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Question: how to allocate scarce resources among multiple parties?

What if participants can lie and subvert rules?

What if participants arrive over time and future demand is unknown?



‘ Objectives

SOCIAL WELFARE REVENUE

(value i gets from allocation) = (payment made by i)

zparticipants i zparticipants i

Competitive analysis: Approximation:
compare against hindsight optimal allocation compare against revenue-optimal mechanism



Some applications
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Two important settings:

* Scheduling jobs on a machine
— Items = “time slots”

— Buyers = jobs

* Routing on a network
— Items = edges

— Buyers = paths



Assumptions

* Buyers’ true values are unknown but their ) )
Value function of buyer i: v;~ Fj.

value distributions are known

Hindsight OPT = Ey,~F, (Smagi )E_Ui(si)]
Lo L Adversarial order of arrival.
When buyer i arrives, his identity

and distribution are revealed.

* Buyers arrive in an online fashion

* Buyers can lie about their values and delay

their arrival Algorithm solicits values from buyers
when they arrive.

Buyers are rational:

maximize (value from alloc - payment)

We will think of truthful mechanisms as
algorithms with structural constraints.



A simple class of algorithms: posted pricing

* When each buyer arrives, algorithm offers each subset of items at a certain price.

* The buyer purchases argmax(v(S) — p(S)). Always truthful!
S

Special types of pricings:
Anonymous: prices don't depend on buyers’ identity

Non-adaptive: prices don’t evolve over time — Static pricing

Order-oblivious: prices don't depend on ordering of buyers

[tem pricing: additive pricing function



Some questions

* How well does simple posted pricing approximate welfare /revenue?
* Are there better (truthful) mechanisms?
* Are there better (non-truthful) algorithms?

 Can we optimize over the class of all pricings?



Maximizing social welfare

Key takeaway:

In many settings, static pricings are optimal-within-constant-factors
across all online algorithms.




Outline

Why do prices perform well?
— A primal-dual view

— Issues with dual prices

Fix # 1: balanced prices
— Warm up: single item prophet inequality.
— Feldman-Gravin-Lucier generalization.

— Extension to scheduling & routing

Fix # 2: dual prices for large supply settings
— Warm up: single item with copies.

— Extension to scheduling

Summary of results; open questions
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Approach # 1: Prices as dual variables

PRIMAL

-

o

uedd Social Welfare

i,S
subject to:

S
Demand < Supply ‘3uk§j

i,S3j
Xis=0 foralliand S

~

J

DUAL

V; s: buyer i’s value for set S

q;: buyer i’s probability of arrival

X; s: buyer i’s prob. of receiving set S

-

subject to:

JES
ui,pj >0

-

v
minz Dj + z u;q;
j {

ij +u; =v;s foralli,S

Seller’s revenue

Buyers’ utility

N

foralli,j

J

In an optimal solution, u; = mglx(vi,s o ZjeS Pj)

« Complementary slackness implies x; ¢ > 0 iff S is one of i’s favorite bundles under the pricing p.
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‘ How good are dual prices?

Problem 1: dual prices are usually too low.

LP=e—+(1—€).1~1/e Dual price = 1

OPT=e.—+(1—-€)21~1/e ALG=(1—¢€).1+€%1/e? <2

value = 1 value = 1/¢€?
Prob. Arrival=1 — € Prob. Arrival= €

Problem 2: complementary slackness is not always useful due to the stochasticity of arrivals.

Buyer shifts preferences based on availability
and has a new favorite set.
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The single item prophet inequality

- Samuel-Cahn’84: There exists a static price p such that allocating item to the first buyer with

value above p gets a competitive ratio of 2.

 Setp sothat Pr[3i: v; = p] = 1/2.

* OPT =E [mlax vi] <E [miax(p + (v; — P)+): <p+XEl(—-p)7]

« ALG=>1p @r[item is sol@ + Y, E[(v; —p)*]

=1/2
Observations:
* Can also pickp = %OPT.
 Tight!

|

value = 1 value = 1/¢
Prob. Arrival= 1 Prob. Arrival= €

Pr[item is offered to i
\Cr[lemlso ere 01)}21/2

1
= ALG = EOPT

OPT=e.§+(1—e).1=2—e

ALG=1
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General (combinatorial) prophet inequalities

* Each buyer has a value v;~F;.
* Buyers arrive online; algorithm observes v;; makes accept/reject decisions.

» The algorithm faces a feasibility constraint . Must ensure: set of accepted agents € F.

 Constant factor competitive ratios in many settings: k-unit, matroids, knapsack, matching, ...
[Chawla Hartline Malec Sivan’10, Alaei’11, Kleinberg Weinberg'12, Feldman Svensson Zenklusen’15,
Dutting Kleinberg’15], ...

 Different from our setting:
— We select the actual allocation, not just accept/reject decisions.

— Want a simple pricing-based algorithm



Approach # 2: balanced prices (for unit-demand buyers) [Feldman Gravin Lucier’15]

* Contribution of item j to optimal SW = }; v; ;x; ;.

The prices are not too low:

If item j gets sold, then seller’s revenue from j = p;

The prices are not too high:

If item j does not get sold, then any buyer i’s utility = v; ; — p;.

= Total utility “attributed to item j” = ’; x; j(vi, i—D j) =p;.

Set the price for item jtop; = 1/5 X v; jx; ;.

|[Kleinberg Weinberg'12]

4 )

maxz xi’jvi,j

ij
subject to:

Z x;j < q; forall buyersi
J
in,j <1 forall items j

i

Social Welfare = Seller’s revenue + buyers’ utility

L xij=0 forall i and j y
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‘ Approach # 2: balanced prices [Feldman Gravin Lucier’15]
[Dutting Feldman Kesselheim Lucier’17]

Type of value function Competitive ratio Lower bound
Unit-demand or additive 2 2
XO0S (max over additive functions) 2 2
MPH-L 4L-2 L
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‘ Limitations of balanced item prices

* Poor approximation when values have complementarities

Any static item pricing must price every item at > 1 to exclude buyer 1

but then also excludes buyer 2.

OPT=n-1; ALG=1

v, (any single item) = $1  v,(all nitems) = $(n — 1)
v, (any other set) = $0



Approach # 3: Balanced bundle prices [Chawla Miller Teng'19]

* Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles.

Then leverage FGL's balanced pricing approach. Original fractional solution

4 )
z X;s < q; forall buyersi
A fractional unit allocation is: 5
1. A partition of items into bundles z %5 = 1 forall items j
i,S3j
2. A fractional matching from buyers to bundles | %520 forall iand S |

Fractional unit allocation

r p
B is a partition of items into bundles

Z yis < q; forall buyersi
SEB

Zyi’g <1 forallsetsS € B
i

Xis =0 foralliand S




Approach # 3: Balanced bundle prices [Chawla Miller Teng'19]

« Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles.
Then leverage FGL's balanced pricing approach.

Original fractional solution

* A fractional unit allocation is:

1. A partition of items into bundles

2. A fractional matching from buyers to bundles 1

Fractional unit allocation

* Key lemma: show that the new value (2; s y; sv; 5) is

not much smaller than the original LP value ();; 5 x; sv; 5).

* Can do for intervals and paths on trees

while losing logarithmic factors. |
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‘ Approaches #2 & #3: Balanced item and bundle prices

Value functions Competitive ratio Lower bound Technique

Additive or unit-demand 2 [FGL'15] 2 Balanced item prices
X0S 2 [FGL'15] 2 Balanced item prices
MPH-L 4L-2 [DFKL'17] L Balanced item prices
:ﬁggg}:g?giﬁlgiowr (lol;i; L) [CMT'19] Q (lolgoi) g L) Balanced bundle prices

Routing on trees with

) log H |
values € [1, H] O(log H) [CMT'19] Q (—) Balanced bundle prices
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‘ Approaches #2 & #3: Balanced item and bundle prices

Value functions Competitive ratio Lower bound Technique
Additive or unit-demand 2 [FGL'15] 2 Balanced item prices
X0S 2 [FGL'15] 2 Balanced item prices
MPH-L 4L-2 [DFKL'17] L Balanced item prices
Interval scheduling over log L , log L :

0] CMT’19
intervals of size < L (108 log L) [ | { <log log L> BalanceCbutCerees
Routing on trees with , log H .
values € [1, H] O(logH) [CMT’19] Q <—loglogH Balanced bundle prices

Interval scheduling with
capacities k

log L )
O (k log log L) [CEe

a(

log L

k(loglog L-log k)

)

Balanced bundle prices

Routing on trees with
capacities k

0 (“24) [cMT'19]

o

log H

kloglog H

)

Balanced bundle prices




Can we beat the 2 in large supply settings?

k-unit prophet inequality: [Hajiaghayi Kleinberg Sandholm’07]
* Find price p such that E[|{i:v; = p}|] = k —/klogk max Y; X;V;

subject to:
* p is the dual price for the LP on the right x; < q; foralli

Yixi <k—.klogk
x; =0 foralli

w.h.p. item does not get sold out

’1 K . :
= 1 - O( %) competitive ratio.

Tight! [Ghosh Kleinberg'16]

(for pricings; for mechanisms, can get 1 — 0(1/Vk) [Alaei’11])
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Assumptions:

* Each job has a fixed length; value.

* Wants to get scheduled within a certain time window.

* Supply at any time t is at least k

PRIMAL

-

max E xi’Svi,S

LS
subject to:

z X;s < q; forall buyersi
S

Z x;s < (1 —€)k; forallitems j

i,53j
Xis =0 foralliand S

Approach # 4: Dual prices for large supply interval scheduling

v; st buyer i’s value for set S
q;: buyer i’s probability of arrival

X;s: buyer i’s prob. of receiving set S

DUAL
N
min )" py(1 - k;+ ) uq
J i
subject to:
Z pj t U = Vg foralli, S
JES
N u,p;j =0 forall i, j
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Approach # 4: Dual prices for large supply interval scheduling

t
> - / \
;‘-L ty %
o ’ T \
Prices 5 2 8 5 1 5 i
=6
- v=9 I
ol QHHER M ENGE LS. < FlA] = ) 1 < (1 B, vt
Implitlb5 RRR Rl iR R it . 1 — f

— 'H' JUUD llldellleLCU WITOSC lll St Ll_y ISt

ﬁW.p.l—E, At<Bt
X; = number of jobs that ever try t = arrivals + “forwards”

Want X; < B; w.h.p.; Problem: bad events are correlated across t.
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‘ Dual prices: bounding the failure probabilities on a forwarding graph

G

1

VAN
N\

The forwarding graph
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Consider all possible forwarding subtrees of G. The load in
picture 2 can be bounded by the load in one of these subtrees.
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‘ Dual prices: combining subtrees into one tree

/N
\V4 RN

\
/\ /\

WOI'St case ? = " 451 — 51 231 31
/7 N\ /\

431

Tree of trees T,

Tree networks permit an inductive analysis. Failure probabilities depend on the in-degrees of nodes.
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Approach # 4: Dual prices for large supply interval scheduling

[Chawla Devanur Holroyd Karlin Martin Sivan "17]

-

\_

There exist a price schedule such that if jobs are unit length("), and,

1 1 ,
ki = Q E—Zlogg for all j

Then the expected social welfare achieved is atleast (1 — €) times the Hindsight-OPT. )

6
(*) Need kj = Q (% log é) when jobs are of length up to L.
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Approaches #2, #3, & #4: Balanced prices and dual prices

Value functions

Competitive ratio

Lower bound

Technique

X0S 2 [FGL'15] 2 Balanced item prices
MPH-L 4L-2 [DFKL17] L Balanced item prices
Interval scheduling over ) Q(logL/loglogL) :
intervals of size < L O(logL/loglogL) [CMT’19] Balanced bundle prices
Routing on trees with ) :
O(logH) [CMT’19] Q(logH/loglog H) Balanced bundle prices

values € [1, H]

Interval scheduling with
capacities k

O(logL/kloglogL) [CMT’19]

Q(logL/k (loglog L —logk))

Balanced bundle prices

Routing on trees with
capacities k

O(log H /k) [CMT’19]

Q(logH/kloglogH)

Balanced bundle prices

k-unit

1 — 0(,/Tog k /k) [HKS'07]

Dual prices

Interval scheduling
special case; capacity k

1 — O(poly(L log k/k)) [CDH+'17]

Dual prices
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Some open directions

Beat the factor of 2 for unit-demand with large supply?

Beat the factor of 2 for subadditive values with large supply?

Routing on general graphs?

General valuations on small sets?

— LP is too weak

Why do static prices perform so well?
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Revenue maximization: a different story

Key takeaways:

Necessarily need non-anonymous mechanisms
Need to price random allocations
Even single-buyer setting is challenging

-
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Revenue maximization: a different story

Simplest set-up: one buyer; two items

£ apd )
“ %o )
.

Optimal mechanism can be complicated:
» Offers random allocations, a.k.a. lotteries [Thannasoulis’05]

* Can have infinitely many options! [Hart Nisan’13]

Every near-optimal solution may be complicated
* No finite menu can provide a finite approximation!

[Briest C. Kleinberg Weinberg’'10, Hart Nisan’13]
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Revenue maximization: take two [Chawla Teng Tzamos '19]
(o) )
Extra constraint on the mechanism: ATTODAS HENL

cannot sell a bundle at a price higher than the sum of its constituents.

“Buy Many Constraint”

= PT
U 3 3

a J

n = number of items
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Some open directions

* When can pricing functions be approximated in revenue by simple pricing functions?

— Any mechanism is a pricing function: f: random allocation — price.

— Extend to f(v) = f( argmaxs(v(S) — f(S)) )
— Want to find simple g such that E,,[g(v)] = (some fraction).E,[f (V)]

 Can we efficiently find an approximately revenue-optimal item pricing?
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Pricing as a parameterized greedy algorithm

 (Can prices be used to simplify algorithm design in non-strategic settings?

* Optimal prices depend on the instance - but can potentially be learned!
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Thanks for listening!
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