. IrProc. 31st International Conference on Parallel Procegsipages
47-54. IEEE Computer Society, 2002.

F. Azzedin and M. Maheswaran. Trust modeling for peep¢er based comput-
ing systems. IProc. 12th IEEE Heterogeneous Computing Works2003.

H. Baker and C. Hewitt. Laws for communicating parallebpesses. liProc.
IFIP Congresspages 987-992. IFIP, 1977.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized tnsagement. IRroc.
IEEE Symposium on Security and Privapgages 164-173. IEEE Computer So-
ciety, 1996.

D. Chaum. Untraceable electronic mail, return addressand digital
pseudonymsCommunications of the ACN4(2):84—-88, 1981.

I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freerfetistributed anony-
mous information storage and retrieval system. Phoc. International Work-
shop on Design Issues in Anonymity and Unobservahilitjyme 2009 of NCS
pages 46—66. Springer-Verlag, 2000.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Ojel. Meseguer, and C. L.
Talcott. The Maude 2.0 system. PRroc. 14th International Conference on
Rewriting Techniques and Applications (RT¥9lume 2706 o£ NCS pages 76—

87. Springer-Verlag, 2003.

W. D. Clinger. Foundations of Actor Semantic®£hD thesis, MIT, 1981. MIT
Artificial Intelligence Laboratory Al-TR-633.

E. Damiani, S. De Capitani di Vimercati, S. ParaboshiSamarati, and F. Vi-
olante. A reputation-based approach for choosing relieddeurces in peer-to-
peer networks. IProc. ACM Conference on Computer and Communications
Security (CCS)pages 207-216. ACM, 2002.

P. Golle, S. Jarecki, and I. Mironov. Cryptographiapitives enforcing commu-
nication and storage complexity. Rroc. Financial Cryptographyolume 2357
of LNCS pages 120-135. Springer-Verlag, 2002.

C. Gunter, S. Weeks, and A. Wright. Models and langudgegigital rights. In
Proc. 34th IEEE Hawaii International Conference on Systemeiges (HICSS) -
Volume 9 IEEE Computer Society, 2001.

Clan Lord. http://www.clanlord.com/

J. Meseguer. Conditional rewriting logic as a unifieddalof concurrencyThe-
oretical Computer Scien¢€6(1):73-155, 1992.

R. Pucella and V. Weissman. A logic for reasoning abagita rights. InProc.
15th IEEE Computer Security Foundations Workshop (CSages 282-294.
IEEE Computer Society, 2002.

23

[17] N. Shankar and W. Arbaugh. On trust for ubiquitous cotimgu In Proc. Work-
shop on Security for Ubiquitous Computjrp02.

[18] P. Syverson, D. Goldschlag, and M. Reed. Anonymous ections and onion
routing. InProc. IEEE Symposium on Security and Privaegges 44-54. IEEE
Computer Society, 1997.

24

