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Question: how to allocate scarce resources among multiple parties?

What if participants can lie and subvert rules?

What if participants arrive over time and future demand is unknown?

≡ $2

≡ $5 ≡ $3
≡ $100

≡ $1000
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Objectives
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SOCIAL WELFARE

= ෍
participants 𝑖

(value 𝑖 gets from allocation)

REVENUE

= ෍
participants 𝑖

(payment made by 𝑖)

Competitive analysis:                      
compare against hindsight optimal allocation

Approximation:                        
compare against revenue-optimal mechanism



Some applications
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Two important settings:

• Scheduling jobs on a machine

⎼ Items ≡ “time slots”

⎼ Buyers ≡ jobs

• Routing on a network

⎼ Items ≡ edges

⎼ Buyers ≡ paths



Assumptions

• Buyers’ true values are unknown but their 

value distributions are known 

• Buyers arrive in an online fashion

• Buyers can lie about their values and delay 

their arrival
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Value function of buyer 𝑖: 𝑣𝑖~ 𝐹𝑖.

Adversarial order of arrival.
When buyer 𝑖 arrives, his identity 
and distribution are revealed.

Algorithm solicits values from buyers 
when they arrive.
Buyers are rational:                
maximize (value from alloc - payment)  

We will think of truthful mechanisms as 
algorithms with structural constraints.

Hindsight OPT = E𝑣𝑖~𝐹𝑖
max

(𝑆1,…,𝑆𝑛)
෍

𝑖
𝑣𝑖(𝑆𝑖)



A simple class of algorithms: posted pricing

• When each buyer arrives, algorithm offers each subset of items at a certain price.

• The buyer purchases argmax
𝑆

𝑣 𝑆 − 𝑝(𝑆) .

Special types of pricings:

Anonymous: prices don’t depend on buyers’ identity

Non-adaptive: prices don’t evolve over time

Order-oblivious: prices don’t depend on ordering of buyers

Item pricing: additive pricing function 

6

Always truthful!

Static pricing



Some questions

• How well does simple posted pricing approximate welfare/revenue?

• Are there better (truthful) mechanisms?

• Are there better (non-truthful) algorithms?

• Can we optimize over the class of all pricings?
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Maximizing social welfare
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Key takeaway:

In many settings, static pricings are optimal-within-constant-factors 
across all online algorithms.



Outline

• Why do prices perform well?

⎼ A primal-dual view

⎼ Issues with dual prices

• Fix # 1: balanced prices

⎼ Warm up: single item prophet inequality. 

⎼ Feldman-Gravin-Lucier generalization.

⎼ Extension to scheduling & routing 

• Fix # 2: dual prices for large supply settings

⎼ Warm up: single item with copies.

⎼ Extension to scheduling

• Summary of results; open questions

9



Approach # 1: Prices as dual variables

• Complementary slackness implies 𝑥𝑖,𝑆 > 0 iff 𝑆 is one of 𝑖’s favorite bundles under the pricing 𝑝.

max ෍

𝑖,𝑆

𝑥𝑖,𝑆𝑣𝑖,𝑆

subject to: 

෍

𝑆

𝑥𝑖,𝑆 ≤ 𝑞𝑖 for all buyers 𝑖

෍

𝑖, 𝑆∋𝑗

𝑥𝑖,𝑆 ≤ 1 for all items 𝑗

𝑥𝑖,𝑆 ≥ 0 for all 𝑖 and 𝑆

𝑣𝑖,𝑆: buyer 𝑖’s value for set 𝑆

𝑞𝑖: buyer 𝑖’s probability of arrival

𝑥𝑖,𝑆: buyer 𝑖’s prob. of receiving set 𝑆

PRIMAL

min ෍

𝑗

𝑝𝑗 + ෍

𝑖

𝑢𝑖𝑞𝑖

subject to: 

෍

𝑗∈𝑆

𝑝𝑗 + 𝑢𝑖 ≥ 𝑣𝑖,𝑆 for all 𝑖, 𝑆

𝑢𝑖, 𝑝𝑗 ≥ 0 for all 𝑖, 𝑗

DUAL

In an optimal solution, 𝑢𝑖 = max
𝑆

𝑣𝑖,𝑆 − σ𝑗∈𝑆 𝑝𝑗

Seller’s revenue

Buyers’ utility

Demand ≤ Supply

No overprovisioning

Social Welfare
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How good are dual prices?

Problem 1: dual prices are usually too low.

Problem 2: complementary slackness is not always useful due to the stochasticity of arrivals.

value = 1/𝜖2

Prob. Arrival= 𝜖
value = 1

Prob. Arrival= 1 − 𝜖

OPT = ϵ.
1

𝜖2 + 1 − 𝜖 2. 1 ≈ 1/𝜖 ALG = 1 − 𝜖 . 1 + 𝜖2. 1/𝜖2  < 2

LP = ϵ.
1

𝜖2 + 1 − 𝜖 . 1 ≈ 1/𝜖 Dual price = 1

ൗ1
2

ൗ1
2

1

Buyer shifts preferences based on availability 
         and has a new favorite set.
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The single item prophet inequality

• Samuel-Cahn’84: There exists a static price 𝑝 such that allocating item to the first buyer with 

value above 𝑝 gets a competitive ratio of 2.

• Set 𝑝 so that Pr ∃𝑖 ∶  𝑣𝑖 ≥ 𝑝 = 1/2.

• OPT = E max
𝑖

𝑣𝑖 ≤ E max
𝑖

𝑝 + 𝑣𝑖 − 𝑝 + ≤ 𝑝 + σ𝑖 E[(𝑣𝑖 − 𝑝)+]

• ALG ≥ 𝑝 Pr item is sold  + σ𝑖 𝐸 𝑣𝑖 − 𝑝 +  Pr[item is offered to 𝑖]

Observations:

• Can also pick 𝑝 =
1

2
OPT.

• Tight!
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≥ Pr item is unsold at the end
= 1 − Pr[item is sold]

= 1/2
≥ 1/2

⟹ ALG ≥
1

2
OPT

value = 1/𝜖
Prob. Arrival= 𝜖

value = 1
Prob. Arrival= 1

OPT = ϵ.
1

𝜖
+ 1 − 𝜖 . 1 = 2 − 𝜖

ALG = 1



General (combinatorial) prophet inequalities

• Each buyer has a value 𝑣𝑖~𝐹𝑖. 

• Buyers arrive online; algorithm observes 𝑣𝑖; makes accept/reject decisions.

• The algorithm faces a feasibility constraint ℱ. Must ensure: set of accepted agents ∈ ℱ.

• Constant factor competitive ratios in many settings: k-unit, matroids, knapsack, matching, … 

[Chawla Hartline Malec Sivan’10, Alaei’11, Kleinberg Weinberg’12, Feldman Svensson Zenklusen’15, 

Dutting Kleinberg’15], …

• Different from our setting:

⎼ We select the actual allocation, not just accept/reject decisions.

⎼ Want a simple pricing-based algorithm
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Approach # 2: balanced prices (for unit-demand buyers)

• Contribution of item 𝑗 to optimal SW = σ𝑖 𝑣𝑖,𝑗𝑥𝑖,𝑗.

• Set the price for item 𝑗 to 𝑝𝑗 = Τ1
2 σ𝑖 𝑣𝑖,𝑗𝑥𝑖,𝑗.

• The prices are not too low:

 If item 𝑗 gets sold, then seller’s revenue from 𝑗 = 𝑝𝑗 

• The prices are not too high:

 If item 𝑗 does not get sold, then any buyer 𝑖’s utility ≥ 𝑣𝑖,𝑗 − 𝑝𝑗.

 ⇒ Total utility “attributed to item 𝑗” ≥ σ𝑖 𝑥𝑖,𝑗 𝑣𝑖,𝑗 − 𝑝𝑗 = 𝑝𝑗.

• Social Welfare = Seller’s revenue + buyers’ utility

max ෍

𝑖,𝑗

𝑥𝑖,𝑗𝑣𝑖,𝑗

subject to: 

෍

𝑗

𝑥𝑖,𝑗 ≤ 𝑞𝑖 for all buyers 𝑖

෍

𝑖

𝑥𝑖,𝑗 ≤ 1 for all items 𝑗

𝑥𝑖,𝑗 ≥ 0 for all 𝑖 and 𝑗

[Feldman Gravin Lucier’15]
[Kleinberg Weinberg’12]



Approach # 2: balanced prices
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[Feldman Gravin Lucier’15]
[Dutting Feldman Kesselheim Lucier’17]

Type of value function Competitive ratio Lower bound

Unit-demand or additive 2 2

XOS (max over additive functions) 2 2

MPH-L 4L-2 L



Limitations of balanced item prices

• Poor approximation when values have complementarities
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𝑣1 any single item = $1 𝑣2 all 𝑛 items = $ 𝑛 − 1
𝑣2 any other set = $0

Any static item pricing must price every item at > 1 to exclude buyer 1                                                

but then also excludes buyer 2.

OPT = 𝑛 − 1;    ALG = 1



Approach # 3: Balanced bundle prices

• Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles. 

Then leverage FGL’s balanced pricing approach.

• A fractional unit allocation is:

1. A partition of items into bundles

2. A fractional matching from buyers to bundles

෍

𝑆

𝑥𝑖,𝑆 ≤ 𝑞𝑖  for all buyers 𝑖

෍

𝑖, 𝑆∋𝑗

𝑥𝑖,𝑆 ≤ 1 for all items 𝑗

𝑥𝑖,𝑆 ≥ 0 for all 𝑖 and 𝑆

ℬ is a partition of items into bundles

෍

𝑆∈ℬ

𝑦𝑖,𝑆 ≤ 𝑞𝑖  for all buyers 𝑖

෍

𝑖

𝑦𝑖,𝑆 ≤ 1 for all sets 𝑆 ∈ ℬ

𝑥𝑖,𝑆 ≥ 0 for all 𝑖 and 𝑆

Original fractional solution 

Fractional unit allocation 

[Chawla Miller Teng’19]



Approach # 3: Balanced bundle prices

• Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles. 

Then leverage FGL’s balanced pricing approach.

• A fractional unit allocation is:

1. A partition of items into bundles

2. A fractional matching from buyers to bundles

• Key lemma: show that the new value (σ𝑖,𝑆 𝑦𝑖,𝑆𝑣𝑖,𝑆)  is            

not much smaller than the original LP value (σ𝑖,𝑆 𝑥𝑖,𝑆𝑣𝑖,𝑆).

• Can do for intervals and paths on trees           

while losing logarithmic factors.

Original fractional solution 

Fractional unit allocation 

[Chawla Miller Teng’19]



Approaches #2 & #3: Balanced item and bundle prices

Value functions Competitive ratio Lower bound Technique

Additive or unit-demand 2 [FGL’15] 2 Balanced item prices

XOS 2 [FGL’15] 2 Balanced item prices

MPH-L 4L-2 [DFKL’17] L Balanced item prices

Interval scheduling over 
intervals of size ≤ 𝐿

O
log 𝐿

log log 𝐿
 [CMT’19] Ω

log 𝐿

log log 𝐿
Balanced bundle prices

Routing on trees with 
values ∈ [1, 𝐻]

O(log 𝐻) [CMT’19] Ω
log 𝐻

log log 𝐻
Balanced bundle prices
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Approaches #2 & #3: Balanced item and bundle prices

Value functions Competitive ratio Lower bound Technique

Additive or unit-demand 2 [FGL’15] 2 Balanced item prices

XOS 2 [FGL’15] 2 Balanced item prices

MPH-L 4L-2 [DFKL’17] L Balanced item prices

Interval scheduling over 
intervals of size ≤ 𝐿

O
log 𝐿

log log 𝐿
 [CMT’19] Ω

log 𝐿

log log 𝐿
Balanced bundle prices

Routing on trees with 
values ∈ [1, 𝐻]

O(log 𝐻) [CMT’19] Ω
log 𝐻

log log 𝐻
Balanced bundle prices

Interval scheduling with 
capacities 𝑘

O
log 𝐿

𝑘 log log 𝐿
 [CMT’19] Ω

log 𝐿

𝑘(log log 𝐿−log 𝑘)
 Balanced bundle prices

Routing on trees with 
capacities 𝑘

O
log 𝐻

𝑘
 [CMT’19] Ω

log 𝐻

𝑘 log log 𝐻
Balanced bundle prices
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Can we beat the 2 in large supply settings?

𝑘-unit prophet inequality:

• Find price 𝑝 such that E 𝑖: 𝑣𝑖 ≥ 𝑝 ≈ 𝑘 − 𝑘 log 𝑘

• 𝑝 is the dual price for the LP on the right

• w.h.p. item does not get sold out

• Tight! [Ghosh Kleinberg’16]

    (for pricings; for mechanisms, can get 1 − O(1/√𝑘) [Alaei’11])
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max σ𝑖 𝑥𝑖𝑣𝑖

 subject to: 
𝑥𝑖 ≤ 𝑞𝑖 for all 𝑖

   σ𝑖 𝑥𝑖 ≤ 𝑘 − 𝑘 log 𝑘 

 𝑥𝑖 ≥ 0 for all 𝑖

⟹ 1 − O
log 𝑘

𝑘
 competitive ratio. 

[Hajiaghayi Kleinberg Sandholm’07]



Approach # 4: Dual prices for large supply interval scheduling

Assumptions:

• Each job has a fixed length; value.

• Wants to get scheduled within a certain time window.

• Supply at any time 𝑡 is at least 𝑘
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𝑣𝑖,𝑆: buyer 𝑖’s value for set 𝑆

𝑞𝑖: buyer 𝑖’s probability of arrival

𝑥𝑖,𝑆: buyer 𝑖’s prob. of receiving set 𝑆PRIMAL

min ෍

𝑗

𝑝𝑗 1 − 𝜖 𝑘𝑗 + ෍

𝑖

𝑢𝑖𝑞𝑖

subject to: 

෍

𝑗∈𝑆

𝑝𝑗 + 𝑢𝑖 ≥ 𝑣𝑖,𝑆  for all 𝑖, 𝑆

𝑢𝑖 , 𝑝𝑗 ≥ 0 for all 𝑖, 𝑗

DUAL

max ෍

𝑖,𝑆

𝑥𝑖,𝑆𝑣𝑖,𝑆

subject to: 

෍

𝑆

𝑥𝑖,𝑆 ≤ 𝑞𝑖  for all buyers 𝑖

෍

𝑖, 𝑆∋𝑗

𝑥𝑖,𝑆 ≤ 1 − 𝜖 𝑘𝑗  for all items 𝑗

𝑥𝑖,𝑆 ≥ 0 for all 𝑖 and 𝑆



Approach # 4: Dual prices for large supply interval scheduling

S
u
p

p
ly

𝑣 = 6

Prices 5 2 8 5 1 5

𝐴𝑡 = number of “arrivals” at time 𝑡
      = # jobs instantiated that LP places at time 𝑡
      = # jobs instantiated whose first try is 𝑡

𝑋𝑡 = number of jobs that ever try 𝑡 = arrivals + “forwards”

𝐸 𝐴𝑡 = ෍

𝑗

𝑥𝑗𝑡 ≤ 1 − 𝜖 𝐵𝑡  ∀𝑡

⇒ w.p. 1 − 𝜖, 𝐴𝑡 < 𝐵𝑡

Want 𝑋𝑡 < 𝐵𝑡 w.h.p.; Problem: bad events are correlated across 𝑡.

Main claim: For all 𝑡, w.p. 1 − 𝜖′, 𝑋𝑡 < 𝐵𝑡.
Implication: Each job occupies its LP position w.p. 1 − 𝜖′.

𝑡1

𝑡2 𝑡3

𝑡4

𝑣 = 9
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Dual prices: bounding the failure probabilities on a forwarding graph

The forwarding graph Instantiation of buyers;   
     forwarding paths

Consider all possible forwarding subtrees of G. The load in 
picture 2 can be bounded by the load in one of these subtrees. 

⟹ ⟹
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Dual prices: combining subtrees into one tree

(           )Worst case

Tree networks permit an inductive analysis. Failure probabilities depend on the in-degrees of nodes.
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Approach # 4: Dual prices for large supply interval scheduling

There exist a price schedule such that if jobs are unit length(*), and,

𝑘𝑗 ≥ Ω
1

𝜖2 log
1

𝜖
for all 𝑗

Then the expected social welfare achieved is at least 1 − 𝜖  times the Hindsight-OPT.

(*) Need 𝑘𝑗 ≥ Ω
𝐿6

𝜖3 log
1

𝜖
 when jobs are of length up to 𝐿.

[Chawla Devanur Holroyd Karlin Martin Sivan ’17]
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Approaches #2, #3, & #4: Balanced prices and dual prices

Value functions Competitive ratio Lower bound Technique

XOS 2 [FGL’15] 2 Balanced item prices

MPH-L 4L-2 [DFKL’17] L Balanced item prices

Interval scheduling over 
intervals of size ≤ 𝐿

O(log 𝐿/ log log 𝐿) [CMT’19]
Ω(log 𝐿/ log log 𝐿)

Balanced bundle prices

Routing on trees with 
values ∈ [1, 𝐻]

O(log 𝐻) [CMT’19] Ω(log 𝐻/ log log 𝐻) Balanced bundle prices

Interval scheduling with 
capacities 𝑘

O(log 𝐿/𝑘 log log 𝐿) [CMT’19] Ω(log 𝐿/𝑘 (log log 𝐿 − log 𝑘)) Balanced bundle prices

Routing on trees with 
capacities 𝑘

O(log 𝐻 /𝑘) [CMT’19] Ω(log 𝐻/𝑘 log log 𝐻) Balanced bundle prices

k-unit 1 − O( log 𝑘 /𝑘) [HKS’07] Dual prices

Interval scheduling 
special case; capacity k

1 − O(poly(𝐿 log 𝑘/𝑘)) [CDH+’17] Dual prices
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Some open directions

• Beat the factor of 2 for unit-demand with large supply?

• Beat the factor of 2 for subadditive values with large supply?

• Routing on general graphs?

• General valuations on small sets?

⎼ LP is too weak

• Why do static prices perform so well?
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Revenue maximization: a different story

29

Key takeaways:

Necessarily need non-anonymous mechanisms
Need to price random allocations
Even single-buyer setting is challenging



Revenue maximization: a different story

Simplest set-up: one buyer; two items

Optimal mechanism can be complicated:

• Offers random allocations, a.k.a. lotteries     [Thannasoulis’05]

• Can have infinitely many options!                        [Hart Nisan’13]

Every near-optimal solution may be complicated

• No finite menu can provide a finite approximation!

                    [Briest C. Kleinberg Weinberg’10, Hart Nisan’13]

≡ $2

≡ $1

⋯ $1

⋯ $3

⋯ $2

30

𝑣~𝐹



Revenue maximization: take two

Extra constraint on the mechanism:      

 cannot sell a bundle at a price higher than the sum of its constituents.

“Buy Many Constraint”

Theorem: Item-pricing is always an O(log 𝑛)-approximation to the      

    optimal buy-many mechanism.

     (no matter the value distribution)

⋯ $1

⋯ $1

⋯ $3

𝑛 = number of items

[Chawla Teng Tzamos ’19]
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Some open directions

• When can pricing functions be approximated in revenue by simple pricing functions?

⎼ Any mechanism is a pricing function: 𝑓: random allocation → price.

⎼ Extend to 𝑓 𝑣 = 𝑓  argmax𝑆 𝑣 𝑆 − 𝑓 𝑆  .

⎼ Want to find simple 𝑔 such that E𝑣 𝑔 𝑣 ≥ (some fraction).E𝑣[𝑓(𝑣)] 

• Can we efficiently find an approximately revenue-optimal item pricing?
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Pricing as a parameterized greedy algorithm

• Can prices be used to simplify algorithm design in non-strategic settings?

• Optimal prices depend on the instance – but can potentially be learned!
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Thanks for listening!
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