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Revenue maximization with a single buyer
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Value function 

𝑣 ∶ 2[𝑛] → ℝ+ ∪ {0}   𝑛 items for sale

Drawn from some population

𝑣~𝐷
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Selling mechanism ≡ Menu of randomized options

Probability of allocation

Selling mechanism ≡ Menu of options



What does the optimal menu look like?

■ Is randomness necessary?

Yes for 𝑛 > 1                               [Thanassoulis’04]

(No for 𝑛 = 1)     [Myerson’81]

■ How many menu options?

Unbounded in 𝑛 for 𝑛 > 1            [Hart-Nisan’13]

(One for 𝑛 = 1)

■ Is the optimal mechanism easy to compute?

No, not even in simple cases!      [Chen-Diakonikolas-Orfanou-Paparas-Sun-Yannakakis’15]
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Can we approximate revenue?

Two principal approaches…



Approach # 1: computational approach

Exact optimization when the value distribution has small support

⟸ the optimum is the solution to an LP

5

Strong assumption

Complicated/impractical solution 
Exact!



Approach # 2: approximation for “nice” valuation functions

If values for different items are independent:

■ Unit-demand valuations ⟹ item prices give a 4-approximation

■ Additive valuations ⟹ item or grand bundle pricing gives a 6-approximation

■ Subadditive valuations ⟹ item or grand bundle pricing gives an 𝑂(1)-approx

[C. Hartline Kleinberg’07, C. Hartline Malec Sivan’10, C. Malec Sivan’10, Li Yao’13, Babaioff 
Immorlica Lucier Weinberg’14, Rubinstein Weinberg’15, Kothari Mohan Schvartzman Singla 
Weinberg’19, …]
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Posted pricing a.k.a. the grocery store mechanism

Item pricing :   𝑝 𝑆 = σ𝑖∈𝑆 𝑝𝑖 Grand bundle pricing :   𝑝 𝑆 = 𝑝( 𝑛 )



Approach # 2: approximation for “nice” valuation functions

If values for different items are independent:

■ Unit-demand valuations ⟹ item prices give a 4-approximation

■ Additive valuations ⟹ item or grand bundle pricing gives a 6-approximation

■ Subadditive valuations ⟹ item or grand bundle pricing gives an 𝑂(1)-approx

[C. Hartline Kleinberg’07, C. Hartline Malec Sivan’10, C. Malec Sivan’10, Li Yao’13, Babaioff 
Immorlica Lucier Weinberg’14, Rubinstein Weinberg’15, Kothari Mohan Schvartzman Singla 
Weinberg’19, …]
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Can relax a little bit
[C. Malec Sivan’10, Psomas 

Schvartzman Weinberg’19]

Unrealistic assumptionsSimple practical solutions



What about arbitrary value distributions?

With two items, there exists an instance with a unit-demand buyer for which:

■ Optimal revenue = ∞

■ Item pricing revenue < some constant

■ Revenue of any deterministic mechanism < some constant

[Briest C. Kleinberg Weinberg’10, Hart Nisan’13]

These large gaps do not go away we perturb values drawn from a worst case distribution 
by small amounts. [Psomas Schvartzman Weinberg’19]
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What hope do we have for revenue 
maximization in a real-world setting?



Alternate approach: optimize over “reasonable” mechanisms

Optimal mechanisms can be “unreasonable”: charge super-additive prices
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Buy-many mechanisms, a.k.a. Sybil-proof mechanisms

“In a Sybil attack the attacker subverts … by creating a large number 
of pseudonymous identities, using them to gain a disproportionately large influence.”

■ In a Sybil strategy, a buyer can purchase any multi-set of menu options at the 
sum of their prices. The buyer obtains an independent draw from each option.

⋯ $5

⋯ $1

⋯ $2

⋯ $2

⋯ $1

⋯ $5

⋯ $1.5

⋯ $2

⋯ $2

Not Sybil-proof Sybil-proofNot Sybil-proof

½(           )½(    )+½(    )



Buy-many mechanisms, a.k.a. Sybil-proof mechanisms

“In a Sybil attack the attacker subverts … by creating a large number 
of pseudonymous identities, using them to gain a disproportionately large influence.”

■ In a Sybil strategy, a buyer can purchase any multi-set of menu options at the 
sum of their prices. The buyer obtains an independent draw from each option.

■ A menu is Sybil-proof if the random allocation resulting from any Sybil strategy is 
“dominated” by a single menu option.

■ For deterministic pricings, Sybil-proofness ≡ subadditivity

Cheaper price; Bigger allocation



Approximability and other properties
of Buy-Many mechanisms



Optimal buy-many mechanisms can be well approximated

Theorem 1: For any value distribution 𝐷,

  Sybil-proof OPT ≤ O(log 𝑛) Revenue of Item Pricing

Theorem 2: There exists a distribution 𝐷 over additive valuations such that

 Subadditive Deterministic OPT ≥ Ω log 𝑛  Revenue of any “succinct” mechanism

Previous work showed…

[Babaioff Nisan Rubinstein’18]: ∃ product distributions over additive values for which Sybil-proof OPT < OPT.

[Briest Chawla Kleinberg Weinberg’10]: For any distribution 𝐷 over unit-demand valuations,  
                                           Sybil-proof OPT ≤ O(log 𝑛) Item Pricing Rev.

One that can be described 

using 2𝑜(𝑛1/4) bits 

[C. Teng Tzamos’19]



Optimal buy-many mechanisms can be well approximated

Theorem 1: For any value distribution 𝐷,

  Sybil-proof OPT ≤ O(log 𝑛) Revenue of Item Pricing

Theorem 2: There exists a distribution 𝐷 over additive valuations such that

 Subadditive Deterministic OPT ≥ Ω log 𝑛  Revenue of any “succinct” mechanism

OPT

SRev

Sybil−proof OPT

Θ(log 𝑛)

∞

∞

BRev

max(SRev, Brev)

Any other “simple” mechanism

Ω(log 𝑛)

Ω(log 𝑛)

Ω(log 𝑛)

[C. Teng Tzamos’19]



Other desirable properties…

“Small” menu sizes?

■ Can get a finite bound over (1 − 𝜖)-approximate menus

Revenue monotonicity for additive valuations?

■ Likely doesn’t hold

Revenue Lipschitzness?

[Psomas et al.’19] show that Lipschitzness doesn’t hold for general mechanisms

■ Holds for Buy-Many mechanisms!



What makes buy-many menus well-behaved?

■ If 𝑥 and 𝑥′ are two “close enough” random allocations, they cannot be priced very 
differently.

⟹ mechanism can only price discriminate to a limited extent.

      Key lemma: Additive pricings point-wise 𝑛-approximate buy-many menus



Additive pricings point-wise 𝑛-approximate subadditive pricings

■ Sybil-proofness in deterministic pricings 𝑓 requires:    
   𝑓 𝐴 ∪ 𝐵 ≤ 𝑓 𝐴 + 𝑓(𝐵) for all subsets 𝐴, 𝐵 ⊆ [𝑛]

■ Define additive pricing 𝑔 as follows:

      𝑔𝑖  =  𝑓𝑖 for all 𝑖 ∈ 𝑛  and 𝑔 𝑆 = σ𝑖∈𝑆 𝑔𝑖  for all 𝑆 ⊆ [𝑛]

      Then:

1

𝑛
𝑔 𝑆 =

1

𝑛
෍

𝑖∈𝑆
𝑓𝑖 ≤ max𝑖∈𝑆𝑓𝑖  ≤ 𝑓 𝑆 ≤ ෍

𝑖∈𝑆
𝑓𝑖 = 𝑔(𝑆)



Additive pricings point-wise 𝑛-approximate buy-many menus

■ Given buy-many menu {(𝜆, 𝑓 𝜆 )}

■ Define additive pricing 𝑔 as follows:

      𝑔𝑖  = min
𝜆

𝑓(𝜆)

Pr[𝑖∈𝜆]
 for all 𝑖 ∈ 𝑛  and 𝑔 𝑆 = σ𝑖∈𝑆 𝑔𝑖  for all 𝑆 ⊆ [𝑛]

■ Extend 𝑔 to lotteries: 𝑔 𝜆 = σ𝑆 Pr 𝑆~𝜆 σ𝑖∈𝑆 𝑔𝑖 = σ𝑖 𝑔𝑖Pr[𝑖 ∈ 𝜆]. 

■ Since 𝑓 is buy-many, 𝑔(𝜆) ≥ 𝑓(𝜆).

■ On the other hand, 𝑓 𝜆 ≥ 𝑔𝑖 Pr 𝑖 ∈ 𝜆  ∀𝑖. Therefore, 𝑓(𝜆) ≥
1

𝑛
σ𝑖 𝑔𝑖 Pr 𝑖 ∈ 𝜆 =

1

𝑛
𝑔(𝜆).

lottery a.k.a. randomized allocation

cheapest way to acquire item 𝑖 under pricing 𝑓

⇒
1

𝑛
𝑔(𝜆) ≤ 𝑓(𝜆) ≤ 𝑔(𝜆)



A proof of the O(log n) approximation



Theorem 1: For any distribution 𝐷 over valuations. 

 and any buy-many pricing function 𝑓: (random) allocations → ℝ+ ∪ {0},

 there exists an additive pricing function 𝑔 with

Rev𝐷 𝑔 ≥
1

2 log(2𝑛)
Rev𝐷(𝑓)

Key technical claim: Point-wise approximation implies revenue approximation.

Theorem 3: Given any pricing functions 𝑓 and 𝑔 such that for all random allocations Λ, 
1

𝑐
𝑔(Λ) ≤ 𝑓(Λ) ≤ 𝑔(Λ). 

  Then for any value distribution 𝐷, there exists a scaling factor 𝛼 > 0, such that 

Rev𝐷(𝛼𝑔) ≥
1

2 log 2𝑐
Rev𝐷(𝑓).



Theorem 1: For any distribution 𝐷 over valuations. 

 and any determ. subadditive pricing function 𝑓: (random) allocations → ℝ+ ∪ {0},

 there exists an additive pricing function 𝑔 with

Rev𝐷 𝑔 ≥
1

2 log(2𝑛)
Rev𝐷(𝑓)

Key technical claim: Point-wise approximation implies revenue approximation.

Theorem 3: Given any det. pricing functions 𝑓 and 𝑔 such that for all subsets 𝑆 ⊆ [𝑛], 
1

𝑐
𝑔(𝑆) ≤ 𝑓(𝑆) ≤ 𝑔(𝑆). 

  Then for any value distribution 𝐷, there exists a scaling factor 𝛼 > 0, such that 

Rev𝐷(𝛼𝑔) ≥
1

2 log 2𝑐
Rev𝐷(𝑓).



Theorem 3: Given any det. pricing functions 𝑓 and 𝑔 such that for all subsets 𝑆 ⊆ [𝑛], 
1

𝑐
𝑔(𝑆) ≤ 𝑓(𝑆) ≤ 𝑔(𝑆). 

Then for any value distribution 𝐷, there exists a scaling factor 𝛼 > 0, such that 

Rev𝐷(𝛼𝑔) ≥
1

2 log 2𝑐
Rev𝐷(𝑓).

Restatement: Given any det. pricing functions 𝑓 and 𝑔 such that for all subsets 𝑆 ⊆ [𝑛], 
1

𝑐
𝑔(𝑆) ≤ 𝑓(𝑆) ≤ 𝑔(𝑆). 

Then there exists a distribution over scaling factors 𝛼 > 0, such that for any valuation 𝑣,

Rev𝑣(𝛼𝑔) ≥
1

2 log 2𝑐
Rev𝑣(𝑓).



Theorem 3: Given any det. pricing functions 𝑓 and g such that for all subsets 𝑆 ⊆ [𝑛], 
1

𝑐
𝑔(𝑆) ≤ 𝑓(𝑆) ≤ 𝑔(𝑆). 

Then there exists a distribution over scaling factors 𝛼 > 0, such that for any valuation 𝑣,

Rev𝑣(𝛼𝑔) ≥
1

2 log 2𝑐
Rev𝑣(𝑓).

A scaling argument:

■ Suppose a buyer purchases 𝑆∗ under 𝑓. We want to recover 𝑓(𝑆∗).

■ Consider varying 𝛼 between Τ1
2𝑐 and 1.    ⟹ 𝑂(log 𝑐) scales of interest.

■ At one of these scales, we have 
1

2
𝑓(S∗) ≤ 𝛼𝑔 𝑆∗ ≤ 𝑓(𝑆∗).

      ⟹ Buyer can afford 𝑆∗ and seller makes revenue at least 
1

2
𝑓(S∗).

Problem: Buyer may buy something other than 𝑆∗ at a much lower price than 𝑓(𝑆∗).

Observation: the buyer gets high utility under pricing 𝛼𝑔 ⟹ can extract more revenue by raising prices.

As we raise prices, the buyer loses utility; with total utility loss comparable to 𝑓(𝑆∗).

■ Our goal: recover this utility loss as revenue!



Recovering utility loss as revenue

𝛼1

2𝑐
1

𝑟 𝛼 : revenue contributed by buyer v

𝑢(𝛼): utility of buyer v

util𝑆1
𝛼 = 𝑣 𝑆1 − 𝛼𝑔(𝑆1)

util𝑆2
𝛼

util𝑆3
𝛼

Observe: 
𝑑

𝑑𝛼
𝑢 𝛼 = − 𝑟′(𝛼) = −

1

𝛼
𝑟(𝛼)
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Scaling factor 𝛼

rev𝑆1
𝛼 = 𝛼𝑔(𝑆1)

Define: 

util𝑆 𝛼 = 𝑣 𝑆 − 𝛼𝑔(𝑆)
    𝑢 𝛼 = max𝑆 {util𝑆(𝛼)}

rev𝑆 𝛼 = 𝛼𝑔 𝑆
𝑟 𝛼 = 𝛼𝑔(𝑆𝛼)

Then, picking 𝛼 with density ∝ Τ1
𝛼  gives:

=
1

log(2𝑐)
න

𝑟(𝛼)

𝛼
 𝑑𝛼𝐸𝛼 𝑟 𝛼

=
1

log(2𝑐)
න −

𝑑

𝑑𝛼
𝑢 𝛼  𝑑𝛼

=
𝑢 ൗ1

2𝑐 − 𝑢(1)

log(2𝑐)



Outline:

■ Pick 𝛼 with density ∝ Τ1
𝛼. 

■ Then, 𝐸𝛼 𝑟 𝛼 =
𝑢 Τ1

2𝑐 −𝑢(1)

log(2𝑐)

■ 𝑢 1 = max𝑆 𝑣 𝑆 − 𝑔 𝑆 ≤ max𝑆 𝑣 𝑆 − 𝑓 𝑆 = 𝑣 𝑆∗ − 𝑓(𝑆∗)

■ 𝑢 Τ1
2𝑐 = max

𝑆
𝑣 𝑆 −

1

2𝑐
𝑔 𝑆 ≥ max

𝑆
𝑣 𝑆 −

1

2
𝑓 𝑆 ≥ 𝑣 𝑆∗ −

1

2
𝑓(𝑆∗)

■ Putting everything together, 𝐸𝛼 𝑟 𝛼 ≥
1

2 log 2𝑐
𝑓(𝑆∗)

 

util𝑆 𝛼 = 𝑣 𝑆 − 𝛼𝑔(𝑆)
    𝑢 𝛼 = max𝑆 {util𝑆(𝛼)}

Theorem 3: Given any det. pricing functions 𝑓 and g such that for all subsets 𝑆 ⊆ [𝑛], 
1

𝑐
𝑔(𝑆) ≤ 𝑓(𝑆) ≤ 𝑔(𝑆). 

Then there exists a distribution over scaling factors 𝛼 > 0, such that for any valuation 𝑣,

Rev𝑣(𝛼𝑔) ≥
1

2 log 2𝑐
Rev𝑣(𝑓).



Recap of approximation results

Theorem 1: For any value distribution 𝐷,

  Sybil-proof OPT ≤ O(log 𝑛) SRev

Theorem 2: There exists a distribution 𝐷 over additive valuations such that

 Subadditive Deterministic OPT ≥ Ω log 𝑛  Revenue of any “succinct” mechanism

Theorem 3: For any two pricing functions, a pointwise 𝑐-approximation upon rescaling 

 implies an 𝑂(log 𝑐)-approximation in revenue.



Summary

Main idea: instead of restricting the market, simplify the optimization by introducing 
“reasonable” constraints

■ Buy-many constraint is reasonable; frequently satisfied

■ Buy-many mechanisms exhibit many nice properties

■ Buy-many mechanisms can be well-approximated via item pricing

■ Some interesting open directions:

– Multiple buyers: what does the buy-many constraint mean in limited supply settings?

– Exact computation? The buy-many constraint is not a linear constraint.

Thank you!
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