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This talk:
some examples of pricing as a solution to an auction design problem

Part 1: Social Welfare Maximization

Part 2: Revenue Maximization



A generic stochastic resource allocation setting

Known population
of buyers

Buyers assign values to

Many heterogenous subsets of items
items in limited supply

@a 54 o 55
>

Buyers drawn randomly (all reported prefs, market info)
from population — (allocation, payments)

Auction:

Buyers’ goal: obtain an allocation that
maximizes their value - the price they pay.



Part |: Social Welfare Maximization
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Vickrey Auction: assigns the optimal allocation and charges “supporting” prices. Always truthful.



Part |: Online Stochastic Social Welfare Maximization

Challenge: determine the allocation and payment for
each person before observing values of future arrivals.
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‘ The single item case: prophet inequality

* Customers arrive in sequence and reveal their values
5 5 «© Ko
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-2 o 7 At every step, the algorithm decides whether to

allocate and stop; or to reject and move forward.

* Hindsight-OPT picks the maximum value

A threshold-based policy: allocate to the first value that crosses pre-determined threshold, a.k.a. price, t.

Samuel-Cahn’84: Threshold-based policies achieve a CR of 2.

* No other online algorithm can do better.
Robust to different arrival orders!

* Set price = % Hindsight—OPT




‘ The single item case: prophet inequality

Competitive ratio (CR) vs Supply size (k)
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[C.-Devanur-Lykouris'21]

A threshold-based policy: allocate to the first k values that cross pre-determined threshold, a.k.a. price.

Hajiaghayi- Klg‘éﬁ?{@é e %84 : Threshold-based policies achieve a CR of 2.— 6 ( /log f k).
C.-Devanur-Lykouris
Ghosh-Kleinberg'1.6: N(O) 8%1%8{ 881%83 Eailégﬁg‘}rrrr} (C:gH 38 nggg{.asymptotlcally Robust to dlfferent arrival Orders!

* Set price = % Hindsight—OPT
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‘ The “unit demand” case: balanced prices

* Customers arrive in sequence and reveal their values

* At every step, the algorithm decides what to allocate
and at what price; or to reject and move forward.

* Hindsight-OPT picks the SW maximizing allocation.

[tem pricing: fix prices in advance; allow buyers to purchase their favorite item while supplies last.

Feldman-Gravin-Lucier’15: Item pricing achieves a CR of 2.

* No other online algorithm can do better.
Robust to different arrival orders!

1

* Set price, = > (Contribution of i to Hindsight—OPT)




v; j: buyer i's value for item j
i i : : buyer i's probability of arrival
Item prices arise as dual variables qi: buyer L's probablity otarriva

x; j: fraction of item j allocated to buyer i

k;: supply of item j

PRIMAL a.k.a. expected case LP DUAL
e 4 a
maXE XijVij BRUYEIRYVEIEIE :
subject to: _ J '
ect to:

Z x;ij < q; forall buyersi
J
z x;j < k; forallitems j

i

) [2%] Zvi,j—pj for all L,J
u;,p;j =0 foralli,j

x;j =0 foralliandj

g In an optimal solution, u; = mjax(vi,j = pj)

Optimal value of PRIMAL > Hindsight-OPT If p;’s denote prices, then u;’s are utilities!

Complementary slackness = LP allocates j to i iff j is one of i’s favorite items under the pricing p.
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‘ The “unit demand” case: balanced prices

* Customers arrive in sequence and reveal their values

* At every step, the algorithm decides what to allocate
and at what price; or to reject and move forward.

* Hindsight-OPT picks the SW maximizing allocation.

[tem pricing: fix prices in advance; allow buyers to purchase their favorite item while supplies last.

Feldman-Gravin-Lucier’15: Item pricing achieves a CR of 2.

* No other online algorithm can do better. .
5 Use dual prices??

1

* Set price, = > (Contribution of i to Hindsight—OPT)
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‘ But dual prices don’t work well in stochastic settings

* Problem 1: dual prices are too low.

% ;5; gt Dual price = 1; Alg allocates to the second buyer w.p. 0.01.

Value =1 Value = 100
Arrival prob. =0.9  Arrival prob.=0.1

* Problem 2: as supply diminishes, the correspondence between LP-allocation and buyer
preferences breaks down.

— Every buyer purchases her favorite of the remaining items

Coming up: two approaches to get around these problems...
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[Feldman-Gravin-Lucier’'15]

‘ Approach 1: balanced prices

[ | A buyer assigned item i by the LP

/ . buyer’s value for item i
[f item is not sold out, y
Z) LP-Value = shaded area %
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fractional
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D alg gets > red area

// At “balanced” price p*:
/ Seller’s revenue = green area
/ / Buyers’ utility = red area
A

— 2-approximation

Supply of item i

v

Total alloc. of item i < supply of item i

Value for item i

Dual price
FGL's “balanced” price p*

Green area = red area > ¥ LP-Value
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‘ Approach 2: tracking buyer preferences
[C. Devanur Holroyd Karlin Martin Sivan’17]

»
>

Dual price with (1 — €) supply When supply is large enough,
4 Pr[@arrivals of yellow buyers > suppl})] <€
Failure event
(1 — €) - supply of item i Challenge: a failure event at one item can
cause a failure event at another item.

A

Question: how do failure events cascade?

Supply of item i

I

A

Dual price FGL’s “balanced” Value for item i
price p*

v

Total alloc. of item i < supply of item i
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‘ Approach 2: tracking buyer preferences

Forwarding graph
Iy
L Y i3

\

Vertices = items
Edges = movement of buyers from
one item to the next

Failure events move along

edges in the forwarding graph

Ly

[C. Devanur Holroyd Karlin Martin Sivan'17]

When supply is large enough,
Pr[@arrivals of yellow buyers > suppl})] <€

Failure event

Challenge: a failure event at one item can
cause a failure event at another item.

Question: how do failure events cascade?

Theorem: If the graph has constant in-degree
failure events cascade with low probability.

= CRof 1 — O0(ylogk/k)




16

‘ Approach 2: tracking buyer preferences; application to interval scheduling

[tem1 Item 2 Item 3
“ll | Theorem: “time of use pricing” provides

§ al— 0(ylogk/k) approximation
Amazon T |
EC2 [C. Devanur Holroyd Karlin Martin Sivan’17]
# instances i i i i i i I i —>
available prices  $5 $2 $8 $5 $1 $5
Time >
| I
a;,vj T .
job’s probability of arrival job’s value job’s time window

[tems = compute instances at different points of time; Buyers = jobs with requirements



17

Part I: Online Stochastic Social Welfare Maximization — Summary

Posted (static) pricing is the best online truthful SW-maximizing algorithm known for many settings:

N\

 Single item [Samuel-Cahn’84]

* Unit demand [Feldman Gravin Lucier'15]

* Job scheduling [C. Devanur Holroyd Karlin Martin Sivan’17, C. Miller Teng’19]
* Fractionally subadditive values [FGL'15]

* Subadditive values [Dutting Kesselheim Lucier’20]

* MPH hierarchy of values [FGL'15, Dutting Feldman Kesselheim Lucier’'17]

* Bandwidth allocation [C. Miller Teng 19]

\|

[tem pricing; or
Bundle pricing
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A generic stochastic resource allocation setting

Known population
of buyers

Buyer assigns values to

Many heterogenous subsets of items
items in limited supply

o A"\

Auction:
Buyer drawn randomly (all reported prefs, market info)

] m ) from population — (allocation, payment
Simplifying assumption: pop ( pay )
single buyer Buyers’ goal: obtain an allocation that

maximizes their value - the price they pay.



19

Part |ll: Revenue Maximization

D@ 3
V2 (@) 5125
21, @ $15

\

Prob. of allocation

REVENUE" = Z (payment made by i)

buyers i

(*) Assumption: seller has a monopoly.

The optimal mechanism can be quite complicated:

* Offersitems packaged into bundles

* Offers random allocations, a.k.a. lotteries [Thannasoulis’05]
* Can have infinitely many options! [Hart Nisan’13]

* Can be computationally hard to find. [Chen etal/15]
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Part |l: Revenue Maximization — Approximation

* [f the buyer is unit-demand and his values for different items are independent, then

. 1 [C.-Hartline-Kleinberg’07]
[tem Pricing > 1/, OPT [C.-Malec-Sivan’10]

* If the buyer has additive values and his values for different items are independent,

. . 1 [Li-Yao’13]
max(Item Pricing, Grand Bundle Pricing) = /6 OPT [Babaioff-Immorlica-Lucier-Weinberg '14]

» If the buyer’s value function is subadditive over independent item values,
max(Item Pricing, Grand Bundle Pricing) > Q(1)OPT [Rubinstein-Weinberg'15]

Best known approximations using any “simple” mechanisms
In the absence of Independence, 3 Instances with OPT = oo and Revenue(any finite menu) < oo

(even with just two items and unit-demand or additive values) [Briest-C.-Kleinberg-Weinberg'10]
[Hart-Nisan’'13]

Unit-demand: v(S) = max;esv; [tem pricing: p(S) = Y;esPi
Additive: v(S) = Yo v; Grand Bundle pricing: p(S) = p([n])




21

Part |I: Revenue Maximization with a buy-many constraint

[C.-Tzamos-Teng’19]

Buy-many constraint: cannot sell a bundle at a
price higher than the sum of its constituents.

@ 515

V2 (@) 5125
2.1, @ 515

J

The optimal buy-many mechanism can be quite
complicated:

* Offers random allocations, a.k.a. lotteries
* Can have infinitely many options!

* Can be computationally hard to find.
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Part |I: Revenue Maximization with a buy-many constraint — Approximation

Theorem 1: For any value distribution,

Buy-many OPT < 2log 2n - Item Pricing

Theorem 2: There exists a distribution over additive valuations such that

Buy-many OPT > Q(log n) Revenue of any “succinct” mechanism

[C.-Tzamos-Teng’19]

n: #items

One that can be described
using 200" pts
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* Buy-many menus = subadditive pricing function
 Item pricing = additive pricing function
* Additive fns (g) pointwise n-approximate subadditive fns (f)

Pointwise approximation = Approximation in revenue

Additive functions are the succinct functions that
best approximate an arbitrary subadditive function. [

s

Lemma: Let / and g be any pricing functions such that g pointwise c-approximates f.

Then there exists a distribution over scaling factors « > 0, such that for any buyer,

1 . .
> 70g 2 (The price paid by the buyer under /)

The price paid by the buyer under g >

J
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ag(argmaxgsiv(S) — ag(S)})

%f(S) < scaled-g(S) < f(S)

scaled by

f (argmaxs{v(S) — f(S)})

o W (N

me power

2
Big gap!

s

Lemma: Let / and g be any pricing functions such that g pointwise c-approximates f. |
Then there exists a distribution over scaling factors « > 0, such that for any buyer,
The price paid by the buyer under g > . lolg - (ﬁ‘ he price paid by the buyer under f\)
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utilpax = rev(f)

util(ag) = mSaX{v(S) —ag(S)}

rev(ag) = ag(S)

Picking a with density « 1/, gives:

E,lrev(ag)] =

Buyer’s utility/payment

log(2c)
utilpyip < rev(f)
Scaling factor « 1 &

Lemma: Let / and g be any pricing functions such that g pointwise c-approximates f.

Then there exists a distribution over scaling factors « > 0, such that for any buyer,

The price paid by the buyer under g = L (The price paid by the buyer under f)

2log2c
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Part |I: Revenue Maximization with a buy-many constraint — Approximation
[C.-Tzamos-Teng’19]

Theorem 1: For any value distribution,
n: #items

Buy-many OPT < 2log 2n - Item Pricing

Theorem 2: There exists a distribution over additive valuations such that

Buy-many OPT > Q(log n) Revenue of any “succinct” mechanism

Can get improved approximations for special valuation functions (e.g. “ordered” items)

. S “ . . . Teng'21
Again, item pricing is the best “succinct” mechanism. [C. Rezvan Tzamos Teng'21]
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Part |l: Revenue Maximization — Summary

* For single buyer settings, item pricing or grand bundle pricing is the best “simple” mechanism.

* For multiple buyer settings: [C. Hartline Malec Sivan’10,
— Sequential posted price mechanisms Yao'ls,

C. Miller’16,

— Price individual items as well as charge an “entry fee” Cai-Zhao'17]

— Generally not anonymous

* For multiple buyer settings with buy-many constraint: nothing known yet!
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What else can posted prices do?

Often the best simple/succinct mechanisms

Suitable for online arrivals

Robust - max-min optimal in some settings [Carrol’17]

Learnable - polynomial pseudo-dimension [Morgenstern-Roughgarden’16]

Open direction: computing (approximately) optimal prices
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Thanks for your attention!

QUESTIONS?
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