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Incorporating data into the worst case model...

Purely worst-case
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No information
about input

Too pessimistic;
Algorithms fine-tuned to
unreasonable worst-case

instances

Avupam’s talk

Partial information a.k.a. semi-random models

— Coarse/limited info about input distribution

— Input distribution unknown but from a “nice” class

— Input distribution unknown but we have sample access

— Inputis part stochastic and part adversarial

N

This talk

Ellen’s talk

Purely stochastic
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about the input
generation process
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Algorithms not robust to
changes in model



Online selection

* n elements arrive in sequence; each with weight W;.

 Algorithm makes irrevocable accept/reject decision for each element. S < accepted elements

* Werequire S € F for a given downwards closed feasibility constraint F.
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Online selection: semi-random models

* n elements arrive in sequence; each with weight W;. @

=@

 Algorithm makes irrevocable accept/reject decision for each element. S < accepted elements

* Werequire S € F for a given downwards closed feasibility constraint F.

The Secretary Problem setting: * . The Prophet Inequality setting:
@ [Dynkin’63] im [Krengel & Sucheston’77, Samuel-Cahn’84]
* Weights are adversarial * Weights drawn from known distributions
 Arrival order is uniformly random  Arrival order is adversarial
Hindsight OPT = max W; Hindsight OPT = E [ml_ax Wi]
Erandomness in [[Hindsight—OPT(D)]

Competitive Ratio =, max
instances I Erandomness in I, ALGIALG(D]

Upshot: Unlike for the purely worst case, these wodels admit constant competitive ratios.



Rest of this talk

* Prophet inequalities
— Contention Resolution Schemes
— Combinatorial approaches

— Online resource allocation

* Secretary problem
— Explore and exploit
— Learning duals

— Learning the primal

* Some extensions



v Model:
Pro P het In equa I Ity for si ngl e unit j@\, * Elements arrive in fixed but arbitrary order

* Weights are drawn from known distributions: W;~D;

* Hindsight-OPT = E [m_ax Wi] = Z x; E[W; | OPT selects i]
] i

* Letx; = Pr[OPT selects i]
Idea: try to mimic the optimal probabilities of selection.

[Chawla Hartline Malec Sivan’10, Alaei’11]
* When element 1 arrives, accept w.p. x4

— Set acceptance threshold t; such that Pr[W; > t;] = x;. Note: E[W;|W,; > t;] = E[W, | OPT selects 1]

* When element 2 arrives, accept w.p. x,. (Set threshold t, such that Pr[W, > t,] = x,.)

ALG = z Pr[ALG reaches i}. x;. E[W;|W; = t;]
l
77

* And soon...



v Model:
Pro P het In equa I Ity for si ngl e unit j@\, * Elements arrive in fixed but arbitrary order

* Weights are drawn from known distributions: W;~D;

* Hindsight-OPT = E [m_ax Wi] = Z x; E[W; | OPT selects i]
] i

* Letx; = Pr[OPT selects i]
Idea: try to mimic the optimal probabilities of selection.

[Chawla Hartline Malec Sivan’10, Alaei’11]
* When element 1 arrives, accept w.p. x4 /2

— Set acceptance threshold t; such that Pr[W; > t;] = x, /2. Note: E[W;|W; = t;] = E[W, | OPT selects 1]

* When element 2 arrives, accept w.p. x5 /2. (Set threshold t, such that Pr[W, = t,] = x,/2.)

, 1
ALG = Z Pr[ALG reaches i}.x; /2. E[W;|W; = t;]] > 7 Z x; E[W; | OPT selects i]
l i
l 77

= 1 — Pr[a previous element was accepted] > 1 — Z;x; /2 = 1/2

* And soon...



v Model:
Pro P het In equa I Ity for si ngl e unit j@\, * Elements arrive in fixed but arbitrary order

* Weights are drawn from known distributions: W;~D;

* Hindsight-OPT = E [m_ax Wi] = Z x; E[W; | OPT selects i]
] i

* Letx; = Pr[OPT selects i]
Idea: try to mimic the optimal probabilities of selection.

[Chawla Hartline Malec Sivan’10, Alaei’11]
Slightly better approach:

* Accept each element i with probability exactly x; /2

— Compute probability of reaching elementi « «;

— Set acceptance threshold t; such that Pr[W; > t;] = x;/2«;. Note: a; = 1/2, so, E[W;|W; = t;] = E[W; | OPT selects i]

) Xi 1
g ALG = z Pr[ALG reaches i] .2—0;.E[Wi|Wi >t] > = Z x; E[W; | OPT selects i]
1 l 0 l 2 i
l
@ Tight!
T~ %
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Prophet Inequality for matchings i@\

Model:

* Elements arrive in fixed but arbitrary order

* Weights are drawn from known distributions: W;~D;

* Hindsight-OPT = E[max weight matching] = Z x; E[W; | OPT selects (]
i

* Letx; = Pr[OPT selects i]

Idea: try to mimic the optimal probabilities of selection.

Simple “collision-avoidance” algorithm:

* When element i arrives, if feasible to accept, then accept w.p. x; /3

* Pr[iremains unblocked] = 1 — Pr[i’s first end point is matched] — Pr[i’s second end point is matched] > 1 — é -

x.
ALG = Z@nblocked wher@.éﬂ [W;|[W; = t;] > % Z
l_ .

>1/3

[Chawla Hartline Malec Sivan’10, Alaei’11]

l

1

x; E[W; | OPT selects i]
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D Model:
A genera | 3 pproac h: OCRS j(: \,  Elements arrive in fixed but arbitrary order
— * Weights are drawn from known distributions: W;~D;

* Letx; = Pr[OPT selects i]

* Hindsight-OPT = };; x; E[W; | OPT selects i]

Idea: try to mimic the optimal probabilities of selection.

¢ - Online Contention Resolution Scheme:

[Chekuri Vondrak Zenklusen’14, Feldman Svensson Zenklusen’16]

¢ Online procedure for determining the probability of accepting an element that arrives, if unblocked.

* Goal: Accept each element i with probability y; = c. x; ALG = Z vi- E[Wi|W; = t;] = z c.x; E[W; | OPT selects i]
; :

l

* Show: Each element remains unblocked with probability > c.

c-OCRS = c-competitive Prophet Inequality

OCRSs exist for many set systems. k-unit: (1 — 1/vk + 3)-OCRS [Alaei'11]; General matroids: %2-OCRS [Feldman Svensson Zenklusen'16].

[Lee-Singla’18]: Prophet Inequalities and OCRS are essentially equivalent
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+ .‘ ’ Model:
Combinatorial a pproac hes I(: ‘, * Elements arrive in fixed but arbitrary order
— *  Weights are drawn from known distributions: W;~D;

[Samuel-Cahn’84|: 2-competitive single-unit Prophet Inequality

* Find a threshold ¢ such that Pr[3i with W; > t]| = % Alternatively: Sett = %OPT

* Pick the first element that exceeds t < Price for "seligndthieralternative: pick any value between the two!

: _ W; — t if the unit is sold to i
/t if the unit sells ‘//

Proof approach: break up the reward earned into “seller’s revenue” and “buyer’s utility” [Feldman Gravin Lucier’15]

OPT < t + max(W; — t)* whereas ALG = t.Pr[unitsells] + Y;(W; — t)™. Pr[unit didn’t sell before i]
l

> t.Pr[unit sells] + Z (W; — t)*. Pr[unit doesn't sell]
i

1 1
2—t+—z W; —o)*
2 244 = 2-approximation
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+ .‘ ’ Model:
Combinatorial a pproac hes I(: ‘, * Elements arrive in fixed but arbitrary order
— *  Weights are drawn from known distributions: W;~D;

[Samuel-Cahn’81]: 2-competitive single-unit Prophet Inequality

* Find a threshold t such that Pr[3i with W; > t]| = % Alternatively: Sett = %OPT

* Pick the first element that exceeds ¢ Another alternative: pick any value between the two!

Extensions to k-units with static thresholds:
 [Hajiaghayi Kleinberg Sandholm’07] pick t such that E[#i with W; > t] = k — \/klogk.
= 1 — 0(y/logk /k) asymptotically

 [Chawla Lykouris Devanur’21] pick t such that E[fraction of units unsold] = Pr[all units sold out]

= 1—0(/logk /k) for all k

Benefits of a single static threshold:

* One parameter to learn
Extension to matroids: “Balanced” thresholds [Kleinberg Weinberg'12] « Robustness to errors

1 « . 7 . . . . . . .
e Sett; = . the expected “opportunity cost” of accepting i.  Nice fairness & incentive properties

O 2-approximation for general matroids Downside: not always Optlma]
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Model:
On I ine resource a I IOcatiO N & . /  Shoppers arrive in fixed but arbitrary order

* Weights of all edges incident on a shopper are

i@\>§

X\ "\ |

* Can use the matching OCRS as before ‘&’x e
14

But can potentially do much better! L tj

Eﬁ * Weights drawn from known distributions: W;;~D;;

|Feldman Gravin Lucier’15]: pricing-based algorithm

* Setaprice foritem i, t; = %E[contribution of i to OPT]

Economic interpretation:
shoppers wmaximize their utility

When shopper j arrives, assign to it the available item that maximizes W;; — ¢; <

* Suppose in OPT, i is assigned to j“(i).

Item i’s contribution to the algorithm > ¢;. I[item i sells] + (Wi O ti). [[item i doesn’t sell]

Taking expectations, i’s contribution > t;. Pr[i sells] + t;. Pr[i doesn’t sell|] = %E[contribution of i to OPT]

— 2-approximation



Model:
On I ine resource a I IOcatiO N ‘ /  Shoppers arrive in fixed but arbitrary order

* Weights of all edges incident on a shopper are

led at
* Can use the matching OCRS as before revealed at once

* Weights drawn from known distributions: W;;~D;;

But can potentially do much better!

|Feldman Gravin Lucier’15]: pricing-based 2-approximation algorithm

Can extend these ideas to shoppers purchasing bundles of items
* XOS; MPH hierarchy [Feldman Gravin Lucier’15, Dutting Feldman Kesselheim Lucier’17]
» subadditive values [Dutting Kesselheim Lucier’20]

 intervals or paths in networks [Chawla Miller Teng'19]

With large item multiplicities and other structure on weights, dual prices provide a good approximation

[Chawla Devanur Holroyd Karlin Martin Sivan’17]
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Rest of this talk

* Prophet inequalities
— Contention Resolution Schemes
— Combinatorial approaches

— Online resource allocation

* Secretary problem
— Explore and exploit
— Learning duals

— Learning the primal

* Some extensions
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Model:
Secreta ry Problem @  Elements arrive in uniformly random order

* Weights are adversarial

Basic idea: use the first few elements as a sample to “learn” the instance. [Dynkin’63]

o

* Phase 1 (explore): Reject the first n/2 elements; Let t = maximum weight observed

* Phase 2 (exploit): Among the remaining, pick the first element i with W; >t

Pr[largest weight picked] > Pr[t = W(2),and, W(, appears in the second half] =

N

= 4-competitive algorithm

k-unit secretary: explore for n/poly(k) steps = 1 — O(1/poly(k)) approximation

How long to explore?
what +o learn?

How to exploit?

Multiple alternations of explore
and exploit?

Improved k-unit secretary: geometrically increasing explore/exploit phases; in each phase, exploit using the threshold

learned in previous phases = 1 — 0(1/+k) approximation

[Kleinberg’'05]

Rank-k matroid: greedily pick largest feasible set crossing a single threshold = O(log k) approx. [Babaioff Immorlica Kleinberg'07]

@n: O(loglog k)Y[Lachish’15, Feldman Svensson Zenklusen'16]

[Dughmi’21]: Connection between matroid secretary and matroid OCRS —0(1)??
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Online Resource Allocation

Basic idea: use the first few elements as a sample to “learn” the instance.

Primal program:

max Zi, jxi Wi subject to:

2jxij <1 forallshoppers i

YiXij < kj for all items j
xij=0 foralliandj

Dual program:

min . ; k;t; + X,; u; subject to:
U; = Wi,j — tj for all l,]

u;,pj =0 foralli,j

Dual-learning algorithm [Devanur Hayes’09, Agarwal Wang Ye'14]:

&%g

Eﬁ * Weights are adversarial

=

Model:
* Shoppers arrive in uniformly random order

* Weights of all edges incident on a shopper
are revealed at once

Given the “correct” dual:
* Sett; as the price for j.

* Every shopper, on arrival, should choose
the item maximizing W; ; — t;

* Solve the dual program over the first en samples with scaled down capacities to learn the dual prices

* Exploit using dual prices

* Concentration bounds = learned duals are close to the optimal dual
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/ Model:
& g  Shoppers arrive in uniformly random order

On | | ne Resource Al |Ocati0n % * Weights of all edges incident on a shopper
aah\asx are revealed at once

Basic idea: use the first few elements as a sample to “learn” the instance.

Primal program:

max Zi, jxi Wi subject to:

2jxij <1 forallshoppers i

YiXij < kj for all items j
xij=0 foralliandj

Eﬁ * Weights are adversarial

Primal-learning algorithm [Kesselheim Radke Tonnis Vocking'14]:
* Atevery step, solve the primal with appropriately scaled down capacities.
* Round the component corresponding to shopper i

* If the match suggested by the primal is feasible, include it in solution.



20 / Model:
& g  Shoppers arrive in uniformly random order

On | | ne Resource A| |0cation % * Weights of all edges incident on a shopper
qah\qsx

are revealed at once

* Weights are adversarial
Basic idea: use the first few elements as a sample to “learn” the instance.

Primal program:
max Y,; jX; jW;j  subject to:
Y;x;; <1 forall shoppers i * Reject the first n/e requests.

Primal-learning algorithm [Kesselheim Radke Tonnis Vocking'13]:

2ixij<1  forallitemsj - At subsequent requests i :
xij=0 foralliandj

— Find optimal matching over shoppers {1, ..., i}; Say i is matched to j*(i)

— Ifj*(i) is available, match i to it.
Analysis in two parts:

[ 1
Part 1: For any i, the expected weight of (i, j*(i)) is at least OPT/n.—— - OPT X -

Part 2: The probability that j* (i) is blocked is small:
— The probability that j*(i) is matched to i’ < i is at most 1/i’. - e tallcon i (1 _ 1) OPT

e e
1

— Net “unblocking” probability > ]—[ﬁ,_:lg (1 — —) ~ £ > %

i i
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‘ A recap of techniques

Secretary Problem:
* Elements arrive in uniformly random order

* Weights are adversarial

— Explore and exploit
— Learning duals

— Learning the primal

-

|I|/‘ ‘ .

<+
+

Prophet Inequality:
* Elements arrive in fixed but arbitrary order

* Weights are drawn from known distributions: W;~D;

— Contention Resolution Schemes
— Combinatorial approaches: balanced prices

— Online resource allocation: balanced prices;
dual prices
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Some extensions

Secretary Problem:
* Elements arrive in uniformly random order

* Weights are adversarial

Many possible variants:

Li.d. weights [Correa Foncea Hoeksma Ossterwijk Vredeveld'17]

-

|I|/‘ ’ ‘

<+
+

Prophet Inequality:
* Elements arrive in fixed but arbitrary order

* Weights are drawn from known distributions: W;~D;

Correlated weight distributions [Chawla Malec Sivan’15, Immorlica Singla Waggoner’20]

Unknown distributions but with sample access [Azar Kleinberg Weinberg'14, Correa Dutting Fischer Schewior’19, Rubinstein Wang Weinberg'20]

Best/constrained order prophet inequality [Chawla Hartline Malec Sivan’10, Agrawal Sethuraman Zhang'20, Peng Tang’22, Arsenis Drosis Kleinberg'21]

Non-uniform distribution or corruption over orderings [Kesselheim Kleinberg Niazadeh’15, Bradac Gupta Singla Zuzic'20]

Prophet secretary: known weight distributions AND random order of arrival [Esfandiari Hajiaghayi Liaghat Monemizadeh’15, Azar Chiplunkar Kaplan'18]

Non-linear objectives [Feldman Zenklusen’15, Rubinstein Singla’17]

Stochastic departures [Kessel Shameli Saberi Wajc'22]
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Some extensions

<+
+

Secretary Problem:

-

|I|/‘ ’ ‘

* Elements arrive in uniformly random order

* Weights are adversarial

Prophet Inequality:
* Elements arrive in fixed but arbitrary order

* Weights are drawn from known distributions: W;~D;

Secretary/prophet models for other optimization problems:

Bin packing [Kenyon'96]

Online Steiner tree [Garg Gupta Leonardi Sankowski’08]

Set cover; facility location [Grandoni Gupta Leonardi Miettinen Sankowski Singh’08]
Online independent set [Gobel Hoefer Kesselheim Schleiden Vocking’14]

k-server [Dehghani Ehsani Hajiaghayi Liaghat Seddighin’17]

Stochastic probing [Guha Munagala’07, Gupta Nagarajan’13, Gupta Nagarajan Singla’16, ‘17]

Price of information (Pandora’s box) problems [Kleinberg Waggoner Weyl’16, Singla’18, Chawla Gergatsouli Teng Tzamos Zhang'20]
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Secretary Problem:
* Elements arrive in uniformly random order

* Weights are adversarial

Questions?

-

|I|/‘ ’ .

<+
+

Prophet Inequality:
* Elements arrive in fixed but arbitrary order

* Weights are drawn from known distributions: W;~D;




