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ABSTRACT
Cache coherence is ubiquitous in shared memory multi-
processors because it provides a simple, high performance
memory abstraction to programmers. Recent work suggests
extending hardware cache coherence between CPUs and
GPUs to help support programming models with tightly
coordinated sharing between CPU and GPU threads. How-
ever, implementing hardware cache coherence is particularly
challenging in systems with discrete CPUs and GPUs that
may not be produced by a single vendor. Instead, we pro-
pose, selective caching, wherein we disallow GPU caching
of any memory that would require coherence updates to
propagate between the CPU and GPU, thereby decoupling
the GPU from vendor-specific CPU coherence protocols.
We propose several architectural improvements to offset
the performance penalty of selective caching: aggressive
request coalescing, CPU-side coherent caching for GPU-
uncacheable requests, and a CPU–GPU interconnect opti-
mization to support variable-size transfers. Moreover, cur-
rent GPU workloads access many read-only memory pages;
we exploit this property to allow promiscuous GPU caching
of these pages, relying on page-level protection, rather than
hardware cache coherence, to ensure correctness. These op-
timizations bring a selective caching GPU implementation
to within 93% of a hardware cache-coherent implementation
without the need to integrate CPUs and GPUs under a single
hardware coherence protocol.

1. INTRODUCTION
Technology trends indicate an increasing number of sys-

tems designed with CPUs, accelerators, and GPUs coupled
via high-speed links. Such systems are likely to intro-
duce unified shared CPU-GPU memory with shared page
tables. In fact, some systems already feature such imple-
mentations [4]. Introducing globally visible shared memory
improves programmer productivity by eliminating explicit
copies and memory management overheads. Whereas this
abstraction can be supported using software-only page-level
protection mechanisms [26, 45], hardware cache coherence
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Figure 1: Number of coherent caches in future two socket
CPU-only vs CPU–GPU systems.

can improve performance by allowing concurrent, fine-
grained access to memory by both CPU and GPU. If the
CPU and GPU have separate physical memories, page mi-
gration may also be used to optimize page placement for
latency or bandwidth by using both near and far mem-
ory [1, 13, 16, 42].

Some CPU–GPU systems will be tightly integrated into a
system on chip (SoC) making on-chip hardware coherence
a natural fit, possibly even by sharing a portion of the on-
chip cache hierarchy [15, 22, 26]. However, the largest GPU
implementations consume nearly 8B transistors and have
their own specialized memory systems [48]. Power and
thermal constraints preclude single-die integration of such
designs. Thus, many CPU–GPU systems are likely to have
discrete CPUs and GPUs connected via dedicated off-chip
interconnects like NVLINK (NVIDIA), CAPI (IBM), HT
(AMD), and QPI (INTEL) or implemented as multi-chip
modules [10, 29, 30, 31, 46]. The availability of these high
speed off-chip interconnects has led both academic groups
and vendors like NVIDIA to investigate how future GPUs
may integrate into existing OS-controlled unified shared
memory regimes used by CPUs [1, 2, 52, 53].

Current CPUs have up to 18 cores per socket [32] but
GPUs are expected to have hundreds of streaming multipro-
cessors (SMs) each with its own cache(s) within the next
few years. Hence, extending traditional hardware cache-
coherency into a multi-chip CPU–GPU memory system re-
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quires coherence messages to be exchanged not just within
the GPU but over the CPU–GPU interconnect. Keeping
these hundreds of caches coherent with a traditional HW co-
herence protocol, as shown in Figure 1, potentially requires
large state and interconnect bandwidth [33,36]. Some recent
proposals call for heterogeneous race-free (HRF) GPU pro-
gramming models, which allow relaxed or scoped memory
consistency to reduce the frequency or hide the latency of
enforcing coherence [22]. Others argue that scopes sub-
stantially increase programmer burden, and instead propose
a data-race-free programming model with coherence based
on reader-initiated invalidation [59]. However, irrespective
of memory ordering requirements, such approaches either
require software to initiate flushes at synchronization points
or system-wide hardware cache coherence mechanisms.
We show that Selective Caching can achieve performance
rivaling more complex CPU-GPU cache coherence proto-
cols. Techniques like region coherence [54] seek to scale
coherence protocols for heterogeneous systems, but require
pervasive changes throughout the CPU and GPU memory
systems. Such approaches also incur highly coordinated
design and verification effort by both CPU and GPU ven-
dors [24] that is challenging when multiple vendors wish to
integrate existing CPU and GPU designs in a timely manner.

In the past, NVIDIA has investigated extending hard-
ware cache-coherence mechanisms to multi-chip CPU–GPU
memory systems. Due to the significant challenges associ-
ated with building such systems, in this work, we architect
a GPU selective caching mechanism. This mechanism pro-
vides the conceptual simplicity of CPU–GPU hardware
cache coherence and maintains a high level of GPU per-
formance, but does not actually implement hardware cache
coherence within the GPU, or between the CPU and GPU.
In our proposed selective caching GPU, the GPU does not
cache data that resides in CPU physical memory, nor does it
cache data that resides in the GPU memory that is actively
in-use by the CPU on-chip caches. This approach is orthog-
onal to the memory consistency model and leverages the
latency-tolerant nature of GPU architectures combined with
upcoming low-latency and high-bandwidth interconnects
to enable the benefits of shared memory. To evaluate the
performance of such a GPU, we measure ourselves against
a theoretical hardware cache-coherent CPU–GPU system
that, while high performance, is impractical to implement.

In this work, we make the following contributions:

1. We propose GPU selective caching, which enables
a CPU–GPU system that provides a unified shared
memory without requiring hardware cache-coherence
protocols within the GPU or between CPU and GPU
caches.

2. We identify that much of the improvement from GPU
caches is due to coalescing memory accesses that are
spatially contiguous. Leveraging aggressive request
coalescing, GPUs can achieve much of the perfor-
mance benefit of caching, without caches.

3. We propose a small on-die CPU cache to handle un-
cached GPU requests that are issued at sub-cache line
granularity. This cache helps both shield the CPU

Workload L1 Hit Rate (%) L2 Hit Rate (%)
backprop 62.4 70.0
bfs 19.6 58.6
btree 81.8 61.8
cns 47.0 55.2
comd 62.5 97.1
kmeans 5.6 29.5
minife 46.7 20.4
mummer 60.0 30.0
needle 7.0 55.7
pathfinder 42.4 23.0
srad_v1 46.9 25.9
xsbench 30.7 63.0
Arith Mean 44.4 51.6

Table 1: GPU L1 and L2 cache hit rates (average).

memory system from the bandwidth hungry GPU and
supports improved CPU–GPU interconnect efficiency
by implementing variable-sized transfer granularity.

4. We demonstrate that a large fraction of GPU-accessed
data is read-only. Allowing the GPU to cache this data
and relying on page protection mechanisms rather than
hardware coherence to ensure correctness closes the
performance gap between a selective caching and hard-
ware cache-coherent GPU for many applications.

2. MOTIVATION AND BACKGROUND
Heterogeneous CPU–GPU systems have been widely

adopted by the high performance computing community
and are becoming increasingly common in other comput-
ing paradigms. High performance GPUs have developed
into stand-alone PCIe-attached accelerators requiring ex-
plicit memory management by the programmer to control
data transfers into the GPU’s high-bandwidth locally at-
tached memory. As GPUs have evolved, the onus of explicit
memory management has been addressed by providing a
unified shared memory address space between the GPU and
CPU [26,45]. Whereas a single unified virtual address space
improves programmer productivity, discrete GPU and CPU
systems still have separate locally attached physical memo-
ries, optimized for bandwidth and latency respectively.

Managing the physical location of data, and guarantee-
ing that reads access the most up-to-date copies of data in
a unified shared memory can be done through the use of
page level migration and protection. Such mechanisms move
data at the OS page granularity between physical memo-
ries [45]. With the advent of non-PCIe high-bandwidth, low-
latency CPU–GPU interconnects, the possibility of perform-
ing cache-line, rather than OS-page-granularity, accesses be-
comes feasible. Without OS page protection mechanisms
to support correctness guarantees, however, the responsi-
bility of coherence has typically fallen on hardware cache-
coherence implementations.

As programming models supporting transparent CPU–
GPU sharing become more prevalent and sharing becomes
more fine-grain and frequent, the performance gap between
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Figure 2: GPU performance sensitivity to L1 and L2 latency and bandwidth changes.

page-level coherence and fine-grained hardware cache-
coherent access will grow [1,2,40]. On-chip caches, and thus
HW cache coherence, are widely used in CPUs because they
provide substantial memory bandwidth and latency improve-
ments [41]. Building scalable, high-performance cache
coherence requires a holistic system that strikes a balance
between directory storage overhead, cache probe bandwidth,
and application characteristics [8, 24, 33, 36, 54, 55, 58]. Al-
though relaxed or scoped consistency models allow coher-
ence operations to be re-ordered or deferred, hiding latency,
they do not obviate the need for HW cache coherence. How-
ever, supporting a CPU-like HW coherence model in large
GPUs, where many applications do not require coherence,
is a tax on GPU designers. Similarly, requiring CPUs to
relax or change their HW coherence implementations or im-
plement instructions enabling software management of the
cache hierarchy adds significant system complexity.

Prior work has shown that due to their many threaded de-
sign, GPUs are insensitive to off-package memory latency
but very sensitive to off-chip memory bandwidth [1, 2]. Ta-
ble 1 shows the L1 and L2 cache hit rates across a variety of
workloads from the Rodinia and United States Department
of Energy application suites [9,67]. These low hit rates cause
GPUs to also be fairly insensitive to small changes in L1 and
L2 cache latency and bandwidth, as shown in Figure 2. This
lack of sensitivity raises the question whether GPUs need to
uniformly employ on-chip caching of all off-chip memory to
achieve good performance. If GPUs do not need or can se-
lectively employ on-chip caching, then CPU–GPU systems
can be built that present a unified, coherent shared-memory
address space to the CPU, while not requiring a HW cache-
coherence implementation within the GPU.

Avoiding hardware cache coherence benefits GPUs by
decoupling them from the coherence protocol implemented
within the CPU complex, enables simplified GPU designs,
and improves compatibility across future systems. It also
reduces the scaling load on the existing CPU coherence and
directory structures by eliminating the potential addition
of hundreds of caches, all of which may be sharing data.
However, selective caching does not come without a cost.

Some portions of the global memory space will become un-
cacheable within the GPU and bypassing on-chip caches can
place additional load on limited off-chip memory resources.
In the following sections, we show that by leveraging mem-
ory request coalescing, small CPU-side caches, improved
interconnect efficiency, and promiscuous read-only caching,
selective caching GPUs can perform nearly as well as HW
cache-coherent CPU–GPU systems.

3. GPU SELECTIVE CACHING
Historically, GPUs have not required hardware cache co-

herence because their programming model did not provide
a coherent address space between threads running on sep-
arate SMs [47]. CPUs however, support hardware cache
coherence because it is heavily relied upon by both system
and application programmers to ensure correctness in multi-
threaded programs. Existing GPU programming models do
not guarantee data correctness when CPU and GPU accesses
interleave on the same memory location while the GPU is
executing. One way to provide such guarantees is to enforce
CPU–GPU hardware cache coherence, albeit with signifi-
cant implementation complexity as previously discussed.

Alternatively, if the GPU does not cache any data that
is concurrently cached by the CPU, no hardware coherence
messages need to be exchanged between the CPU and GPU,
yet data correctness is still guaranteed. This approach also
decouples the, now private, coherence protocol decisions in
CPU and GPU partitions, facilitating multi-vendor system
integration. We now discuss how CPU–GPU memory can
provide this single shared memory abstraction without im-
plementing hardware cache coherence. We then propose
several micro-architectural enhancements to enable selec-
tive caching to perform nearly as well as hardware cache
coherence, while maintaining the programmability benefits
of hardware cache coherence.

3.1 Naive Selective Caching
As shown in Figure 3, three simple principles enable the

GPU to support a CPU-visible shared memory by imple-
menting selective caching. First, the CPU is always allowed
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Figure 3: Overview of naive selective caching implementation and optional performance enhancements. Selective caching
GPUs maintain memory coherence with the CPU while not requiring hardware cache coherence within the GPU domain.

to cache any data in the system regardless of whether that
data is physically located in the memory attached to the GPU
or the CPU. Second, the GPU is never allowed to cache data
that resides within the CPU memory. Finally, the GPU may
cache data from its own local memory if and only if the CPU
is not also caching a copy of this data.

When the CPU is known to be caching a line that is homed
in GPU memory and the GPU requests this line, the request
must be routed to the CPU where the requested data is ser-
viced from the CPU cache, rather than the GPU memory.
Similarly, if the GPU is caching a line that the CPU requests,
then this line must be flushed from the GPU caches when the
request is received by the GPU memory controller. By dis-
allowing caching of memory in use by the CPU, the GPU
cannot violate the CPU hardware coherence model.

The primary microarchitectural structure needed by the
GPU to implement selective caching is the remote direc-
tory. The remote directory block shown in Figure 3 tracks
approximately, but conservatively, the cache lines homed in
GPU memory that are presently cached at the CPU. When
the CPU requests a line from GPU memory, its cache block
address is entered into the remote directory. If the address
was not already present, the GPU probes and discards the
line from all GPU caches, as in a conventional invalidation-
based coherence protocol. Once a cache block is added to
the GPU remote directory, it becomes un-cacheable within
the GPU; future GPU accesses to the line will be serviced
from the CPU cache.

To limit hardware cost, we implement the remote direc-
tory as a cuckoo filter (a space efficient version of a count-
ing bloom filter) that never reports false negatives but may
report false positives [7,18]. Thus, the remote directory may
erroneously, but conservatively, indicate that a line is cached
at the CPU that has never been requested, but will accu-
rately reference all lines that have actually been requested.
False positives in the remote directory generate a spurious
request to the CPU, which must respond with a negative ac-
knowledgement (NACK) should the line not be present in

the CPU cache. This request will then be serviced from the
GPU memory system. Similarly, if the CPU has cached a
line homed in GPU memory (causing a remote directory in-
sertion) and has since evicted it, the CPU may also NACK a
GPU request, causing the request to return to the GPU mem-
ory for fulfillment.

Because entries are inserted but never pruned from our
remote directory, we must track if the directory becomes full
or reaches a pre-selected high-water mark. If it becomes full,
our implementation forces the CPU to flush all cache lines
homed in GPU memory and then resets the remote directory.
This limited cache flush operation does not flush any lines
homed in CPU memory, the vast majority of the system’s
memory capacity. In our design, the flush is performed by
triggering a software daemon to call the Linux cacheflush
trap.

The remote directory is sized to track CPU caching of up
to 8MB of GPU memory, which when fully occupied re-
quires just 64KB of on-chip storage to achieve a false pos-
itive rate of 3%. In the workloads we evaluate, the remote
directory remains largely empty, and neither the capacity nor
false positive rate have a significant impact on GPU perfor-
mance. If workloads emerge that heavily utilize concurrent
CPU–GPU threads, the size and performance of this struc-
ture will need to be re-evaluated. However if cacheflush
trapping should become excessive due to an undersized re-
mote directory, page-migration of CPU–GPU shared pages
out of GPU memory and into CPU memory can also be em-
ployed to reduce pressure on the GPU remote directory.

3.2 Improving Selective Caching Performance
Caches have consistently been shown to provide signifi-

cant performance gains thanks to improved bandwidth and
latency. As such, naively bypassing the GPU caches based
on the mechanisms described in Section 3.1 should be ex-
pected to hurt performance. In this subsection, we describe
three architectural improvements that mitigate the impact of
selectively bypassing the GPU caches and provide perfor-
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mance approaching a system with hardware cache coher-
ence.

3.2.1 Cacheless Request Coalescing
The first optimization we make to our naive selective

caching design is to implement aggressive miss status han-
dling register (MSHR) request coalescing for requests sent
to CPU memory, labeled Ê in Figure 3. MSHR request co-
alescing can significantly reduce the request traffic to CPU
memory without violating coherency guarantees. Request
coalescing works by promoting the granularity of an individ-
ual load request (that may be as small as 64 bits) to a larger
granularity (typically 128B cache lines) before issuing the
request to the memory system. While this larger request is
in-flight, if other requests are made within the same 128B
block, then these requests can simply be attached to the
pending request list in the corresponding MSHR and no new
request is issued to the memory system.

To maintain correctness in a selective caching system, this
same coalescing scheme can be utilized, but data that is re-
turned to the coalesced requests for which no pending re-
quest is found must be discarded immediately. Discarding
data in this way is similar to self-invalidating coherence pro-
tocols, which attempt to minimize invalidation traffic in CC-
NUMA systems [38,39]. Whereas most MSHR implementa-
tions allocate their storage in the cache into which the pend-
ing request will be inserted, our cache-less request coalesc-
ing must have local storage to latch the returned data. This
storage overhead is negligible compared to the aggregate
size of the on-chip caches that are no longer needed with
selective caching.

Table 2 shows the fraction of GPU memory requests that
can be coalesced by matching them to pre-existing in-flight
memory requests. We call request coalescing that happens
within a single SM L1 coalescing and coalescing across SMs
L1+L2 coalescing. On average, 35% of memory requests
can be serviced via cacheless request coalescing. While a
35% hit rate may seem low when compared to conventional
CPU caches, we observe that capturing spatial request local-
ity via request coalescing provides the majority of the benefit
of the L1 caches (44.4% hit rate) found in a hardware cache-
coherent GPU, as shown in Table 1.

3.2.2 CPU-side Client Cache
Although memory request coalescing provides hit rates

approaching that of conventional GPU L1 caches, it still
falls short as it cannot capture temporal locality. Selective
caching prohibits the GPU from locally caching lines that
are potentially shared with the CPU but it does not preclude
the GPU from remotely accessing coherent CPU caches. We
exploit this opportunity to propose a CPU-side GPU client
cache (label Ë in Figure 3), which takes advantage of tem-
poral locality not exploited by MSHR coalescing.

To access CPU memory, the GPU must already send a re-
quest to the CPU memory controller to access the line. If re-
quest coalescing has failed to capture re-use of a cache line,
then multiple requests for the same line will be sent to the
CPU memory controller causing superfluous transfers across
the DRAM pins, wasting precious bandwidth. To reduce
this DRAM pressure, we introduce a small client cache at

Workload L1 Coalescing L1+L2 Coalescing
backprop 54.2 60.0
bfs 15.8 17.6
btree 69.4 82.4
cns 24.8 28.1
comd 45.7 53.8
kmeans 0.0 0.0
minife 29.0 32.6
mummer 41.9 51.1
needle 0.1 1.8
pathfinder 41.4 45.8
srad_v1 30.8 34.2
xsbench 15.6 18.0
Average 30.7 35.4

Table 2: Percentage of memory accesses that can be coa-
lesced into existing in-flight memory requests, when using
L1 (intra-SM) coalescing, and L1 + L2 (inter-SM) coalesc-
ing.

the CPU memory controller to service these GPU requests,
thereby shielding the DDR memory system from repeated
requests for the same line. Our proposed GPU client cache
participates in the CPU coherence protocol much like any
other coherent cache on the CPU die, however lines are allo-
cated in this cache only upon request by an off-chip proces-
sor, such as the GPU.

This single new cache does not introduce the coherence
and interconnect scaling challenges of GPU-side caches, but
still provides some latency and bandwidth filtering advan-
tages for GPU accesses. One might consider an alternative
where GPU-requested lines are instead injected into the
existing last-level cache (LLC) at the CPU. In contrast to
an injection approach, our dedicated client cache avoids
thrashing the CPU LLC when the GPU streams data from
CPU memory (a common access pattern). By placing this
client cache on the CPU-side rather than the GPU-side of
the CPU–GPU interconnect, we decouple the need to extend
the CPU’s hardware cache coherence protocol into even one
on-die GPU cache. However, because the GPU client cache
is located at the CPU-side of the CPU–GPU interconnect, it
provides less bandwidth than a GPU-side on-die cache. As
described in Section 2 and shown in Figure 2, this bandwidth
loss is typically not performance-critical.

3.2.3 Variable-size Link Transfers
Conventional memory systems access data at cache line

granularity to simplify addressing and request matching
logic, improve DRAM energy consumption, and exploit
spatial locality within caches. Indeed, the minimum transfer
size supported by DRAM is usually a cache line. Cache
line-sized transfers work well when data that was not im-
mediately needed can be inserted into an on-chip cache, but
with selective caching, unrequested data transferred from
CPU memory must be discarded. Hence, portions of a cache
line that were transferred, but not matched to any coalesced
access, result in wasted bandwidth and energy.

The effect of this data over-fetch is shown in Table 3,
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Workload Avg. Cacheline Utilization(%)
backprop 85.9
bfs 37.4
btree 78.7
cns 77.6
comd 32.6
kmeans 25.0
minife 91.6
mummer 46.0
needle 39.3
pathfinder 86.6
srad_v1 96.3
xsbench 30.3
Average 60.6

Table 3: Utilization of 128B cache line requests where the
returned data must be discarded if there is no matching coa-
lesced request.

where cache line utilization is the fraction of the transferred
line that has a pending request when the GPU receives a
cache line-sized response from CPU memory. An average
cache line utilization of 60% indicates that just 77 out of
128 bytes transferred are actually used by the GPU. 51 addi-
tional bytes were transferred across the DRAM interface and
CPU–GPU interconnect only to be immediately discarded.

To address this inefficiency, architects might consider re-
ducing the transfer unit for selective caching clients from
128B down to 64 or 32 bytes. While fine-grained transfers
improve transfer efficiency by omitting unrequested data,
that efficiency is offset by the need for multiple small re-
quests and packetization overhead on the interconnect. For
example, in our link implementation, a transfer granularity
of 32B achieves at best 66% link utilization (assuming all
data is used) due to interconnect protocol overheads, while
128B transfers (again, assuming all data is used) can achieve
88% efficiency.

To maintain the benefit of request coalescing, but reduce
interconnect inefficiency, we propose using variable-size
transfer units on the CPU–GPU interconnect (labeled Ì in
Figure 3). To implement variable-size transfer units at the
GPU, we allocate GPU MSHR entries at the full 128B gran-
ularity; coalescing requests as described in Section 3.2.1.
However, when a request is issued across the CPU–GPU
interconnect, we embed a bitmask in the request header indi-
cating which 32B sub-blocks of the 128B cache line should
be transferred on the return path. While this initial request
is pending across the interconnect, if additional requests
for the same 128B cache line are made by the GPU, those
requests will be issued across the interconnect and their 32B
sub-block mask will be merged in the GPU MSHR.

Similar to the GPU-side MSHR, variable sized transfer
units require that the CPU-side client cache also maintain
pending MSHR masks for requests it receives, if it can not
service the requests immediately from the cache. By main-
taining this mask, when the DRAM returns the 128B line,
only those 32B blocks that have been requested are trans-
ferred to the GPU (again with a bitmask indicating which

Figure 4: Fraction of 4KB OS pages that are read-only and
read-write during GPU kernel execution.

blocks are included). Because there may be both requests
and responses in-flight simultaneously for a single 128B
line, it is possible that two or more responses are required
to fulfill the data requested by a single MSHR; the bitmasks
included in each response facilitate this matching. Because
GPUs typically perform SIMD lane-level request coalescing
within an SM, 32B requests happen to be the minimum and
most frequently sized request issued to the GPU memory
system. As a result, we do not investigate supporting link
transfer sizes smaller than 32 bytes, which would require
microarchitectural changes within the GPU SM.

3.3 Promiscuous Read-Only Caching
Selective caching supports coherence guarantees by by-

passing GPU caches when hardware cache-coherence oper-
ations could be needed. Thus far, our selective caching ar-
chitecture has assumed that the GPU must avoid caching all
data homed in CPU memory. We identify that we can loosen
this restriction and allow GPU caching of CPU memory, but
only if that data can be guaranteed to be read-only by both
the CPU and GPU.

Figure 4 shows the fraction of data touched by the GPU
that is read-only or both read and written, broken down at
the OS page (4KB) granularity. In many workloads, we find
the majority of the data touched by the GPU is read-only at
the OS page level. We examine this data at page granularity
because, even without hardware cache coherence, it is possi-
ble (though expensive) to guarantee correctness through OS
page protection mechanisms entirely in software. Any cache
may safely contain data from read-only OS pages. However,
if the page is re-mapped as read-write, cached copies of the
data at the GPU must be discarded, which will occur as part
of the TLB shootdown process triggered by the permission
change [61].

We propose that despite lacking hardware cache coher-
ence, selective caching GPUs may choose to implement
promiscuous read-only caching of CPU-memory, relying
on such page level software coherence to provide correct-
ness (labeled Í in Figure 3). To implement read-only
caching, the GPU software run-time system speculatively
marks pages within the application as read-only at GPU
kernel launch time. It also tracks which pages may have

6

499



been marked read-only by the application itself to prevent
speculation conflicts. With pages speculatively marked as
read-only, when the GPU requests pages from the CPU
memory, the permissions bit in the TLB entry is checked to
determine if lines from this page are cacheable by the GPU
despite being homed in CPU memory. Similarly, if the line
resides in GPU memory but is marked as cached by the CPU
in the remote directory, this line can still be cached locally
because it is read-only.

If a write to a read-only page occurs at either the CPU or
GPU, a protection fault is triggered. A write by the CPU in-
vokes a fault handler on the faulting core, which marks the
line as read/write at the CPU and uncacheable at the GPU.
The fault handler then triggers a TLB shootdown, discard-
ing the now stale TLB entry from all CPU and GPU TLBs.
This protection fault typically incurs a 3-5us delay. The next
access to this page at a GPU SM will incur a hardware page
walk to refetch this PTE, typically adding < 1us to the first
access to this updated page.

A faulting write at the GPU is somewhat more complex,
as protection fault handlers currently do not run on a GPU
SM. Instead, the GPU MMU must dispatch an interrupt to
the CPU to invoke the fault handler. That SW handler then
adjusts the permissions and shoots down stale TLB entries,
including those at the GPU. The CPU interrupt overhead
raises the total unloaded latency of the fault to 20us (as mea-
sured on NVIDIA’s Maxwell generation GPUs). However,
only the faulting warp is stalled: the SM can continue exe-
cuting other non-faulting warps. Once the GPU receives an
acknowledgement that the fault handling is complete, it will
re-execute the write, incurring a TLB miss and a hardware
page walk to fetch the updated PTE entry.

The many-threaded nature of the GPU allows us to largely
hide the latency of these permission faults by executing
other warps, thereby mitigating the performance impact of
the high SW fault latency in nearly all of our workloads.
Nevertheless, software page fault handlers are orders of
magnitude more expensive than hardware cache-coherence
messaging and may erode the benefit of promiscuous read-
only caching if permission faults are frequent. We evaluate
the performance of promiscuous caching under different
software faulting overhead costs in Section 5.2.

4. METHODOLOGY
We evaluate selective caching via simulation on a sys-

tem containing discrete CPUs and GPUs with DDR4 and
GDDR5 memories attached to the CPU and GPU, respec-
tively. Our simulation environment is based on GPGPU-
Sim [5], which we modify to support a heterogeneous mem-
ory system with simulation parameters shown in Table 4.
We use bandwidth-aware page placement for all simulations
as it has been shown to be the best page placement strat-
egy without requiring any application profiling or program
modification [2]. In our simulated system, this page place-
ment results in 20% of the GPU workload data being placed
within the CPU-attached memory with 80% residing in the
GPU-attached memory.

In our system, the CPU is connected to the GPU via a full
duplex CPU–GPU interconnect. The interconnect has peak
bandwidth of 90GB/s using 16B flits for both data and con-

Simulator GPGPU-Sim 3.x
GPU Arch NVIDIA GTX-480 Fermi-like
GPU Cores 15 SMs @ 1.4Ghz
L1 Caches 16kB/SM, 3 cycle latency
L1 MSHRs 64 Entries/L1
L2 Caches 128kB/Channel, 120 cycle lat.
L2 MSHRs 128 Entries/L2 Slice
CPU Client Cache 512KB, 200 cycle latency

Memory System
GPU GDDR5 8-channels, 336GB/sec aggregate
CPU DDR4 4-channels, 80GB/sec aggregate
SW Page Faults 16 concurrent per SM
DRAM Timings RCD=RP=12, RC=40, CL=WR=12
DDR4 Burst Len. 8

CPU–GPU Interconnect
Link Latency 100 GPU core cycles
Link Bandwidth 90 GB/s Full-Duplex
Req. Efficiency 32B=66%, 64B=80%, 128B=88%

Table 4: Parameters for experimental GPGPU based simula-
tion environment.

trol messages with each data payload of up to 128B requiring
a single header flit. Thus, for example, a 32B data message
will require sending 1 header flit + 2 data flits = 3 flits in to-
tal. To simulate an additional interconnect hop to remote
CPU memory, we model an additional fixed, pessimistic,
100-cycle interconnect latency to access the DDR4 memory
from the GPU. This overhead is derived from the single ad-
ditional interconnect hop latency found in SMP CPU-only
designs, such as the Intel Xeon [32]. When simulating re-
quest coalescing within the GPU, we use the same number of
MSHRs as the baseline configuration but allow the MSHRs
to have their own local return value storage in the selective
caching request coalescing case. The CPU-side GPU client
cache is modeled as an 8-way set associative, write-through,
no write-allocate cache with 128B line size of varying ca-
pacities shown later in Section 5.1.2. The client cache la-
tency is 200 cycles, comprising 100 cycles of interconnect
and 100 cycles of cache access latency. To support synchro-
nization operations between CPU and GPU, we augment the
GPU MSHRs to support atomic operations to data homed in
either physical memory; we assume the CPU similarly can
issue atomic accesses to either memory.

To model promiscuous read-only caching, we initially
mark all the pages (4kB in our system) in DDR as read-only
upon GPU kernel launch. When the first write is issued to
each DDR page, the ensuing protection fault invalidates the
TLB entry for the page at the GPU. When the faulting mem-
ory operation is replayed, the updated PTE is loaded, indi-
cating that the page is uncacheable. Subsequent accesses to
the page are issued over the CPU–GPU interconnect. Pages
marked read-write are never re-marked read-only during
GPU kernel execution. Using the page placement policy
described earlier in this section, the GPU is able to cache
80% of the application footprint residing in GPU memory.
We vary our assumption for the remote protection fault la-
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tency from 20-40us and assume support for up to 16 pending
software page protection faults per SM; a seventeenth fault
blocks the SM from making forward progress on any warp.

We evaluate results using the Rodinia and United States
Department of Energy benchmark suites. We execute the
applications under the CUDA 6.0 weak consistency mem-
ory model. While we did evaluate workloads from the Par-
boil [62] suite, we found that these applications have un-
characteristically high cache miss rates, hence even in the
hardware cache-coherent case, most memory accesses go to
the DRAM. As such, we have chosen to omit these results
because they would unfairly indicate that selective caching
is performance equivalent to a theoretical hardware cache-
coherent GPU. In Section 5 we report GPU performance as
application throughput, which is inversely proportional to
workload execution time.

5. RESULTS
We evaluate the performance of selective GPU caching

through iterative addition of our three proposed microarchi-
tectural enhancements on top of naive selective caching. We
then add promiscuous read-only caching and finally present
a sensitivity study for scenarios where the workload foot-
print is too large for a performance-optimal page placement
split across CPU and GPU memory.

5.1 Microarchitectural Enhancements
Figure 5 shows the baseline performance of naive selec-

tive caching compared to a hardware cache-coherent GPU.
Whereas performance remains as high as 95% of the base-
line for some applications, the majority of applications suf-
fer significant degradation, with applications like btree and
comd seeing nearly an order-of-magnitude slowdown. The
applications that are hurt most by naive selective caching
tend to be those that have a high L2 cache hit rate in a hard-
ware cache-coherent GPU implementation like comd (Ta-
ble 1) or those that are highly sensitive to L2 cache latency
like btree (Figure 2). Prohibiting all GPU caching of CPU
memory results in significant over-subscription of the CPU
memory system, which quickly becomes the bottleneck for
application forward progress, resulting in nearly a 50% per-
formance degradation across our workload suite.

5.1.1 Cacheless Request Coalescing
Our first microarchitectural proposal is to implement

cacheless request coalescing as described in Section 3.2.1.
With naive selective caching relying on only the SIMD lane-
level request coalescer within an SM, performance of the
system degrades to just 42% of the hardware cache-coherent
GPU, despite only 20% of the application data residing
in CPU physical memory. Introducing request coalesc-
ing improves performance to 74% and 79% of a hardware
cache-coherent GPU when using L1 coalescing and L1+L2
coalescing, respectively. This improvement comes from
a drastic reduction in the total number of requests issued
across the CPU–GPU interconnect and reducing pressure
on the CPU memory. Surprisingly srad_v1 shows a 5%
speedup over the hardware cache-coherent GPU when using
L1+L2 request coalescing. srad_v1 has a large number of
pages that are written without first being read, thus the CPU

Figure 5: GPU performance under selective caching with
uncoalesced requests, L1 coalesced requests, L1+L2 coa-
lesced requests.

DRAM system benefits from the elimination of reads that
are caused by the write-allocate policy in the baseline GPU’s
L2 cache. Because the request coalescing hit rates, shown
in Table 2, lag behind the hardware cached hit rates, selec-
tive caching still places a higher load on the interconnect
and CPU memory than a hardware cache-coherent GPU,
which translates into the 21% performance reduction we ob-
serve when using selective caching with aggressive request
coalescing.

5.1.2 CPU-side Client Cache
Whereas request coalescing captures much of the spa-

tial locality provided by GPU L1 caches, it cannot capture
any long distance temporal locality. Figure 6 shows the
performance differential of adding our proposed CPU-side
client cache to L1+L2 request coalescing within the selec-
tive caching GPU. This GPU client cache not only reduces
traffic to CPU DRAM from the GPU, but also improves
latency for requests that hit in the cache and provides ad-
ditional bandwidth that the CPU–GPU interconnect may
exploit. We observe that performance improvements scale
with client cache size up to 512KB before returns dimin-
ish. Combining a 512KB, 8-way associative client cache
with request coalescing improves performance of our selec-
tive caching GPU to within 90% of the performance of a
hardware cache-coherent GPU. Note that btree only bene-
fits marginally from this client cache because accessing the
client cache still requires a round-trip interconnect latency of
200 cycles (Section 4). btree is highly sensitive to average
memory access latency (Figure 2), which is not substantially
improved by placing the client cache for GPU requests on
the CPU die.

The size of an on-die CPU client cache is likely out of the
hands of GPU architects, and for CPU architects allocating
on-die resources for an external GPU client may seem an un-
likely design choice. However, this client cache constitutes
only a small fraction of the total chip area of modern CPUs
(0.7% in 8-core Xeon E5 [27]) and is the size of just one ad-
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Figure 6: GPU performance with selective caching when
combining request coalescing with CPU-side caching for
GPU clients at 64KB–1MB cache capacities. (CC: Client-
Cache)

ditional private L2 cache within the IBM Power 8 processor.
Much like processors have moved towards on-die integra-
tion of PCIe to provide improved performance with exter-
nal peripherals, we believe the performance improvements
due to this cache are significant enough to warrant integra-
tion. For CPU design teams, integrating such a cache into an
existing design is likely easier than achieving performance
by extending coherence protocols into externally developed
GPUs. The GPU client cache also need not be specific to
just GPU clients, other accelerators such as FPGAs or spa-
tial architectures [50, 56] that will be integrated along-side
a traditional CPU architecture will also likely benefit from
such a client cache.

5.1.3 Variable-size Link Transfers
Request coalescing combined with the CPU client cache

effectively reduce the pressure on the CPU DRAM by limit-
ing the number of redundant requests that are made to CPU
memory. The CPU client cache exploits temporal locality to
offset data overfetch that occurs on the DRAM pins when
transferring data at cache line granularity, but does not ad-
dress CPU–GPU interconnect transfer inefficiency. To re-
duce this interconnect over-fetch, we propose variable-sized
transfer units (see Section 3.2.3). The leftmost two bars for
each benchmark in Figure 7 show the total traffic across the
CPU–GPU interconnect when using traditional fixed 128B
cache line requests and variable-sized transfers, compared
to a hardware cache-coherent GPU. We see that despite re-
quest coalescing, our selective caching GPU transfers nearly
4 times the data across the CPU–GPU interconnect than the
hardware cache-coherent GPU. Our variable-sized transfer
implementation reduces this overhead by nearly one third to
just 2.6x more interconnect traffic than the hardware cache-
coherent GPU.

This reduction in interconnect bandwidth results in per-
formance gains of just 3% on average, despite some applica-
tions like comd showing significant improvements. We ob-

Figure 7: GPU data transferred across CPU-GPU intercon-
nect (left y-axis) and performance (right y-axis) for 128B
cache line-size link transfers and variable-size link transfers,
respectively.

serve that variable-sized transfers can significantly improve
bandwidth utilization on the CPU–GPU interconnect but
most applications remain performance-limited by the CPU
memory bandwidth, not the interconnect itself. When we
increase interconnect bandwidth by 1.5x without enabling
variable-sized requests, we see an average performance im-
provement of only 1% across our benchmark suite. Variable-
sized requests are not without value, however; transferring
less data will save power or allow this expensive off-chip
interface to be clocked at a lower frequency, but evaluating
the effect of those improvements is beyond the scope of this
work.

5.2 Promiscuous GPU Caching
By augmenting selective caching with request coalescing,

a GPU client cache, and variable-sized transfers, we achieve
performance within 93% of a hardware cache-coherent
GPU. As described in Section 3.3, the GPU can be al-
lowed to cache CPU memory that is contained within pages
that are marked as read-only by the operating system. The
benefit of caching data from such pages is offset by pro-
tection faults and software recovery if pages promiscuously
marked as read-only and cached by the GPU are later writ-
ten. Figure 8 (RO-ZeroCost) shows the upper bound on pos-
sible improvements from read-only caching for an idealized
implementation that marks all pages as read-only and tran-
sitions them to read-write (and thus uncacheable) without
incurring any cost when executing the required protection
fault handling routine. In a few cases, this idealized im-
plementation can outperform the hardware cache-coherent
GPU because of the elimination of write allocations in the
GPU caches, which tend to have little to no reuse.

We next measure the impact of protection fault cost,
varying the unloaded fault latency from 20us to 40us (see
Figure 8), commensurate with typical fault latencies on to-
day’s GPU implementations. While a fault is outstanding,
the faulting warp and any other warp that accesses the same
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Figure 8: GPU performance when using Selective caching
(Request-Coalescing + 512kB-CC + Variable-Transfers)
combined with read-only caching. geo-mean*: Geomet-
ric mean excluding backprop, cns, needle, where read-
only caching should be disabled. (RO: Read-Only)

address are stalled; but, other warps may proceed, mitigat-
ing the impact of these faults on SM forward progress. The
latency of faults can be hidden if some warps executing on
an SM are reading this or other pages. However, if all warps
issue writes at roughly the same time, the SM may stall due
to a lack of schedulable warps or MSHR capacity to track
pending faults. When accounting for fault overheads, our
selective caching GPU with promiscuous read-only caching
achieves only 89% of the performance of the hardware
cache-coherent GPU.

With a 20us fault latency, we see that 7 of 12 workloads
exhibit improvement from promiscuous read-only caching
and that btree sees a large 35% performance gain as it ben-
efits from improvements to average memory access latency.
In contrast, three workloads, backprop, cns, and needle,
suffer considerable slowdowns due to the incurred protec-
tion fault latency. These workloads tend to issue many con-
current writes, exhausting the GPUs ability to overlap ex-
ecution with the faults. For such workloads, we advocate
disabling promiscuous read-only caching in software (e.g.,
via a mechanism that tracks the rate of protection faults, dis-
abling promiscuous read-only caching when the rate exceeds
a threshold).

In summary, the effectiveness of promiscuous read-only
caching depends heavily on the latency of protection faults
and the GPU microarchitecture’s ability to overlap the ex-
ecution of non-faulting warps with those faults, which can
vary substantially across both operating systems and archi-
tectures. In systems where the fault latency is higher than the
20us (as measured on current NVIDIA systems), more judi-
cious mechanisms must be used to identify read-only pages
(e.g., explicit hints from the programmer via the mprotect
system call.)

5.3 Discussion
One use case in the future may be that GPU programmers

will size their application’s data to extend well beyond the

Figure 9: GPU performance under memory capacity con-
straints. (CC: Client-Cache, VT: Variable-sized Transfer
Units)

performance-optimal footprint in CPU and GPU memory.
With excess data spilling over into the additional capacity
provided by the CPU memory, performance bottlenecks will
shift away from the GPU towards the CPU memory system.
In such cases, the GPU caching policy for CPU memory will
come under additional pressure due to the increased traffic
skewed towards CPU memory.

To understand how selective caching affects performance
under such a scenario, we evaluate a situation wherein the
application data has been sized so that 90% of the footprint
resides in CPU memory and just 10% can fit within GPU
memory, as compared to the nearly inverse performance-
optimal 20%-80% ratio. Figure 9 shows the performance of
this memory-capacity-constrained case relative to the base-
line optimal ratio. We see that naive selective caching and
our proposed enhancements follow the same trend of per-
formance improvements shown previously in Section 5. Be-
cause this scenario is primarily limited by the CPU memory
system, we see that in some cases the client cache and vari-
able sized transfer interconnect optimizations can actually
outperform the hardware cache-coherent GPU due to a re-
duction in data overfetch between the CPU memory and the
GPU client. To validate our observation, we added the same
client cache and variable transfers to the hardware cache-
coherent baseline configuration and saw an average speedup
of 4.5%. Whereas the absolute performance achieved, com-
pared to a performance-optimal memory footprint and allo-
cation, may not always be compelling, should software de-
signers chose to partition their problems in this way, we be-
lieve selective caching will continue to perform as well as a
hardware cache-coherent GPU.

In this work, we have primarily investigated a system
where bandwidth-aware page placement provides an initial
page placement that has been shown to have optimal perfor-
mance [2]. Bandwidth-aware page placement is based on
the premise that the GPU will place pressure on the CPU and
GPU memory system in proportion to the number of pages
placed in each memory. Proposals like selective caching that
change the on-chip caching policy of the GPU can cause dra-

10

503



matic shifts in the relative pressure placed on each memory
system, effectively changing the bandwidth-optimal place-
ment ratio. Although we do not evaluate this phenomenon
in this work, balancing initial page placement with dynamic
page migration to help compensate for the lack of on-chip
caching is an area that needs further investigation.

6. RELATED WORK
Cache coherence for CPUs has received great attention in

the literature. Recent proposals have started to explore intra-
GPU and CPU–GPU cache coherence.

CPU Systems: Scalable cache coherence has been stud-
ied extensively for CPU-based multicore systems. Kelm et
al. show that scaling up coherence to hundreds or thousands
of cores will be difficult without moving away from pure
hardware-based coherence [23, 35], due to high directory
storage overheads and coherence traffic [11, 39]. Whereas
some groups have evaluated software shared memory imple-
mentations [17, 23], Martin et al. argue that hardware cache
coherence for mainstream processors is here to stay, because
shifting away from it simply shifts the burden of correctness
into software instead of hardware [41]. Nevertheless, disci-
plined programming models coupled with efficient hardware
implementations are still being pursued [12, 65, 66].

Self-invalidation protocols have been proposed to reduce
invalidation traffic and reduce coherence miss latency [38,
39]. Our selective caching request coalescing scheme uses
a similar idea, discarding a block immediately after fulfill-
ing requests pending at the MSHR. Other proposals have
classified data into private, shared, and instruction pages and
have devised techniques to curtail coherence transactions for
private data [14, 21, 55, 57]. We instead classify pages into
read-only versus read-write and exploit the fact that read-
only data can be safely cached in incoherent caches.

Ros and Kaxiras [57] have proposed a directory-less/
broadcast-less coherence protocol where all shared data is
self-invalidated at synchronization points. In this scheme,
at each synchronization point (e.g., lock acquire/release,
memory barrier) all caches need to be searched for shared
lines and those lines have to be flushed—an expensive op-
eration to implement across hundreds of GPU caches with
data shared across thousands of concurrent threads.

Heterogeneous Systems and GPUs: With the widespread
adoption of GPUs as a primary computing platform, the in-
tegration of CPU and GPU systems has resulted in multiple
works assuming that CPUs and GPUs will eventually be-
come hardware cache-coherent with shared page tables [1,
2, 52, 53]. CPU–GPU coherence mechanisms have been
investigated, revisiting many ideas from distributed shared
memory and coherence verification [20, 34, 51]. Power et
al. [54] target a hardware cache-coherent CPU–GPU system
by exploiting the idea of region coherence [3,8,43,68]. They
treat the CPU and the GPU as separate regions and mitigate
the effects of coherence traffic by replacing a standard di-
rectory with a region directory. In contrast, we identify that
CPUs and GPUs need not be cache-coherent; the benefits
of unified shared memory can also be achieved via selective
caching, which has lower implementation complexity.

Mixing incoherent and coherent shared address spaces
has been explored before in the context of CPU-only sys-

tems [28] and the appropriate memory model for mixed
CPU–GPU systems is still up for debate [19, 22, 25, 40].
Hechtman et al. propose a consistency model for GPUs
based on release consistency, which allows coherence to be
enforced only at release operations. They propose a write-
through no-write-allocate write-combining cache that tracks
dirty data at byte granularity. Writes must be flushed (inval-
idating other cached copies) only at release operations. Un-
der such a consistency model, our selective caching scheme
can be used to avoid the need to implement hardware support
for these invalidations between the CPU and GPU.

Cache coherence for GPU-only systems has been studied
by Singh et al. [60], where they propose a timestamp-based
hardware cache-coherence protocol to self-invalidate cache
lines. Their scheme targets single-chip systems and would
require synchronized timers across multiple chips when im-
plemented in multi-chip CPU–GPU environments. Kumar
et al. [37] examine CPUs and fixed-function accelerator co-
herence, balancing coherence and DMA transfers to prevent
data ping-pong. Suh et al. [64] propose integrating different
coherence protocols in separate domains (such as MESI in
one domain and MEI in another). However, this approach
requires invasive changes to the coherence protocols imple-
mented in both domains and requires significant implemen-
tation effort by both CPU and GPU vendors.

Bloom Filters: Bloom Filters [6] and Cuckoo Filters [18,
49] have been used by several architects [63, 69, 70] in the
past. Fusion coherence [51] uses a cuckoo directory to op-
timize for power and area in a CMP system. JETTY fil-
ters [44] have been proposed for reducing the energy spent
on snoops in an SMP system. We use a cuckoo filter to im-
plement the GPU remote directory.

7. CONCLUSIONS
Introducing globally visible shared memory in future

CPU–GPU systems improves programmer productivity and
significantly reduces the barrier to entry of using such sys-
tems for many applications. Hardware cache coherence can
provide such shared memory and extend the benefits of on-
chip caching to all system memory. However, extending
hardware cache coherence throughout the GPU places enor-
mous scalability demands on the coherence implementation.
Moreover, integrating discrete processors, possibly designed
by distinct vendors, into a single coherence protocol is a pro-
hibitive engineering and verification challenge.

We demonstrate that CPU–GPU hardware cache coher-
ence is not needed to achieve the simultaneous goals of uni-
fied shared memory and high GPU performance. We show
that selective caching with request coalescing, a CPU-side
GPU client cache and variable-sized transfer units can per-
form within 93% of a cache-coherent GPU for applications
that do not perform fine grained CPU–GPU data sharing and
synchronization. We also show that promiscuous read-only
caching benefits memory latency-sensitive applications by
using OS page-protection mechanisms rather than relying
on hardware cache coherence. Selective caching does not
needlessly force hardware cache coherence into the GPU
memory system, allowing decoupled designs that can maxi-
mize CPU and GPU performance, while still maintaining the
CPU’s traditional view of the memory system.
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