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Online maximum weight bipartite matching
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Example	1:	Matching	advertisers	to	slots Example	2:	Uber	driver	accepting	a	customer
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Competing against the hindsight optimum is hopeless in the worst case!



Incorporating data into the worst case model…

⎼ Coarse/limited	info	about	input	distribution

⎼ Input	distribution	unknown	but	from	a	“nice”	class

⎼ Input	distribution	unknown	but	we	have	sample	access

⎼ Input	is	part	stochastic	and	part	adversarial
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Purely	worst-case

No	information
about	input

Purely	stochastic

Full	information
about	the	input	

generation	process

Partial	information	a.k.a.	semi-random	models

Too	pessimistic;
Algorithms	fine-tuned	to	
unreasonable	worst-case	

instances

Too	optimistic;
Algorithms	not	robust	to	

changes	in	model

Anupam’s talk

Ellen’s talk

This talk



Online selection

• 𝑛 elements	arrive	in	sequence;	each	with	weight	𝑊! .

• Algorithm	makes	irrevocable	accept/reject	decision	for	each	element.	𝑆 ← accepted	elements

• We	require	𝑆 ∈ ℱ for	a	given	downwards	closed	feasibility	constraint	ℱ.
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Single	unit Matching
vertices	known;	

edges	arrive	over	time

Online	resource	allocation
RHS	vertices	arrive	over	time

k-unit Matroids



Online selection: semi-random models

• 𝑛 elements	arrive	in	sequence;	each	with	weight	𝑊! .

• Algorithm	makes	irrevocable	accept/reject	decision	for	each	element.	𝑆 ← accepted	elements

• We	require	𝑆 ∈ ℱ for	a	given	downwards	closed	feasibility	constraint	ℱ.
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The	Secretary	Problem setting:
[Dynkin’63]

• Weights	are	adversarial	

• Arrival	order	is	uniformly	random

The	Prophet	Inequality	setting:
[Krengel &	Sucheston’77,	Samuel-Cahn’84]

• Weights	drawn	from	known	distributions	

• Arrival	order	is	adversarial

Hindsight	OPT	=	max
!
𝑊! Hindsight	OPT	=	E max

!
𝑊!

Competitive	Ratio	= max
instances I

Erandomness in I[Hindsight−OPT(I)]
Erandomness in I, ALG[ALG(I)]

Upshot: Unlike for the purely worst case, these models admit constant competitive ratios.



Rest of this talk

• Prophet	inequalities
⎼ Contention	Resolution	Schemes

⎼ Combinatorial	approaches

⎼ Online	resource	allocation

• Secretary	problem
⎼ Explore	and	exploit

⎼ Learning	duals

⎼ Learning	the	primal

• Some	extensions
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Prophet Inequality for single unit

• Hindsight-OPT	=	E max
!
𝑊!

• Let	𝑥! = Pr[OPT selects 𝑖]

• When	element	1	arrives,	accept	w.p. 𝑥"
⎼ Set	acceptance	threshold	𝑡! such	that	Pr 𝑊! ≥ 𝑡! = 𝑥!.		Note:	𝐸 𝑊!|𝑊! ≥ 𝑡! ≥ E[𝑊! | OPT selects 1]

• When	element	2	arrives,	accept	w.p. 𝑥#.	(Set	threshold	𝑡" such	that	Pr 𝑊" ≥ 𝑡" = 𝑥".	)

• And	so	on…
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Model:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

= C
!
𝑥! E[𝑊! | OPT selects 𝑖]

Idea:	try	to	mimic	the	optimal	probabilities	of	selection.

ALG = C
!
Pr ALG reaches 𝑖 . 𝑥!. 𝐸[𝑊!|𝑊! ≥ 𝑡!]

??

[Chawla	Hartline	Malec Sivan’10,	Alaei’11]



Prophet Inequality for single unit

• Hindsight-OPT	=	E max
!
𝑊!

• Let	𝑥! = Pr[OPT selects 𝑖]

• When	element	1	arrives,	accept	w.p. 𝑥"/2
⎼ Set	acceptance	threshold	𝑡! such	that	Pr 𝑊! ≥ 𝑡! = 𝑥!/2.			Note:	𝐸 𝑊!|𝑊! ≥ 𝑡! ≥ E[𝑊! | OPT selects 1]

• When	element	2	arrives,	accept	w.p. 𝑥#/2.	(Set	threshold	𝑡" such	that	Pr 𝑊" ≥ 𝑡" = 𝑥"/2.	)

• And	so	on…
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Model:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

= C
!
𝑥! E[𝑊! | OPT selects 𝑖]

ALG = C
!
Pr ALG reaches 𝑖 . 𝑥!/2. 𝐸[𝑊!|𝑊! ≥ 𝑡!]

??

= 1 − Pr[a	previous	element	was	accepted]≥ 1 − Σ!𝑥!/2 ≥ 1/2

≥
1
4 C!

𝑥! E[𝑊! | OPT selects 𝑖]

Idea:	try	to	mimic	the	optimal	probabilities	of	selection.
[Chawla	Hartline	Malec Sivan’10,	Alaei’11]



Prophet Inequality for single unit

• Hindsight-OPT	=	E max
!
𝑊!

• Let	𝑥! = Pr[OPT selects 𝑖]

Slightly	better	approach:

• Accept	each	element	iwith	probability	exactly	𝑥!/2
⎼ Compute	probability	of	reaching	element	𝑖 ← 𝛼#
⎼ Set	acceptance	threshold	𝑡# such	that	Pr 𝑊# ≥ 𝑡# = 𝑥#/2𝛼# .	 Note:	𝛼# ≥ 1/2,	so,	𝐸 𝑊#|𝑊# ≥ 𝑡# ≥ E[𝑊# | OPT selects 𝑖]
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Model:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

= C
!
𝑥! E[𝑊! | OPT selects 𝑖]

ALG = C
!
Pr ALG reaches 𝑖 .

𝑥!
2𝛼!

. 𝐸[𝑊!|𝑊! ≥ 𝑡!] ≥
1
2 C!

𝑥! E[𝑊! | OPT selects 𝑖]
𝛼!

Tight!
1

!
$
w.p. 𝜖

Idea:	try	to	mimic	the	optimal	probabilities	of	selection.
[Chawla	Hartline	Malec Sivan’10,	Alaei’11]



Prophet Inequality for matchings

• Hindsight-OPT	=	E maxweight matching

• Let	𝑥! = Pr[OPT selects 𝑖]

Simple	“collision-avoidance”	algorithm:

• When	element	i arrives,	if	feasible	to	accept,	then	accept	w.p. 𝑥!/3

• Pr 𝑖 remains unblocked ≥ 1 − Pr 𝑖’s Uirst end point is matched − Pr 𝑖’s second end point is matched ≥ 1 − "
$
− "
$
= "

$
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Model:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

= C
!
𝑥! E[𝑊! | OPT selects 𝑖]

ALG = C
!
Pr 𝑖 remains unblocked when reached .

𝑥!
3 . 𝐸[𝑊!|𝑊! ≥ 𝑡!] ≥

1
9 C!

𝑥! E[𝑊! | OPT selects 𝑖]
≥ 1/3

Idea:	try	to	mimic	the	optimal	probabilities	of	selection.
[Chawla	Hartline	Malec Sivan’10,	Alaei’11]



A general approach: OCRS

• Let	𝑥! = Pr[OPT selects 𝑖]

• Hindsight-OPT	= ∑! 𝑥! E[𝑊! | OPT selects 𝑖]

c	- Online	Contention	Resolution	Scheme:	
[Chekuri Vondrak Zenklusen’14,	Feldman	Svensson Zenklusen’16]

• Online	procedure	for	determining	the	probability	of	accepting	an	element	that	arrives,	if	unblocked.

• Goal:	Accept	each	element	𝑖 with	probability	𝑦# ≔ 𝑐. 𝑥#

• Show:	Each	element	remains	unblocked	with	probability	≥ 𝑐.	
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Model:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

ALG = S
#
𝑦# . 𝐸[𝑊#|𝑊# ≥ 𝑡#] ≥S

#
𝑐. 𝑥# E[𝑊# | OPT selects 𝑖]

OCRSs	exist	for	many	set	systems.	𝑘-unit:	(1 − 1/ 𝑘 + 3)–OCRS	[Alaei’11];		General	matroids:	½-OCRS	[Feldman	Svensson Zenklusen’16].

[Lee-Singla’18]:	Prophet	Inequalities	and	OCRS	are	essentially	equivalent

c-OCRS	⟹ c-competitive	Prophet	Inequality

Idea:	try	to	mimic	the	optimal	probabilities	of	selection.



Combinatorial approaches
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Model:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

[Samuel-Cahn’84]:	2-competitive	single-unit	Prophet	Inequality

• Find	a	threshold	𝑡 such	that	Pr ∃𝑖 with 𝑊! ≥ 𝑡 = "
#.

• Pick	the	first	element	that	exceeds	𝑡

Proof	approach:	break	up	the	reward	earned	into	“seller’s	revenue”	and	“buyer’s	utility”		[Feldman	Gravin Lucier’15]

𝑂𝑃𝑇 ≤ 𝑡 + max
!

𝑊! − 𝑡 % whereas					𝐴𝐿𝐺 ≥ 𝑡. Pr unit sells + ∑! 𝑊! − 𝑡 %. Pr[unit didn&t sell before 𝑖]

Price for “selling” the unit 

𝑡 if the unit sells
𝑊# − 𝑡 if the unit is sold to 𝑖

≥
1
2
𝑡 +

1
2
C

!
𝑊! − 𝑡 %

⟹ 2-approximation

Alternatively:	Set	𝑡 = "
#
OPT

≥ 𝑡. Pr unit sells + C
!
𝑊! − 𝑡 %. Pr[unit doesn′t sell]

Another	alternative:	pick	any	value	between	the	two!



Combinatorial approaches
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Model:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

[Samuel-Cahn’81]:	2-competitive	single-unit	Prophet	Inequality

• Find	a	threshold	𝑡 such	that	Pr ∃𝑖 with 𝑊! ≥ 𝑡 = "
#.

• Pick	the	first	element	that	exceeds	𝑡

Extensions	to	k-units	with	static	thresholds:

• [Hajiaghayi Kleinberg	Sandholm’07] pick	𝑡 such	that	E #𝑖 with 𝑊! ≥ 𝑡 ≈ 𝑘 − 𝑘 log 𝑘.	

⟹1− Θ( log 𝑘 /𝑘) asymptotically

• [Chawla	Lykouris Devanur’21] pick	𝑡 such	that	E fraction of units unsold = Pr[all units sold out]

⟹ 1 − Θ( log 𝑘 /𝑘) for	all	𝑘

Extension	to	matroids:	“Balanced”	thresholds	[Kleinberg	Weinberg’12]

• Set	𝑡! =
"
# . the	expected	“opportunity	cost”	of	accepting	𝑖.	

• 2-approximation	for	general	matroids

Alternatively:	Set	𝑡 = "
#
OPT

Another	alternative:	pick	any	value	between	the	two!

Benefits	of	a	single	static	threshold:
• One	parameter	to	learn
• Robustness	to	errors
• Nice	fairness	&	incentive	properties

Downside:	not	always	optimal



Online resource allocation

• Can	use	the	matching	OCRS	as	before

But	can	potentially	do	much	better!

[Feldman	Gravin Lucier’15]:	pricing-based	algorithm

• Set	a	price	for	item	𝑖,	𝑡! =
"
#E[contribution of 𝑖 to OPT]

• When	shopper	𝑗 arrives,	assign	to	it	the	available	item	that	maximizes	𝑊!' − 𝑡!

• Suppose	in	OPT,	𝑖 is	assigned	to	𝑗∗(𝑖).

• Item	𝑖’s	contribution	to	the	algorithm	≥ 𝑡!. 𝕀 item 𝑖 sells + 𝑊!'∗ ! − 𝑡! . 𝕀[item 𝑖 doesn’t sell]

• Taking	expectations,	𝑖’s	contribution	≥ 𝑡!. Pr 𝑖 sells + 𝑡!. Pr 𝑖 doesn’t sell =
"
#E[contribution of 𝑖 to OPT]
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Model:

• Shoppers	arrive	in	fixed	but	arbitrary	order
• Weights	of	all	edges	incident	on	a	shopper	are	
revealed	at	once

• Weights	drawn	from	known	distributions:	𝑊!"~𝐷!"

⟹ 2-approximation

𝑖

𝑗

𝑊#&

Economic interpretation:
shoppers maximize their utility



Online resource allocation

• Can	use	the	matching	OCRS	as	before

But	can	potentially	do	much	better!

[Feldman	Gravin Lucier’15]:	pricing-based	2-approximation	algorithm

Can	extend	these	ideas	to	shoppers	purchasing	bundles	of	items

• XOS;	MPH	hierarchy	[Feldman	Gravin Lucier’15,	Dutting Feldman	Kesselheim Lucier’17]

• subadditive values	[Dutting Kesselheim Lucier’20]

• intervals	or	paths	in	networks	[Chawla	Miller	Teng’19]

With	large	item	multiplicities	and	other	structure	on	weights,	dual	prices	provide	a	good	approximation	
[Chawla	Devanur Holroyd	Karlin Martin	Sivan’17]

15

Model:

• Shoppers	arrive	in	fixed	but	arbitrary	order
• Weights	of	all	edges	incident	on	a	shopper	are	
revealed	at	once

• Weights	drawn	from	known	distributions:	𝑊!"~𝐷!"



Rest of this talk

• Prophet	inequalities
⎼ Contention	Resolution	Schemes

⎼ Combinatorial	approaches

⎼ Online	resource	allocation

• Secretary	problem
⎼ Explore	and	exploit

⎼ Learning	duals

⎼ Learning	the	primal

• Some	extensions
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Secretary Problem

Basic	idea:	use	the	first	few	elements	as	a	sample	to	“learn”	the	instance.	[Dynkin’63]

• Phase	1	(explore):	Reject	the	first	𝑛/2 elements;	Let	𝑡 =maximum	weight	observed

• Phase	2	(exploit):	Among	the	remaining,	pick	the	first	element	𝑖 with	𝑊! ≥ 𝑡

𝑘-unit	secretary:	explore	for	𝑛/poly(𝑘) steps	⟹1− O(1/poly(𝑘)) approximation

Improved	𝑘-unit	secretary:	geometrically	increasing	explore/exploit	phases;	in	each	phase,	exploit	using	the	threshold	
learned	in	previous	phases	⟹1− O(1/ 𝑘) approximation [Kleinberg’05]

Rank-𝑘 matroid:	greedily	pick	largest	feasible	set	crossing	a	single	threshold⟹O(log 𝑘) approx.	[Babaioff Immorlica Kleinberg’07]

Best	known:	O(log log 𝑘) [Lachish’15,	Feldman	Svensson Zenklusen’16]
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Model:

• Elements	arrive	in	uniformly	random	order

• Weights	are	adversarial

Pr[largest	weight	picked]≥ Pr 𝑡 = 𝑊 # , and,𝑊(") appears in the second half ≥
"
+

⟹ 4-competitive	algorithm

How long to explore?

What to learn?

How to exploit?

Multiple alternations of explore 
and exploit?

O(1)??[Dughmi’21]:	Connection	between	matroid	secretary	and	matroid	OCRS



Online Resource Allocation

Basic	idea:	use	the	first	few	elements	as	a	sample	to	“learn”	the	instance.

Dual-learning	algorithm	[Devanur Hayes’09,	Agarwal	Wang	Ye’14]:

• Solve	the	dual	program	over	the	first	𝜖𝑛 samples	with	scaled	down	capacities	to	learn	the	dual	prices

• Exploit	using	dual	prices

• Concentration	bounds	⟹ learned	duals	are	close	to	the	optimal	dual

18 Model:

• Shoppers	arrive	in	uniformly	random	order

• Weights	of	all	edges	incident	on	a	shopper	
are	revealed	at	once

• Weights	are	adversarial

Given	the	“correct”	dual:	
• Set	𝑡' as	the	price	for	𝑗.
• Every	shopper,	on	arrival,	should	choose	

the	item	maximizing	𝑊!,' − 𝑡'

max∑!,' 𝑥!,'𝑊!,' subject	to:	
∑' 𝑥!,' ≤ 1 for all shoppers 𝑖
∑! 𝑥!,' ≤ 𝑘' for all items 𝑗
𝑥!,' ≥ 0 for all 𝑖 and 𝑗

min∑' 𝑘'𝑡' + ∑! 𝑢! subject	to:	
𝑢! ≥ 𝑊!,' − 𝑡' for all 𝑖, 𝑗

𝑢!, 𝑝' ≥ 0 for all 𝑖, 𝑗

Primal	program: Dual	program:



Online Resource Allocation

Basic	idea:	use	the	first	few	elements	as	a	sample	to	“learn”	the	instance.

19 Model:

• Shoppers	arrive	in	uniformly	random	order

• Weights	of	all	edges	incident	on	a	shopper	
are	revealed	at	once

• Weights	are	adversarial

max∑!,' 𝑥!,'𝑊!,' subject	to:	
∑' 𝑥!,' ≤ 1 for all shoppers 𝑖
∑! 𝑥!,' ≤ 𝑘' for all items 𝑗
𝑥!,' ≥ 0 for all 𝑖 and 𝑗

Primal	program: Primal-learning	algorithm	[Kesselheim Radke	Tonnis Vocking’14]:

• At	every	step,	solve	the	primal	with	appropriately	scaled	down	capacities.

• Round	the	component	corresponding	to	shopper	𝑖

• If	the	match	suggested	by	the	primal	is	feasible,	include	it	in	solution.



Online Resource Allocation

Basic	idea:	use	the	first	few	elements	as	a	sample	to	“learn”	the	instance.

Analysis	in	two	parts:

Part	1:	For	any	𝑖,	the	expected	weight	of	(𝑖, 𝑗∗(𝑖)) is	at	least	OPT/𝑛.

Part	2:	The	probability	that	𝑗∗(𝑖) is	blocked	is	small:
⎼ The	probability	that	𝑗∗(𝑖) is	matched	to	𝑖' < 𝑖 is	at	most	1/𝑖′.

⎼ Net	“unblocking”	probability	≥ ∏
#!("#

#)! 1 − !
#!

≈
"
#
#
≥ !

*

20 Model:

• Shoppers	arrive	in	uniformly	random	order

• Weights	of	all	edges	incident	on	a	shopper	
are	revealed	at	once

• Weights	are	adversarial

max∑!,' 𝑥!,'𝑊!,' subject	to:	
∑' 𝑥!,' ≤ 1 for all shoppers 𝑖
∑! 𝑥!,' ≤ 1 for all items 𝑗
𝑥!,' ≥ 0 for all 𝑖 and 𝑗

Primal	program: Primal-learning	algorithm	[Kesselheim Radke	Tonnis Vocking’13]:

• Reject	the	first	𝑛/𝑒 requests.

• At	subsequent	requests	𝑖 :

⎼ Find	optimal	matching	over	shoppers	{1, … , 𝑖};	Say	𝑖 is	matched	to	𝑗∗(𝑖)

⎼ If	𝑗∗(𝑖) is	available,	match	𝑖 to	it.

𝑖
𝑛
𝑂𝑃𝑇 ×

1
𝑖

⟹ total	contribution	of		"
-
1 − "

-
OPT



A recap of techniques
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Prophet	Inequality:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

Secretary	Problem:

• Elements	arrive	in	uniformly	random	order

• Weights	are	adversarial

⎼ Explore	and	exploit

⎼ Learning	duals

⎼ Learning	the	primal

⎼ Contention	Resolution	Schemes

⎼ Combinatorial	approaches:	balanced	prices

⎼ Online	resource	allocation:	balanced	prices;	
dual	prices



Some extensions

Many	possible	variants:

• I.i.d. weights	[Correa	Foncea Hoeksma Ossterwijk Vredeveld’17]

• Correlated	weight	distributions	[Chawla	Malec Sivan’15,	Immorlica Singla	Waggoner’20]

• Unknown	distributions	but	with	sample	access	[Azar	Kleinberg	Weinberg’14,	Correa	Dutting Fischer	Schewior’19,	Rubinstein	Wang	Weinberg’20]

• Best/constrained	order	prophet	inequality	[Chawla	Hartline	Malec Sivan’10,	Agrawal	Sethuraman Zhang’20,	Peng	Tang’22,	Arsenis Drosis Kleinberg’21]

• Non-uniform	distribution	or	corruption	over	orderings	[Kesselheim Kleinberg	Niazadeh’15,	Bradac Gupta	Singla	Zuzic’20]

• Prophet	secretary:	known	weight	distributions	AND	random	order	of	arrival	[Esfandiari	Hajiaghayi Liaghat Monemizadeh’15,	Azar	Chiplunkar Kaplan’18]

• Non-linear	objectives	[Feldman	Zenklusen’15,	Rubinstein	Singla’17]

• Stochastic	departures	[Kessel	Shameli Saberi Wajc’22]
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Prophet	Inequality:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

Secretary	Problem:

• Elements	arrive	in	uniformly	random	order

• Weights	are	adversarial



Some extensions

Secretary/prophet	models	for	other	optimization	problems:

• Bin	packing	[Kenyon’96]

• Online	Steiner	tree	[Garg	Gupta	Leonardi	Sankowski’08]

• Set	cover;	facility	location	[Grandoni Gupta	Leonardi	Miettinen	Sankowski Singh’08]

• Online	independent	set	[Gobel Hoefer	Kesselheim Schleiden	Vocking’14]

• k-server	[Dehghani Ehsani Hajiaghayi Liaghat Seddighin’17]

Stochastic	probing	[Guha	Munagala’07,	Gupta	Nagarajan’13,	Gupta	Nagarajan	Singla’16,	‘17]

Price	of	information	(Pandora’s	box)	problems	[Kleinberg	Waggoner	Weyl’16,	Singla’18,	Chawla	Gergatsouli Teng	Tzamos Zhang’20]
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Prophet	Inequality:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

Secretary	Problem:

• Elements	arrive	in	uniformly	random	order

• Weights	are	adversarial
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Prophet	Inequality:

• Elements	arrive	in	fixed	but	arbitrary	order
• Weights	are	drawn	from	known	distributions:	𝑊!~𝐷!

Secretary	Problem:

• Elements	arrive	in	uniformly	random	order

• Weights	are	adversarial

Questions?


