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Revenue maximization with a single buyer

Drawn from some population Value function
' ~ v:2M 5 RYU{0
n items for sale D+ @ 515 v~D {0}

Probability of allocation

Selling mechanism = Menu of ogrtichosized options




What does the optimal menu look like? a

Is randomness necessary?
Yes forn > 1
(No forn = 1)

How many menu options?
Unbounded inn forn > 1
(One forn = 1)

[Thanassoulis’04]

[Myerson’81]

[Hart-Nisan’'13] 1/, (4@)
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Is the optimal mechanism easy to compute?

No, not even in simple cases!

[Chen-Diakonikolas-Orfanou-Paparas-Sun-Yannakakis’15]




Can we approximate revenue?

Two principal approaches...




Approach # 1: computational approach

Exact optimization when the value distribution has small support

< the optimum is the solution to an LP

Strong assumption
|
Exact! $ Complicated/impractical solution




Approach # 2: approximation for “nice” valuation functions

If values for different items are independent:
m Unit-demand valuations = item prices give a 4-approximation
m Additive valuations = item or grand bundle pricing gives a 6-approximation

m Subadditive valuations = item or grand bundle pricing gives an 0(1)-approx

[C. Hartline Kleinberg'07, C. Hartline Malec Sivan’10, C. Malec Sivan’10, Li Yao'13, Babaioff

Immorlica Lucier Weinberg'14, Rubinstein Weinberg'15, Kothari Mohan Schvartzman Singla
Weinberg'19, ...]



Posted pricing a.k.a. the grocery store mechanism
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Grand bundle pricing: p(S) = p(In])




Approach # 2: approximation for “nice” valuation functions

If values for different items are independent: Can relax a little bit

[C. Malec Sivan’10, Psomas
Schvartzman Weinberg'19]

m Unit-demand valuations = item prices give a 4-approximation

m Additive valuations = item or grand bundle pricing gives a 6-approximation

m Subadditive valuations = item or grand bundle pricing gives an 0(1)-approx

[C. Hartline Kleinberg'07, C. Hartline Malec Sivan’10, C. Malec Sivan’10, Li Yao'13, Babaioff

Immorlica Lucier Weinberg'14, Rubinstein Weinberg'15, Kothari Mohan Schvartzman Singla
Weinberg'19, ...]

Simple practical solutions Unrealistic assumptions




What about arbitrary value distributions?

With two items, there exists an instance with a unit-demand buyer for which:
m Optimal revenue = o
m Item pricing revenue < some constant

m Revenue of any deterministic mechanism < some constant

[Briest C. Kleinberg Weinberg'10, Hart Nisan’13]

These large gaps do not go away we perturb values drawn from a worst case distribution
by small amounts. [Psomas Schvartzman Weinberg'19]




What hope do we have for revenue
maximization in a real-world setting?




Alternate approach: optimize over “reasonable” mechanisms

Optimal mechanisms can be “unreasonable”: charge super-additive prices
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Buy-many mechanisms, a.k.a. Sybil-proof mechanisms

“In a Sybil attack the attacker subverts ... by creating a large number
of pseudonymous identities, using them to gain a disproportionately large influence.”

m In a Sybil strategy, a buyer can purchase any multi-set of menu options at the

sum of their prices. The buyer obtains an independent draw from each option.
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Buy-many mechanisms, a.k.a. Sybil-proof mechanisms

“In a Sybil attack the attacker subverts ... by creating a large number
of pseudonymous identities, using them to gain a disproportionately large influence.’

J

m In a Sybil strategy, a buyer can purchase any multi-set of menu options at the
sum of their prices. The buyer obtains an independent draw from each option.

m A menu is Sybil-proof if the random allocation resulting from any Sybil strategy is

“dominated” by a single menu option.
y g e me P

Cheaper price; Bigger allocation

m For deterministic pricings, Sybil-proofness = subadditivity




Approximability and other properties
of Buy-Many mechanisms




Optimal buy-many mechanisms can be well approximated

[C. Teng Tzamos'19]
Theorem 1: For any value distribution D,

Sybil-proof OPT < O(logn) Revenue of Item Pricing

Theorem 2: There exists a distribution D over additive valuations such that

Subadditive Deterministic OPT = Q(logn) Revenue of any “succinct” mechanism

!

[Babaioff Nisan Rubinstein’18]: 3 product distributions over additive values for which Sybil-proof OPT < OPT.

One that can be described
using 2°*) pits

Previous work showed...

[Briest Chawla Kleinberg Weinberg’10]: For any distribution D over unit-demand valuations,
Sybil-proof OPT < O(logn) Item Pricing Rev.



Optimal buy-many mechanisms can be well approximated

[C. Teng Tzamos'19]
Theorem 1: For any value distribution D,

Sybil-proof OPT < O(logn) Revenue of Item Pricing

Theorem 2: There exists a distribution D over additive valuations such that

Subadditive Deterministic OPT = Q(logn) Revenue of any “succinct” mechanism

OPT
¢'e)
BRev Q(logn)
Sybil—proof OPT 00
max(SRev, Brev) {(logn)
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Any other “simple” mechanism

SRev




Other desirable properties...

“Small” menu sizes?

m Can get a finite bound over (1 — e¢)-approximate menus

Revenue monotonicity for additive valuations?

m Likely doesn't hold

Revenue Lipschitzness?
[Psomas et al.”19] show that Lipschitzness doesn’t hold for general mechanisms

m Holds for Buy-Many mechanisms!




What makes buy-many menus well-behaved?

m If x and x’ are two “close enough” random allocations, they cannot be priced very
differently.

= mechanism can only price discriminate to a limited extent.

[ Key lemma: Additive pricings point-wise n-approximate buy-many menus]




Additive pricings point-wise n-approximate subadditive pricings

m Sybil-proofness in deterministic pricings f requires:
f(AUB) < f(A) + f(B) for all subsets A,B < [n]

m Define additive pricing g as follows:
gi = f; foralli € [n]and g(S) = Y,;cqg; forall S € [n]
Then:

1 1
~g($) =2 fi<maxesf; < fO) <) fi=9(S)

LES




Additive pricings point-wise n-approximate buy-many menus

lottery a.k.a. randomized allocation

Given buy-many menu {()L,\f(/l))}

cheapest way to acquire item i under pricing f

Define additive pricing g as follows:

Ji for all i € [n] and g(S) = Y.;ccg; forall S € [n]

Extend g to lotteries: g(1) = Y. Pr[S~A] {Xies 9i} = X giPr[i € 1].
Since f is buy-many, g(1) = f(1).

On the other hand, f(1) = g; Prli € 4] Vi. Therefore, f(1) > %Zigi Prli € 1] = %g(/l).

1
=>—gW) =5 =g




A proof of the O(log n) approximation



Theorem 1: For any distribution D over valuations.
and any buy-many pricing function f: (random) allocations —» R* U {0},

there exists an additive pricing function g with

- 1
Revp(g) = 2log(2n) Revp (f)

Key technical claim: Point-wise approximation implies revenue approximation.

Theorem 3: Given any pricing functions f and g such that for all random allocations A,

1
g = fA) = g(h).
Then for any value distribution D, there exists a scaling factor a > 0, such that

— Revp (f).

2 log2c

ReVD (ag) >




Theorem 1: For any distribution D over valuations.
and any determ. subadditive pricing function f: (random) allocations — R* U {0},

there exists an additive pricing function g with

- 1
Revp(g) = 2log(2n) Revp (f)

Key technical claim: Point-wise approximation implies revenue approximation.

Theorem 3: Given any det. pricing functions f and g such that for all subsets S € [n],

1
—9(S) = f(5) = g(5).
Then for any value distribution D, there exists a scaling factor a > 0, such that

— Revp (f).

2 log2c

ReVD (ag) >




Theorem 3: Given any det. pricing functions f and g such that for all subsets S € [n],

1
=g(S) < f(S) < g(S).
Then for any value distribution D, there exists a scaling factor a > 0, such that

—_Revp(f).

2log2c

ReVD (ag) =

Restatement: Given any det. pricing functions f and g such that for all subsets S € [n],

1
—9(S) = f(5) = g(5).
Then there exists a distribution over scaling factors a > 0, such that for any valuation v,

1
Rev,(ag) = 2 log 2¢ Rev,(f).




Theorem 3: Given any det. pricing functions f and g such that for all subsets S € [n],

1
~9(5) = f(S) = g(S).
Then there exists a distribution over scaling factors a > 0, such that for any valuation v,

1
Rev,(ag) = e Rev,(f).

A scaling argument:
m Suppose a buyer purchases S* under f. We want to recover f(S").

m Consider varying a between 1/,. and 1. = 0(logc) scales of interest.

m Atone of these scales, we have %f(S*) < ag(S*) < f(S).

= Buyer can afford S* and seller makes revenue at least %f(S*).

Problem: Buyer may buy something other than S* at a much lower price than f(S").

Observation: the buyer gets high utility under pricing ag = can extract more revenue by raising prices.

As we raise prices, the buyer loses utility; with total utility loss comparable to f(S™).

m Our goal: recover this utility loss as revenue!




Buyer’s utility/payment

Recovering utility loss as revenue
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r(a): revenue contributed by buyer v

u(a): utility of buyer v

Define:
utils(a) = v(S) — ag(S)
u(a) = maxg {utilg(a)}

revs(a) = ag(S)
r(a) = ag(Sq)

Observe:
d

~u(@) = —7'(a) = —=7(a)

Then, picking a with density « 1/, gives:

1 r(a)
Eglr(a)] = log(2¢)) « da

1 d
- log(2c) j  da wa) da

_ u(l/ZC) o U(l)
B log(2c)




Theorem 3: Given any det. pricing functions f and g such that for all subsets S € [n],

~9(S) < f(S) < g(S).

Then there exists a distribution over scaling factors a > 0, such that for any valuation v,
1

Rev,(ag) = e Rev,(f).
Outlin.e: | | utils(a) = v(S) — ag(S)
m Pick a with density o« 1/,. u(a) = maxg {utilg(a)}
m  Then, Eylr(a)] = 42d-u@

log(2c)

. u(l) = maxg {v(S) — g(S)} < maxs {v(S) — f(9)} =v($*) — f(S7)

m u(l/y) = msax{v(S) — Z—ICg(S)} > mSaX{U(S) —%f(S)} > v(S5%) —%f(S*)

m Putting everything together, E,[r(a)] = zlo;

P,




Recap of approximation results

Theorem 1: For any value distribution D,
Sybil-proof OPT < O(logn) SRev

Theorem 2: There exists a distribution D over additive valuations such that

Subadditive Deterministic OPT = Q(logn) Revenue of any “succinct” mechanism

Theorem 3: For any two pricing functions, a pointwise c-approximation upon rescaling

implies an 0(log c¢)-approximation in revenue.




Summary

Main idea: instead of restricting the market, simplify the optimization by introducing
“reasonable” constraints

m Buy-many constraint is reasonable; frequently satisfied
m Buy-many mechanisms exhibit many nice properties

m Buy-many mechanisms can be well-approximated via item pricing

m Some interesting open directions:

- Multiple buyers: what does the buy-many constraint mean in limited supply settings?
- Exact computation? The buy-many constraint is not a linear constraint.

Thank you!
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