
Towards High Performance Paged Memory for GPUs

Tianhao Zheng†‡, David Nellans†, Arslan Zulfiqar†, Mark Stephenson†, Stephen W. Keckler†

† NVIDIA and ‡The University of Texas at Austin

{dnellans,azulfiqar,mstephenson,skeckler}@nvidia.com, thzheng@utexas.edu

ABSTRACT
Despite industrial investment in both on-die GPUs and next
generation interconnects, the highest performing parallel
accelerators shipping today continue to be discrete GPUs.
Connected via PCIe, these GPUs utilize their own privately
managed physical memory that is optimized for high band-
width. These separate memories force GPU programmers to
manage the movement of data between the CPU and GPU,
in addition to the on-chip GPU memory hierarchy. To sim-
plify this process, GPU vendors are developing software run-
times that automatically page memory in and out of the GPU
on-demand, reducing programmer effort and enabling com-
putation across datasets that exceed the GPU memory ca-
pacity. Because this memory migration occurs over a high
latency and low bandwidth link (compared to GPU mem-
ory), these software runtimes may result in significant per-
formance penalties. In this work, we explore the features
needed in GPU hardware and software to close the perfor-
mance gap of GPU paged memory versus legacy program-
mer directed memory management. Without modifying the
GPU execution pipeline, we show it is possible to largely
hide the performance overheads of GPU paged memory,
converting an average 2× slowdown into a 12% speedup
when compared to programmer directed transfers. Addition-
ally, we examine the performance impact that GPU memory
oversubscription has on application run times, enabling ap-
plication designers to make informed decisions on how to
shard their datasets across hosts and GPU instances.

1. INTRODUCTION
Discrete PCIe attached GPUs combined with x86 pro-

cessors dominate the marketplace for GPU computing en-
vironments today. This union of high thermal design power
(TDP) processors offers significant flexibility, meeting a va-
riety of application needs. Serial code sections benefit from
ILP-optimized CPU memory systems and processors, while
parallel code regions can run efficiently on the attached dis-
crete GPUs. However, the GPU’s constantly growing de-
mand for memory bandwidth is putting significant pressure
on the industry standard CPU–GPU PCIe interconnect, with

This research was supported in part by the United States Depart-
ment of Energy. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the
U.S. Government.

Figure 1: PCIe attached CPUs and GPUs implementing on-
demand memory migration to the GPU.

GPUs having local GDDR or HBM bandwidth that is 30–
50× higher than the bandwidth available via PCIe.

Until now, the onus of utilizing this small straw between
the GPU and CPU has fallen squarely on the application pro-
grammer. To manage this memory movement, GPU pro-
grammers have historically copied data to the GPU up-front,
only then launching their GPU kernels. In large part, be-
cause GPU kernels have only been able to reference mem-
ory physically located in GPU memory. While this restric-
tion has recently been relaxed, performance-conscious pro-
grammers still explicitly manage data movement, often by
painstakingly tiling their data and using asynchronous con-
structs to overlap computation with data migration. The
challenges of this complex data management is one of the
largest barriers to efficiently porting applications to GPUs.

Recently, AMD and NVIDIA have released software-
managed runtimes that can provide programmers the illu-
sion of unified CPU and GPU memory by automatically mi-
grating data in and out of the GPU memory [20, 34]. This
automated paging of GPU memory is a significant advance
in programmer convenience, but initial reports on real hard-
ware indicate that the performance overhead of GPU paged
memory may be significant, even for highly optimized mi-
crobenchmarks [25]. While up-front bulk transfer of data
from the CPU to GPU maximizes PCIe bandwidth, the GPU
is left idle until the transfer is complete. With paged GPU
memory, the GPU can now begin execution before any data
transfers have occurred. This execution will now stall how-

978-1-4673-9211-2/16/$31.00 c©2016 IEEE

345

ever and incur the page-fetch latency to transfer pages from
CPU to GPU memory before returning data to the compute
unit (CU) which performed the first load or store to a previ-
ously unaccessed page.

Despite PCIe latency being just several microseconds [30]
the page fault and DMA-process (called far-faults hence-
forth) requires several PCIe round trips and significant in-
teraction with the host CPU. Because GPUs do not have the
capability to handle page faults within the execution pipeline
themselves (as CPUs typically do today), the GPU offloads
GPU page table manipulation and transfer of pages to a GPU
software runtime executing on the CPU. The end-to-end cost
of this process may range from as much as 50 microseconds
to as little as 20 microseconds depending on the exact im-
plementation, as shown in Figure 1. For a simple scheme in
which the faulting process merely DMAs data to the GPU,
the overhead may be on the low end of this range. A more
complex scheme where the software fault handler performs
significant CPU and GPU page table manipulations on the
host, before invalidating and updating the GPU resident page
table, will be more expensive.

While GPUs are noted for being memory-latency toler-
ant, access latencies extending into 10’s of microseconds,
blocked behind far-fault handling, are orders of magnitude
larger than latencies to the local memory system. Because
of this, paged memory GPU implementations are likely to
see significant performance degradation as a byproduct of
this improved programming convenience. However, if these
performance overheads can be hidden, GPU paged memory
has the potential to improve both programmer productivity
and performance, as well as enable GPU computation across
datasets that exceed the physical memory capacity of the
GPU. In this work we attempt to quantify the performance
impact of GPU paged memory implementations and explore
both hardware and software improvements that can mitigate
the impact of these high-latency paged memory transfers.
The contributions of this work are the following:

1. We show that under the existing GPU compute unit
(CU) model, blocking paged memory fault handling
will not be competitive with programmer controlled
memory management, even if far-fault latency is re-
duced to an unrealistic 5 microseconds.

2. We propose a compute unit agnostic page fault han-
dling mechanism (called replayable far-faults) that
treats far-faults as long latency memory operations
rather than execution exceptions. This allows CUs to
continue issuing instructions from available warps as
long as they are not also blocked on pending far-faults.
We show that allowing just a small number of simulta-
neous outstanding far-faults per CU can reduce the im-
pact of GPU paged memory from a 3.6× to 2× slow-
down.

3. We show that even with replayable far-faults, PCIe
bandwidth is often underutilized and intelligent
prefetching is required to maximize CPU–GPU mem-
ory transfer bandwidth. We provide a simple software
prefetcher implementation that performs within 3% of
oracular prefetching and is able to improve the perfor-
mance of GPU paged memory from a 2× slowdown to

a 12% speedup when compared to legacy programmer
directed transfers.

4. We evaluate the impact of GPU memory oversubscrip-
tion on workload performance and show that for some
workloads oversubscription is likely to be utilized, but
for others oversubscription may be untenable, regard-
less of the paging policies employed.

2. MOTIVATION AND BACKGROUND
GPUs have become the de facto standard for paral-

lel program acceleration because of their highly-threaded,
throughput-oriented designs. Whereas traditional CPUs
have relied on caches and low latency memory systems
to help improve single-threaded execution, GPUs typically
forgo large caches and instead rely on multithreading to hide
memory system latency. As a consequence of exposed long
latency memory operations, GPU programmers try to struc-
ture their algorithms to eliminate memory dependencies be-
tween threads. To scale performance, GPUs have histori-
cally increased both the numbers of threads per compute unit
and added additional compute units (CU).

As the number of GPU compute units and threads in-
creases, memory bandwidth must also be scaled commen-
surately to keep these units fed. Despite GPU memory foot-
prints and bandwidths continuously growing, the memory
capacity of GPUs remains relatively small compared to the
capacity of the CPU-attached memory system. Because of
the separate physical memories the GPU and GPU operate
within, data must be copied from CPU memory into GPU
memory before the GPU is able to access it.1 GPU program-
mers explicitly control this transfer and typically front-load
the transfer of memory from host to device before GPU ker-
nel execution to maximize PCIe bus efficiency.

Current GPU programming models do provide the func-
tionality to overlap data transfer and kernel execution, as
in the CUDA streams programming model. However the
CUDA streams model restricts GPU execution from access-
ing memory that is currently undergoing transfers. Restric-
tions like this increase the difficulty for programmers to try
and efficiently overlap memory transfers and kernel execu-
tion on GPUs. As a result, the dominant “copy then execute”
model employed by most GPU programs effectively restricts
the effective working set of the application to be GPU mem-
ory resident. On kernel completion, programmers must also
copy the return data from the GPU to CPU, but the returned
data often has a significantly smaller footprint when com-
pared to the pre-execution transfer.

Figure 2 shows the effect of using a BW optimized front-
loaded memory transfer, before kernel execution, for work-
loads from the Rodinia [12], Parboil [42], and DoE HPC
suites [11,19,32,45]. As others have observed, this memory
transfer overhead is an important aspect to consider when
quantifying GPU performance [18]. For many kernels, data
migration overhead may match or even dominate kernel ex-
ecution time. As GPU compute capabilities improve the rel-
ative overhead of memory transfers to execution time will
grow. Simultaneously, improved CPU–GPU interconnects
1While it is possible to access memory directly over PCIe this is
rarely done in practice.

2

346

Figure 2: Workload execution time breakdown including
data transfer overhead, kernel execution time, and potential
speedup if copy and execution could be perfectly overlapped
in time.

such as faster versions of PCIe and next generation inter-
connects like NVIDIA’s NVLink [35] will reduce memory
transfer times. As a result, workloads are likely to continue
having a variety of balance points between kernel execution
and memory transfer overheads.

In the commonly used programmer directed memory
transfer model, the transfer and execute phases of a GPU ap-
plication are typically serialized, resulting in execution time
that is the sum of these costs. The paged memory mod-
els recently provided by GPU vendors, not only improved
programming convenience, but they also have the potential
to improve performance by overlapping these application
phases. Programmatically, these runtimes allow application
programmers to simply allocate memory as needed and the
software runtime will actively transition pages between the
CPU and GPU when required for execution to proceed. Fig-
ure 2 shows, in green, the theoretical performance improve-
ment achievable if the memory transfer and kernel execution
phases could be perfectly overlapped with no dependence.
For applications in which either kernel execution or mem-
ory transfer dominates the run time, there is little room for
performance improvement through overlapping. But, for ap-
plications with balanced execution and transfer, efficient on-
demand paged memory implementations may be able to ac-
tually improve performance beyond that of legacy program-
mer directed transfers by as much as 49%.

2.1 Supporting On-Demand GPU Memory
Despite using an identical interconnect, on-demand paged

GPU memory can improve performance over up-front bulk
memory transfer by overlapping concurrent GPU execution
with memory transfers. However, piecemeal migration of
memory pages to the GPU results in significant overheads
being incurred on each transfer rather than amortized across
many pages in an efficient bulk transfer. Because pageable
memory is a new feature in GPUs the concept of a valid
physical page, which is not already present in GPU memory,
is a new addition to the GPU’s microarchitectural memory
model.

Figure 3: The effect of improving the page-handling latency
of far-faults on a GPU that blocks compute units on page-
fault handling.

GPUs do not support context switching to operating sys-
tem service routines, thus page-faults that can be resolved
by migrating a physical page from the host to the device
cannot be handled in-line by the GPU compute units, as
they would be on a CPU today. Instead the GPU’s MMU
(GMMU) must handle this outside of the compute unit, re-
turning either a successful page translation request or a fa-
tal exception. Because the GMMU handling of this page-
fault actually invokes a software runtime on the host CPU,
the latency of completing this handling is both long (10’s
us) and non-deterministic. As such, GPUs may choose to
implement page-fault handling by having the GMMU stop
the GPU TLB from taking new translation requests until
the SW runtime has performed the page migration and the
GMMU can successfully return a page translation. Under
such a scenario, each individual CU could be blocked for
many microseconds while its page fault is handled, but other
non-faulting compute units can continue making progress,
enabling some overlap between GPU kernel execution and
on-demand memory migration.

Figure 3 shows the application run time of using such
a paged memory design compared to programmer directed
transfer under a sweep of possible page-fault handling laten-
cies. Though compute units are now able to continuously ex-
ecute stalling only for their own memory dependencies, this
improvement appears to be subsumed by the additional over-
head of performing many small on-demand memory trans-
fers rather than a single efficient up-front transfer. On real
GPUs, the load latency for the first access to a page when us-
ing paged GPU memory implementations ranges from 20µs
(NVIDIA Maxwell) to 50µs (AMD Kaveri), though the ex-
act steps occurring that contribute to this latency are not doc-
umented.

Thus using 20µs as an optimistic lower bound on SW
controlled page fault latency, applications employing paged
GPU memory may see slowdowns of up to 15× compared
to programmer directed memory transfers, with an average
slowdown of 6×. Even if page fault latencies could be re-
duced to 5us, the performance impact of on-demand pag-
ing would still result in nearly a 2× average slowdown ver-

3

347

CU

TLB

L1

CU

TLB

L1

CU

TLB

L1

L2

GMMU

Far-fault MSHRs

GDDR / HBM

GPU

DDR4

GPU page fault
runtime/driver

CPU
1

3

5

4

6

1 CU accesses memory location

causing TLB miss

2 TLB miss is relayed to GMMU

3 Page is not present (far-fault).

GMMU allocates MSHR entry

4 GMMU sends ‘NACK-replayable’

message to requesting TLB

5 CPU is interrupted to handle page

migration & page table update

6 Page migration complete. GMMU

notifies TLB to replay request

2

Figure 4: Architectural view of GPU MMU and TLBs implementing compute unit (CU) transparent far page faults.

sus programmer controlled memory transfers. While paged
memory handling routines undoubtedly will continue to im-
prove, PCIe’s ∼2µs latency combined with multiple round
trips for CPU–GPU communication makes it extremely un-
likely that CPU based GPU page fault resolution will ever
become faster than 10µs indicating that alternatives to sim-
ply speeding up page-fault latencies need to be examined to
enable high performance GPU paged-memory.

This paper explores two techniques that hide on-demand
GPU page fault latencies rather than trying to reduce them.
For example, we can potentially hide page fault latency by
not just decoupling GPU CUs from each other under page
faults, but by allowing each CU itself to continue execut-
ing in the presence of a page-fault. GPUs are efficient in
part because their pipelines are drastically simplified and do
not typically support restartable instructions, precise excep-
tions, nor the machinery required to replay a faulting instruc-
tion without side effects [29]. While replayable instructions
are a common technique for supporting long latency paging
operations on CPUs, this would be an exceptionally inva-
sive modification to current GPU designs. Instead, we ex-
plore the option of augmenting the GPU memory system,
which already supports long latency memory operations, to
gracefully handle occasional ultra-long latency memory op-
erations (those requiring page fault resolution) in Section 3.
In Section 4, we show that in addition to improving CU
execution and memory transfer overlap, aggressive page-
prefetching can build upon this concurrent execution model
and eliminate the latency penalty associated with the first
touch to a physical page.

3. ENABLING COMPUTE UNIT
EXECUTION UNDER PAGE-FAULTS

In Section 2 we showed that allowing GPU compute units
to execute independently, stalling execution only on their
own page faults, was insufficient to hide the effects of long
latency page fault handling. Because the GPU compute units
are not capable of resolving these page faults locally, the
GMMU must interface with a software driver executing on
the CPU to resolve these faults, as shown in Figure 4. Be-
cause this fault handling occurs outside the GPU CU, they
are oblivious that a page-fault is even occurring. To prevent
overflowing the GMMU with requests while a page-fault is

being resolved, the GMMU may choose to pause the CU
TLB from accepting any new memory requests, effectively
blocking the CU. Alternatively, to enable the CU to continue
executing in the presence of a page-fault (also called far-fault
to distinguish it from a GMMU translation request that can
be resolved in local-memory), both the CU TLB and GMMU
structures need to be extended with new capabilities to track
and replay far-faulting page translation requests once they
have been handled by the software runtime, a capability we
refer to as “replayable faults”.

Figure 4 shows a simplified architecture of a GPU that
supports ‘replayable’ page faults. 1 Upon first access to
a page it expects to be available in GPU memory, a TLB
miss will occur in the CU’s local TLB structure. 2 This
translation miss will be forwarded to the GMMU which per-
forms a local page table lookup, without any indication yet
that the page may be valid but not-present in GPU memory.
Upon discovering that this page is not physically present,
the GMMU would normally return an exception to the CU
or block the TLB from issuing additional requests. To en-
able the CU to continue computation under a page fault, our
proposed GPU’s GMMU employs a bookkeeping structure
called ‘far-fault MSHRs’ (see Figure 4) to track potentially
multiple outstanding page migration requests to the CPU.
3 Upon discovery that a translation request has transitioned

into a far-fault, the GMMU inserts an entry into the far-fault
MSHR list. 4 Additionally,the GMMU also sends a new
’Nack-Replayable’ message to CU’s requesting TLB. This
Nack response tells the CU’s TLB that this particular fault
may need to be re-issued to the GMMU for translation at
a later time. 5 Once this Nack-Replayable message has
been sent, the GMMU initiates the SW handling routine for
page fault servicing by putting its page translation request in
memory and interrupting the CPU to initiate fault servicing.
6 Once the page is migrated to the GPU, the corresponding

entry in the far-fault MSHRs is used to notify the appropriate
TLBs to replay their translation request for this page. This
translation will then be handled locally a second time, suc-
cessfully translated, and returned to the TLB as though the
original TLB translation request had taken tens of microsec-
onds to complete.

This far-fault handling routine is fully transparent to the
GPU CU, the warp that has generated the fault is desched-
uled until the time its memory request returns. As a re-

4

348

sult, within the CU all warps that are not waiting on their
own fault can continue to execute. Because all TLB misses
can potentially turn into far-faults, one might think that
the GMMU should implement as many far-fault MSHRs as
there are CU TLB entries. However, these additional entries
do not add to the GPU’s TLB reach like normal TLB entries
making them logically more expensive to implement.

Instead, the GMMU can implement a smaller number of
far-fault MSHRs and rely on the Nack-Replayable mecha-
nism to force replay of TLB translation requests for which it
has not initiated the SW page faulting process nor is track-
ing. For example, if the GMMU supports just two concur-
rent far-faults per CU, a third in-flight translation request
will turn into a far-fault. The GMMU can then drop this re-
quest and issue the Nack-Replayable to the TLB. This marks
this request as needing replay.

Because the TLB knows the supported number of far-fault
MSHRs for each CU, the TLB simply maintains a counter of
how many far-fault Nack-Replayable messages it has pend-
ing. If it receives a Nack that pushes this count above the
GMMU threshold, it now knows that this translation request
is not being handled and it will have to replay this trans-
lation once a GMMU pending far-fault has been resolved.
The Nack-Replay mechanism effectively implements a far-
fault request throttling mechanism under which the GPU
CU can continue execution for TLB hits and page transla-
tion requests that can be resolved locally by the GMMU
hardware page walk unit. Under this architecture, there is
now a critical design trade-off to determine the number of
GMMU far-fault MSHRs that must be supported to enable
CU’s to continue execution under the presence of replayable
far-faults without backing up into the CU TLB and blocking
non-faulting warps from performing the necessary address
translation.

3.1 Methodology
To evaluate the performance impact of our replayable far-

faults within a paged GPU memory, we model a hypothet-
ical GPU with the ability of the GMMU to track and trig-
ger far-fault page migrations from the CPU to the GPU as
shown in Figure 4. Under the on-demand paged GPU mem-
ory model, all pages initially reside in CPU memory at the
beginning of kernel execution. Upon first access to a page
by the GPU, the TLB will miss causing the GMMU to issue
a far-fault to the CPU to migrate the page to GPU memory.
In this case, the warp that has missed in the TLB will be
stalled, but all other warps within the CU can continue to is-
sue and be serviced by both the TLB and cache and memory
hierarchies pending availability of those microarchitectural
resources. When the GMMU interrupts the CPU to signal
a page-fault we also assume that the SW fault handler will
drain the GMMU pending fault queue if there are multiple
faults available in a polled fashion. This is a common tech-
nique used in device drivers to hide interrupt latency and
overhead for devices that signal the CPU at high rates.

We have sized our GPU TLB structures aggressively to
try and understand the performance impact of far-misses on
GPU paged memory when compared to TLB implementa-
tions that provides near ideal performance for applications
that execute resident within GPU memory. Our local multi-

Simulator GPGPU-Sim 3.x
GPU Arch NVIDIA GTX-480 Fermi-like
GPU Cores 15 CUs @ 1.4GHz
L1 Caches 16kB/CU
L2 Caches Memory Side 128kB/DRAM Channel
L2 MSHRs 128 Entries/L2 Slice
Per CU TLBs 128-entry, 4-port, per CU TLB

supporting hit under miss
GMMU Local page walk supported by

8KB 20-cycle latency PW-cache
Memory system

GPU GDDR5 12-channels, 384GB/sec aggregate
DRAM Timings RCD=RP=12,RC=40,CL=WR=12
CPU–GPU PCIe 3.0 X16, 16GB/sec
Interconnect 20µs far-fault service time

Table 1: Simulation parameters for GPU supporting on-
demand paged GPU memory.

threaded GMMU page walk and per CU TLB implementa-
tion is based largely on those proposed by Pichai et al. [38]
and Power et al. [39]. These groups have shown that a highly
threaded GMMU page walker and 128 entry, 4-port per-
CU TLB supporting hit-under-miss is able to achieve per-
formance within 2% of an idealized TLB design for most
workloads. Our workload footprints vary between 2.6MB
and 144MB with an average footprint size of 43MB. While
these footprints are smaller than contemporary GPU memo-
ries they are non-cache resident, thus depending heavily on
the GPU memory system to achieve good performance. Ad-
ditionally, as shown in Figure 2 memory transfer time dom-
inates the GPU execution time for half of these workloads.

We extend GPGPU-Sim [5] with our GMMU memory
model as shown in Table 1. It should be noted that we extend
the baseline GTX-480 model to better match the bandwidth
and compute capabilities of modern GPUs (e.g. increasing
the number of miss status handling registers and increasing
clock frequency on both CUs and memory). Although the
exact steps involved during the page migration process be-
tween CPU and GPU memories are undisclosed, we esti-
mate software managed page faults to take somewhere be-
tween 20µs and 50µs. We model an optimistic 20µs far-
fault handling latency in the rest of our evaluations assuming
that software page fault implementations will continue to be
optimized over time thus trending to the lower end of this
range.

3.2 Experimental Results
Figure 5 shows the performance comparison of on-

demand paged GPU memory when varying the number of
per CU concurrent GMMU far-faults. Although some ap-
plications such as nw and sgemm show little sensitivity to
supporting multiple outstanding far-faults per-CU, the ma-
jority of applications see significant performance gains if
the GMMU supports multiple pending far-faults per-CU in-
dicating that allowing CUs to continue executing under a
pending page fault is an important microarchitectural feature
for paged-memory GPUs to support. While we do not esti-

5

349

Figure 5: Workload runtime (lower is better) as a function of
number of supported GMMU far-faults (per CU).

mate the area impact of our GMMU far-fault MSHRs, this
structure essentially duplicates the per CU L1 MSHR entries
without providing any additional TLB reach.

Because the GMMU MSHR structure size is the union
of all per CU entries that are awaiting far-faults, supporting
a large number of entries in the far-fault MSHR structure
can be expensive. At application startup, when most TLB
misses are likely to be translated into far-faults, supporting a
large number of GMMU far-fault MSHRs is ideal, but once
most GPU accessed pages are on the GPU, these MSHRs are
likely to go underutilized. Therefore, we would like to min-
imize the total number of entries required in this structure
as much as possible. Fortunately, our evaluations show that
tracking only four in-flight far-faults per-CU at the GMMU
is sufficient to sustain good performance and there is little
reason to go beyond 16 in flight faults per CU. While it is
conceptually possible to allow the GMMU to simply use the
state information available at the per-CU TLBs without re-
quiring separate far-fault MSHRs; allowing the centralized
GMMU to have direct access into all TLB entries in all CUs
is not feasible from an implementation point of view.

Virtual vs Physically Tagged L1 Caches: In this work
we have assumed that the per CU L1 caches are physically
tagged, which requires the TLB lookup to be completed be-
fore the L1 cache tag lookup can be made. Because GPUs
typically do not need to support L1 cache coherence, they
may choose to be implemented with virtual tags rather than
physical. This removes the TLB latency from the critical
path of a cache access if permissions checking is also not
required. In our evaluation however, use of physical or vir-
tual L1 caches should not change our conclusions primarily
because the performance impact of paged GPU memory is
dominated by the service time for first access to a page. The
virtual or physical implementation of the L1 cache tags does
not change the overall compulsory miss rate, on which GPU
paged memory faults occur.

Virtual–virtual L1 caches can reduce the overall TLB
pressure by reducing the TLB translation rate, but the pri-

mary impact of this will be in the porting and number of
entries required in the TLB to not limit performance. Be-
cause we have assumed an aggressive design for our per CU
L1 TLBs, their performance is already near ideal, moving
to virtual-virtual L1 caches should result in little application
performance change in our simulated GPU. Despite the per-
formance improvement seen when supporting multiple out-
standing faults the performance of our proposed paged mem-
ory implementation is still 2–7× worse than programmer di-
rected transfers for half of our applications indicating that
there are further inefficiencies in the paged memory design
that need to be explored. We present further optimizations
in Section 4 aimed at closing this performance gap.

4. PREFETCHING GPU PAGED MEMORY
In Section 3 we explored the performance improvements

of enabling the GPU memory system to hide pending
software-handled page faults from the GPU CUs. By aug-
menting the TLB and GMMU to allow for multiple pend-
ing far-faults, we are able to reduce the performance over-
head of paged GPU memory by nearly 45% compared to
supporting just a single outstanding far-fault. This improve-
ment comes strictly from enabling additional overlapping
of data migration and computation and not from improv-
ing the page-fault latency itself. However, even with this
improvement our paged memory implementation still has a
∼100% performance overhead compared to programmer di-
rected data transfers. To understand where the remaining
overhead is rooted, we examined the PCIe bus traffic gener-
ated by our replayable far-fault architecture using multiple
pending on-demand faults.

Figure 6 shows the PCIe bandwidth utilization of our
workloads as a function of normalized application run time.
For each application if the line is below 1.0 it means that it
is underutilizing the PCIe bus. We see that only a few ap-
plications are able to generate enough on-demand requests
to fully saturate the available PCIe bus at any time during
execution and the average bandwidth utilization being just
25% across all application’s run times. Programmer con-
trolled memory transfers, on the other hand, are able to trans-
fer their datasets to the GPU at nearly full PCIe bandwidth
when utilizing efficient up-front memory transfers. This on-
demand underutilization provides an opportunity to specu-
latively prefetch pages across PCIe with little opportunity
cost. Successful prefetching of pages will result in the first
touch to a page incurring only TLB miss that can be resolved
locally by the GMMU, rather than being converted into a far-
fault. Thus, a successful prefetch removes the far-fault over-
head from the application’s critical path, improving average
memory latency and freeing up TLB and GMMU far-fault
MSHR resources to handle other on-demand faults.

4.1 Demand Prioritized Prefetching
The concept of prefetching has been been explored in

many microarchitectural and software-based systems (e.g.
[3, 15–17, 27, 33, 41]) but there are several unique proper-
ties of prefetching paged GPU memory that need to be met.
First, because we are examining workloads that are expected
to fit in GPU memory (a requirement we later relax in Sec-
tion 5), there is little downside to aggressive prefetching. As

6

350

Figure 6: PCIe bus transfer rate showing applications un-
derutilizing transfer BW despite multiple pending GMMU
far-faults.

long as the GPU memory has free physical pages, no page
must be evicted to allow a prefetched page to be inserted.
Second, because the GPU is nearly constantly generating
on-demand fetches, we do not want to flood the PCIe in-
terface with prefetch requests or risk throttling on-demand
page fetches (that are guaranteed to be useful) with fetches
of possibly useless pages. Large DMA transfers over PCIe
(the primary mechanism for transferring pages) are efficient
because they amortize the cost of the actual DMA setup
across many pages. Similarly, batched processing of page
fault handling by the GPU SW runtime amortizes the cost
of page table updates and CPU–GPU communication across
multiple faults.

Because of the use of DMA batched transfers and a finite
number of DMA transfers that can be pending, our software
prefetcher cannot reactively insert single page prefetches
onto the PCIe bus when it detects that the bus is underuti-
lized. Instead it calculates the number of in-flight pages on
the PCIe bus required to maximize bandwidth and groups
“on-demand” and “prefetch” pages into transfer sets that are
then issued for DMA. Based on PCIe bandwidth (16GB/s),
we can calculate the total number of pages that must be in
flight at all times to keep the bandwidth capacity of the PCIe
link saturated. At 16GB/s it takes ∼250 nanoseconds to
transfer a single 4KB page across PCIe. With an unloaded
page fault service request taking ∼20 microseconds, PCIe
can thus transfer 80 4KB pages within that interval. Thus, at
steady-state, if the software prefetcher can issue an 80 page
transfer set every 20µs, regardless of the pages in the group
being on-demand or prefetch based, our prefetcher should be
able to fully saturate the PCIe bus.2

Therefore, our prefetching approach segments execution
time into 20µs intervals, and within each interval it con-
structs an 80-page transfer set that it batch-submits at the
end of the interval. Because we do not want to impede on-
demand fetches, we add prefetch requests to a transfer set
2If multiple DMA channels are supported, the arithmetic is similar.
For example, with four channels, we can issue 20 page transfer sets
every 5µs to maintain full bandwidth.

only as a last resort. More specifically, our approach inserts
the first unique 80 pages that far-fault to the SW runtime
within an interval to the transfer set, S. At the end of the
interval, if the transfer set is not full (i.e., |S| < 80), the ap-
proach inserts speculative prefetch requests to fill it. Because
our approach waits until the end of each interval to perform
prefetch selection, it is worth noting that prefetch selection is
performed in software within the GPU runtime on the CPU,
thus it is on the critical path for fault handling latency. We
will later show that prefetch selection algorithms that cost
even 30µs, have minimal negative effect on GPU perfor-
mance.

4.2 Prefetch Page Selection
With a policy for creating and issuing transfer sets that

prioritize on-demand fetches, we now consider what pages
should be prioritized as part of prefetch page selection.
To understand the importance of prefetch selection (versus
maximizing PCIe bandwidth via balanced prefetching) we
implemented several different prefetching policies. Random
prefetching makes page selections by choosing candidates
randomly from the allocated virtual address (VA) range and
inserting them into the transfer set. Sequential prefetch,
chooses pages from lowest to highest virtual page number
order (without regard for the memory access order by the
GPU), much like the way programmer controlled memory
transfers often perform bulk memory copies. Our local-
ity prefetcher tries to leverage spatial locality between re-
cently touched pages. It identifies the last far-faulting page,
and then inserts the subsequent 80− |S| pages required to
complete the transfer set from the next VA sequential 128
pages beyond this faulting page. The intuition is that be-
cause GPUs often stream through memory pages the next
N pages will likely see immediate use by the GPU. In all
cases, if prefetch selection identifies pages that have already
been transfered to the GPU, they are not inserted in the trans-
fer set and the next prefetch candidate is used. If the local-
ity prefetcher runs out of local pages to prefetch it will also
choose candidate pages in VA-sequential order.

Finally, to understand the limit of prefetch effectiveness
we implement oracular profiled prefetching, in which the
transfer set is supplemented with prefetch candidates that
are inserted in the same order that the application actually
touches the pages. We implemented this by using a two
execution-pass approach where we track page touch order
in the first pass and then feed that reference stream into the
prefetcher during the second execution pass. While this is
not strictly oracular for non-deterministic applications, our
analysis shows it results in very few on-demand fetches
caused by candidate misprediction for applications in our
benchmark suite.

4.3 Results
Figure 7 shows the performance of these five prefetch-

ing policies combined with replayable far-faults, utilizing
16 outstanding faults per CU, and a 20µs unloaded far-
fault handling latency. Not surprisingly, oracular prefetch-
ing is the best-performing prefetch policy. The magnitude
of improvement from this prefetching is significant how-
ever, improving performance over 10× for some applica-
tions. The locality based prefetcher is the next best policy

7

351

Figure 7: Workload runtime (lower is better) when combining replayable far-faults with demand prioritized prefetching.

and comes within 3% of the absolute performance of the
oracular prefetching engine and manages to reduce the geo-
metric mean application runtime below that of legacy mem-
ory copy by 12%.

We find that sequential prefetching also works well, pri-
marily because for existing workloads the program alloca-
tion order of pages tends to occur in a similar order of first
access by the application. Our results show that there is a
11% difference in geometric mean performance between the
best and worst prefetcher examined. While the bulk of the
benefit of prefetching is clearly from improving PCIe band-
width utilization, the differentiation in prefetching algorithm
becomes important primarily when trying to improve perfor-
mance beyond legacy memory transfers.

For all prefetchers (including random), we were sur-
prised that the geometric mean performance surpasses that
of legacy programmer directed memory transfers. As dis-
cussed in Section 2, applications that are dominated by either
memory transfer time or execution time, the potential sav-
ings of overlapping memory transfers with execution is lim-
ited. This can be seen by comparing the oracular prefetch-
ing performance to the lower limit of execution time possi-
ble (labeled “Ideal Copy + Execute Overlap”). Applications
such as hotspot and sad have relatively balanced memory
transfer and execution phases, prefetching effectively over-
laps these phases, yielding over 20%+ speedups compared to
programmer directed memory transfers using locality based
prefetching.

For other applications such as minife or sgemm,
prefetching can still provide a large improvement over re-
playable far-faults alone, but there is insignificant headroom
for absolute performance improvement. Finally, applica-
tions that are kernel execution bound, such as comd or
sten, prefetching can only improve performance to match
programmer directed transfers which are already near the
performance limit of efficient transfer and execution overlap.

Replayable Faults Versus Prefetching: One addi-
tional design point evaluated was the effect of aggressive
prefetching without architectural support for replayable
far-faults. We found that aggressive prefetching alone

(blocking the SM during fault handling) can bridge much
of the performance gap for paged GPU memory, resulting
in just a 5% slowdown versus programmer controlled
transfers. However, combined with replayable far-faults
our final design results in a 12% improvement, indicating
both are necessary to improve upon programmer directed
transfers.

Effect of Page Size: In this work we have assumed
the GPU will utilize 4KB OS pages. There is a growing
trend toward using large (2MB+) pages for high per-
formance computing workloads. Current GPU software
stacks are unable to leverage transparent large pages and
superpages are typically split into the native small page
size before being migrated to the GPU via their software
runtime. If this software limitation was removed, 2MB page
transfers would provide implicit locality prefetching (which
our results show is good). However, over PCIe a 2MB
transfer takes nearly 128µs of transfer time. This causes
a minimum load-to-use interval of 128µs for on-demand
requests, significantly worse than the 20µs observed when
using 4KB pages.

Sensitivity to Far-Fault Handling Latency: While
we have used 20µs as our unloaded far-fault handling
latency, the prefetch selection process can add >5µs of
software overhead to any existing fault handling implemen-
tation. Additionally, 20µs may prove to be too aggressive
an estimate for unloaded fault handling latency as GPU
runtimes evolve. Because we have designed replayable
far-faults and prefetching to hide page fault latency rather
than reduce it, understanding the performance sensitivity to
fault latency is important. Figure 8 shows the performance
of our implemented GMMU with far-faults and locality
prefetching under unloaded far-fault latencies ranging from
20–40µs. We see that our fault latency hiding techniques
are nearly as effective for fault latencies as high as 40µs.
Performance decreases just 4% when moving from a 20µs
fault latency to a 40µs latency.

8

352

Figure 8: Sensitivity to increasing the end-to-end latency of
constructing and servicing a transfer set.

Concluding Discussion: Paged GPU memory has
been positioned as a programming convenience feature by
the GPU industry. With initial implementations showing
significant performance degradation compared to program-
mer controlled memory management [25], this convenience
appears to be the primary upside of early paged memory
GPU implementations. We have shown that by combining
replayable far-faults with demand prioritized prefetching,
it will be possible for paged memory GPUs to not just
match the performance of programmer controlled memory
transfers, but in many cases exceed it. By overlapping GPU
execution with on-demand memory transfers, parallel GPU
accelerators may see more applicability to problems that
were previously not candidates for offload (due to the mem-
ory transfer time hindering the overall GPU throughput).
While programming convenience, and now performance,
are compelling reasons to used paged memory for GPUs,
paged memory also enables another feature that has not
been available for GPU programmers until recently: mem-
ory oversubscription. We explore the impact of memory
oversubscription on GPU workloads in the remainder of the
paper.

5. GPU MEMORY OVERSUBSCRIPTION
In Sections 3 and 4 we showed that for workloads with

memory footprints that fit within GPU memory, paged
GPU memory implementations can be competitive with and
sometimes exceed the performance of programmer con-
trolled memory transfers. Achieving performance parity
with programmer controlled transfers increases the likeli-
hood that GPU programmers will adopt automatic memory
management, but this programmatic convenience is not the
only new feature that paged GPU memory provides. The
ability to page memory in and out of the GPU on-demand
opens the possibility that GPUs can now compute across
datasets that are larger than their physical memory, without
any programmer heroics. Memory oversubscription allows
application developers to make conscious decisions about
scale-up or scale-out use of GPUs for their environment de-
pending on application performance characteristics.

While we have shown that supporting replayable far-faults
within the GMMU and aggressive software prefetching is
good for performance when an application’s data set fits
within GPU memory, it is not clear that these policies are
good, or even sufficient, when GPU memory is oversub-
scribed. For example, aggressive prefetch of pages is ben-
eficial when no pages have to be evicted from GPU mem-
ory, but this could be counterproductive in an oversubscribed
GPU memory situation, displacing other heavily referenced
pages. When GPU memory has been filled to capacity but
on-demand fetches are required for execution to proceed; the
GPU must now displace a page that was within GPU mem-
ory, creating the need for an eviction selection policy. Over-
subscribed paged memory implementations must balance a
complex interaction of insertion, eviction, and prefetching
policies, as well as being heavily dependent on application
locality profiles and re-use distances. To understand the in-
teraction of these components for a GPU paged memory
system, we decompose these interactions into three individ-
ual constituents before re-combining them into our proposed
oversubscribed page-memory implementation.

The three axis that we evaluate independently are eviction
policy, prefetching, and oversubscription rate. To evaluate
these factors, we first must precondition the GPU execution
and memory to be in a known starting state. We do this by
picking a 50% oversubscription point, meaning only 50% of
the application footprint fits in GPU memory, the other pages
must reside in CPU memory. To achieve this, we adjust the
simulated GPU main memory size down until it can only
contain the appropriate fraction of application pages. We
then execute the application using the oracular prefetcher de-
scribed in Section 4 until GPU memory is at capacity. Only
at this point do we vary the eviction and prefetch policies,
described next. When comparing application run times, we
include the warmup execution time in addition to the execu-
tion time after GPU memory has become oversubscribed. In
this section we provide results for only 11 (out of 16 shown
previously) workloads which have application footprints ex-
ceeding 32MB.

5.1 Page Eviction Policy
To evaluate the effect of eviction policy on oversubscrip-

tion, after the GPU memory reaches capacity we turn off
page prefetching and migrate pages to the GPU on-demand
only. We then model two replacement policies for choosing
the eviction candidate: random and LRU. While true LRU
implementations are typically too expensive to implement,
it provides a commonly recognized upper bound for the per-
formance achievable via eviction policy changes. While we
had initially believed we would need to implement a vari-
ety of eviction policies, Figure 9 shows that for all applica-
tions except for xsbench, when using on-demand only mi-
gration, a random eviction policy is surprisingly competitive
with LRU.

Analysis shows that despite there being a hot-set of pages
in GPU memory, at a 50% oversubscription rate, the hot set
typically remains much smaller than the capacity of the GPU
memory. Because of this, random selection is likely to pick
a cold page for GPU eviction. Due to the streaming nature of
many GPU workloads, there is a high incidence of pages that

9

353

Figure 9: Workload runtime (lower is better) when only 50%
of application footprint fits in GPU memory while varying
LRU vs random replacement policy and on-demand only vs
continuous prefetch.

are migrated to the GPU, accessed several times in a short
time period and then becoming dead once the GPU moves
on to a different block of memory. xsbench is the notable
exception to this observation, with LRU policy performing
nearly 7× better than random replacement. While random
replacement works well for many applications, LRU does
perform better on average. True LRU is often approximated
by maintaining two, or even one bit per tracked item with
periodic resets. It is not clear that even this small amount of
per page storage is feasible for paged GPU memory which
will need to track millions of pages. Though tracking sets
and other techniques have been developed to reduce the stor-
age overheads of LRU, we question whether supporting LRU
eviction (rather than random) is worth the implementation
effort; especially given that despite perfect LRU, the appli-
cation slowdown due to memory oversubscription may be
too high for application developers to even consider using
this feature. This slowdown may also be worse if the GPU
caches must be fully flushed, rather than selectively flushed
(lines corresponding to the evicted page only) as modeled in
this work.

5.2 Prefetching While Oversubscribed

When evaluating eviction policies we disabled specula-
tive prefetching of pages once the GPU memory was over-
subscribed because prefetching can cause unnecessary cache
thrashing. However the effectiveness of the random evic-
tion policy, compared to LRU, indicates that many of the
pages residing in GPU memory are actually dead. If there
are a significant number of dead pages within GPU mem-

ory, then continuing to prefetch additional pages even while
GPU memory is oversubscribed, can potentially improve
performance. While these additional prefetches cause page
evictions, which consume bandwidth and energy, if the
prefetched pages are referenced before they are themselves
evicted then the page fault latency can be hidden from the
GPU, just as they were in Section 4.

To evaluate the value of continued prefetching, we ran
50% oversubscription simulations comparable to those de-
scribed in the prior subsection, but once we reach the GPU
“memory full” condition, we allow continued locality based
prefetching. The prefetching algorithm takes the current on-
demand page and prefetches pages that are not on the GPU
yet but are within the next 128 virtual contiguous pages
in the application address space, as in the locality prefetch
algorithm described in Section 4. Rather than attempt-
ing to maximize PCIe bandwidth however, oversubscribed-
prefetching needs to transfer pages that are more likely to be
referenced than pages that are being evicted, or prefetching
will waste bandwidth and possibly hurt performance.

The results of performing prefetching during oversub-
scription are shown in Figure 9 when utilizing both random
and LRU eviction policies. We see that when combining
prefetching with random replacement, on average, perfor-
mance improves from 3.9× to 2.5× slower than if the appli-
cations fit entirely in GPU memory, but for applications xs-
bench and nw prefetching actually hurts performance sub-
stantially when used with random replacement. Prefetch-
ing combined with LRU replacement does not always im-
prove performance, but on average is the best performing
combination of eviction and prefetch policy. Because of the
strong variability of application sensitivity to eviction policy
and continued prefetching, it is hard to make broad gener-
alizations about the efficacy of page replacement decisions
for paged memory GPUs; while LRU in combination with
prefetching performs best, improving performance of outlier
applications may not justify the implementation overheads
required for tracking eviction candidates or implementing
more complex prefetching routines.

5.3 Memory Oversubscription Sensitivity

When using oversubscribed GPU memory, we have
shown that there can be significant differences in application
performance when varying the page eviction and prefetch-
ing policies. While interesting, the importance of these
differences may be non-consequential if the performance
achievable is simply not compelling enough for application
developers to consider oversubscribing GPU memory. To
shed light on this issue, we examined the effect of oversub-
scription ratio (the amount of application footprint that fits
within GPU memory) on application performance. Figure
10 shows the workload execution time, as the application
footprint is varied from 95% fitting in GPU memory down
to just 25% fitting in GPU memory. We consider the 95%
case to understand if there will be noticeable performance
impact on application developers who wish to use the con-
venience of GPU paged memory, but are not tracking their
application memory usage carefully.

We see that for applications such as backprop, minife,
or hotspot it may be possible to expand the application

10

354

Figure 10: Workload runtime (lower is better) sensitivity
to GPU memory oversubscription rate where N% indicates
fraction of GPU workload that fits within GPU memory.

footprint 2× or more beyond the GPU memory capacity
(shown as 50%) with little performance degradation. These
applications respond well to oversubscription because their
memory footprints show strong locality and streaming prop-
erties that on-demand page migration can exploit. For other
applications however, utilizing active paging between CPU
and GPU memory will result in significant slowdowns, likely
to be deemed unacceptable when evaluating the speedups
achievable on a GPU parallel accelerator. With oversub-
scription slowdowns varying from 0–60×, system design-
ers will likely have to evaluate using oversubscription on a
case-by-case basis, first determining whether the application
slowdown is acceptable before buying additional (or more
expensive) GPUs or HPC nodes to be able to compute across
ever larger growing datasets.

6. RELATED WORK
A significant amount of research has investigated page

placement and migration strategies for CC-NUMA sys-
tems [9, 10, 21, 26, 46, 48]. Much of the effort has been
spent trying to understand the implications of memory pag-
ing on systems for which memory latency is of primary im-
portance. GPUs are not critically sensitive to memory la-
tency however, and the absolute latency differences explored
in CC-NUMA systems is typically an order of magnitude
smaller than the latencies in a CPU–GPU PCIe attached sys-
tem. More recent work on page placement and migration
[4,8,13,14,23,44,50] considers interconnect utilization and
data sharing characteristics, but the primary focus is again on
reducing memory latency rather than increasing bandwidth
or hiding long-latency memory operations.

Several recent papers have explored hybrid DRAM +
Non-volatile memory subsystems for GPUs where the soft-
ware runtime or hardware attempts to move data between
these memory tiers to optimize GPU performance [47, 49].

While the memory latencies of the non-volatile memories
are higher than that of system DRAM, they are not orders
of magnitude slower like a memory attached across PCIe.
Additionally these studies do not consider the initial over-
heads of moving data from the host CPU into the GPU mem-
ory tiers, and instead measure the GPU performance once
the data is present in the GPU’s memory. Similarly, sev-
eral groups have explored using mixed DRAM technologies
or DRAM + Non-volatile memories to improve CPU power
consumption or capacity but these studies did not consider
GPUs or the effect of a (relatively) low performance link be-
tween the memory tiers [7,24,31,36,40]. Kim et al. propose
using GPU memory as a hardware managed cache of CPU
memory but do not address the coherency issues that this
solution introduces into a multi-CPU–GPU system [22].

The notion of GPUs supporting virtual memory, a prereq-
uisite for paged memory implementations, is relatively new,
and brought on by the need for virtualizing GPUs within the
datacenter. Though details about commercial GPU VM im-
plementations are not public several groups have provided
proposals about how to implement TLBs that work well
with the unique memory access patterns of GPUs [38, 39].
However both focus on GPU TLB implementation and do
not support the notion of paged GPU memory. Our paged-
memory GPU model effectively builds on top of the GMMU
models proposed in these works. Paged memory and over-
subscription has an impact on TLB reach which has been ex-
plored for CPUs as large-dataset processing has put renewed
pressure on the VM subsystem [6, 37, 43].

Additionally, NVIDIA has explored the notion of paged
migration from CPU to GPU memory, but their target ar-
chitecture is not a traditional PCIe-attached GPU. They ex-
amine a future GPU where page migration is optional and
the GPU may also perform direct cache-line-sized accesses
to CPU attached memory [1, 2]. This problem is function-
ally distinct from paged GPU memory, the approach that
NVIDIA and AMD support on current devices, where all
pages start in CPU memory and pages referenced by the
GPU must first be transfered over PCIe to GPU memory.
Finally, Lustig et al. propose a system for data dependency
tracking along with program-level APIs to help ensure good
execution and data transfer overlap [28]. While effective,
this approach places more, rather than less burden on the
programmer to manage data transfers between CPU and
GPU.

7. CONCLUSIONS
In this work, we have examined the impact that GPU

paged memory implementations may have on application
performance. Pageable memory for GPUs has been po-
sitioned by industry as a feature for improving program-
mer convenience. Our results show that without architec-
tural and software support, the performance overhead of us-
ing pageable memory may give programmers pause, despite
the programming convenience. While GPUs are designed
to cover longer memory latencies than CPUs, via massive
multi-threading, pageable memory introduces a memory la-
tency cost that is nearly 20× what the GPU is designed to
hide. Our proposal for replayable GPU far-faults combined
with software based prefetching allows us to not just reduce

11

355

the performance impact of paged memory for GPUs but ex-
ceed the performance of programmer controlled transfers by
12% on average. We also show that, on average, the perfor-
mance of our paged memory implementation comes within
15% of a perfect overlapping of memory transfer and exe-
cution. This leaves little headroom for application designers
to further improve performance using programmer pipelined
memory transfers, in addition to avoiding yet another layer
of implementation overhead.

While many GPU programs are sized to fit within GPU
memory, for optimal performance, paged GPU memory en-
ables computation over datasets larger than the available
GPU capacity. In an oversubscribed state, the GPUs evic-
tion policy is equally important as the decision to use purely
on-demand or prefetched page migrations. Our results show
that despite its simplicity, random eviction performs surpris-
ingly well for many applications, causing us to question if
the storage overhead and implementation complexity of a
pseudo LRU eviction policy is worth the effort to implement
in future GPUs. For applications where LRU eviction is sig-
nificantly better than a random policy, the absolute slow-
down of using GPU paged memory over PCIe may not be
attractive, even with with improved eviction policies. Our
analysis of oversubscribed GPU memory has only scratched
the surface in terms of performance optimization and eval-
uation, but our relatively simple GMMU replayable far-
fault microarchitectural model combined with SW prefetch-
ing should provide a reasonable baseline upon which more
complex policies can be evaluated. Our initial results in-
dicate there is a good probability that GPU paged memory
implementations can reach the level of performance where
programmers may decide to simply allow the GPU runtime
to manage data transfer for them, simultaneously improving
both programmer productivity and GPU performance.

8. REFERENCES
[1] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F.

Wenisch, “Unlocking Bandwidth for GPUs in CC-NUMA Systems,”
in International Symposium on High-Performance Computer Archi-
tecture (HPCA), February 2015, pp. 354–365.

[2] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W.
Keckler, “Page Placement Strategies for GPUs within Heterogeneous
Memory Systems,” in International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
March 2015, pp. 607–618.

[3] M. Annavaram, J. Patel, and E. Davidson, “Data Prefetching by De-
pendence Graph Precomputation,” in International Symposium on
Computer Architecture (ISCA), July 2001, pp. 52–61.

[4] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and A. Davis,
“Handling the Problems and Opportunities Posed by Multiple On-
Chip Memory Controllers,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), September 2010,
pp. 319–330.

[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2009, pp. 163–174.

[6] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers,” in International Sympo-
sium on Computer Architecture (ISCA), June 2013, pp. 237–248.

[7] R. A. Bheda, J. A. Poovey, J. G. Beu, and T. M. Conte, “Energy Ef-
ficient Phase Change Memory Based Main Memory for Future High
Performance Systems,” in International Green Computing Conference
(IGCC), July 2011, pp. 1–8.

[8] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A Case

for NUMA-aware Contention Management on Multicore Systems,”
in USENIX Annual Technical Conference (USENIXATC), June 2011,
pp. 1–15.

[9] W. Bolosky, R. Fitzgerald, and M. Scott, “Simple but Effective Tech-
niques for NUMA Memory Management,” in Symposium on Operat-
ing Systems Principles (SOSP), December 1989, pp. 19–31.

[10] T. Brecht, “On the Importance of Parallel Application Placement in
NUMA Multiprocessors,” in Symposium on Experiences with Dis-
tributed and Multiprocessor Systems (SEDMS), September 1993, pp.
1–18.

[11] C. Chan, D. Unat, M. Lijewski, W. Zhang, J. Bell, and J. Shalf, “Soft-
ware Design Space Exploration for Exascale Combustion Co-design,”
in International Supercomputing Conference (ISC), June 2013, pp.
196–212.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in International Symposium on Workload Characterization
(IISWC), October 2009, pp. 44–54.

[13] J. Corbet, “AutoNUMA: the other approach to NUMA schedul-
ing,” http://lwn.net/Articles/488709/, 2012, [Online; accessed 29-
May-2014].

[14] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic Management: A Holistic Approach
to Memory Placement on NUMA Systems,” in International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), March 2013, pp. 381–394.

[15] E. Ebrahimi, O. Mutlu, C. Lee, and Y. Patt, “Coordinated Control of
Multiple Prefetchers in Multi-Core Systems,” in International Sympo-
sium on Microarchitecture (MICRO), December 2009, pp. 316–326.

[16] E. Ebrahimi, O. Mutlu, and Y. Patt, “Techniques for Bandwidth-
Efficient Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” in International Symposium on High-Performance Com-
puter Architecture (HPCA), February 2009, pp. 7–17.

[17] E. Gornish, E. Granston, and A. Veidenbaum, “Compiler-Directed
Data Prefetching in Multiprocessors with Memory Hierarchies,” in
International Conference on Supercomputing (ICS), June 1990, pp.
354–368.

[18] C. Gregg and K. Hazelwood, “Where is the Data? Why You Cannot
Debate GPU vs. CPU Performance Without the Answer,” in Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), April 2011.

[19] M. Heroux, D. Doerfler, J. Crozier, H. Edwards, A. Williams,
M. Rajan, E. Keiter, H. Thornquist, and R. Numrich, “Improving
Performance via Mini-applications,” Sandia National Laboratories
SAND2009-5574, Tech. Rep., 2009.

[20] HSA Foundation, “HSA Platform System Architecture Specification
- Provisional 1.0,” http://www.slideshare.net/hsafoundation/hsa-plat
form-system-architecture-specification-provisional-verl-10-ratifed,
2014, [Online; accessed 09-Sept-2015].

[21] R. Iyer, H. Wang, and L. Bhuyan, “Design and Analysis of Static
Memory Management Policies for CC-NUMA Multiprocessors,”
Journal of Systems Architecture, vol. 48, no. 1, pp. 59–80, Septem-
ber 2002.

[22] Y. Kim, J. Lee, D. Kim, and J. Kim, “ScaleGPU: GPU Architecture for
Memory-Unaware GPU Programming,” IEEE Computer Architecture
Letters, vol. 13, no. 2, pp. 101–104, July 2014.

[23] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using OS
Observations to Improve Performance in Multicore Systems,” IEEE
Micro, vol. 28, no. 3, pp. 54–66, May 2008.

[24] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an Energy-efficient Main Memory Alterna-
tive,” in International Symposium on Performance Analysis of Systems
and Software (ISPASS), April 2013, pp. 256–267.

[25] R. Landaverde, T. Zhang, A. Coskun, and M. Herbordt, “An Investiga-
tion of Unified Memory Access Performance in CUDA,” in High Per-
formance Extreme Computing Conference (HPEC), September 2014,
pp. 1–6.

[26] R. LaRowe, Jr., C. Ellis, and M. Holliday, “Evaluation of NUMA
Memory Management Through Modeling and Measurements,” IEEE
Transactions on Parallel Distribibuted Systems, vol. 3, no. 6, pp. 686–
701, November 1992.

12

356

http://lwn.net/Articles/488709/
http://www.slideshare.net/hsafoundation/hsa-platform-system-architecture-specification-provisional-verl-10-ratifed
http://www.slideshare.net/hsafoundation/hsa-platform-system-architecture-specification-provisional-verl-10-ratifed

[27] W. Lin, S. Reinhardt, and D. Burger, “Designing a Modern Memory
Hierarchy with Hardware Prefetching,” Proceedings of IEEE Transac-
tions on Computers, vol. 50, no. 11, pp. 1202–1218, November 2001.

[28] D. Lustig and M. Martonosi, “Reducing GPU Offload Latency via
Fine-grained CPU-GPU Synchronization,” in International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2013, pp.
354–365.

[29] J. Menon, M. De Kruijf, and K. Sankaralingam, “iGPU: Exception
Support and Speculative Execution on GPUs,” in International Sym-
posium on Computer Architecture (ISCA), 2012, pp. 72–83.

[30] D. J. Miller, P. M. Watts, and A. W. Moore, “Motivating Future In-
terconnects: A Differential Measurement Analysis of PCI Latency,”
in Symposium on Architectures for Networking and Communications
Systems (ANCS), October 2009, pp. 94–103.

[31] J. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating System
Support for NVM+DRAM Hybrid Main Memory,” in Workshop on
Hot Topics in Operating Systems (HotOS), May 2009, pp. 14–18.

[32] J. Mohd-Yusof and N. Sakharnykh, “Optimizing CoMD: A Molecular
Dynamics Proxy Application Study,” in GPU Technology Conference
(GTC), March 2014.

[33] T. Mowry and A. Gupta, “Tolerating Latency through Software-
Controlled Prefetching in Shared-Memory Multiprocessors,” Journal
of Parallel and Distributed Computing, vol. 12, no. 2, June 1991.

[34] NVIDIA Corporation, “Unified Memory in CUDA 6,” http://devblo
gs.nvidia.com/parallelforall/unified-memory-in-cuda-6/, 2013, [On-
line; accessed 09-Sept-2015].

[35] ——, “NVIDIA Launches World’s First High-Speed GPU In-
terconnect, Helping Pave the Way to Exascale Computing,”
http://nvidianews.nvidia.com/News/NVIDIA-Launches-World-s-
First-High-Speed-GPU-Interconnect-Helping-Pave-the-Way-to-
Exascale-Computin-ad6.aspx, 2014, [Online; accessed 28-May-
2014].

[36] S. Phadke and S. Narayanasamy, “MLP-Aware Heterogeneous Mem-
ory System,” in Design, Automation & Test in Europe (DATE), March
2011, pp. 1–6.

[37] B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh, “Increasing TLB
Reach by Exploiting Clustering in Page Translations,” in International
Symposium on High-Performance Computer Architecture (HPCA),
February 2014, pp. 558–567.

[38] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support
for Address Translation on GPUs: Designing Memory Management
Units for CPU/GPUs with Unified Address Spaces,” in International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), March 2014, pp. 743–758.

[39] J. Power, M. Hill, and D. Wood, “Supporting x86-64 Address Trans-
lation for 100s of GPU Lanes,” in International Symposium on High-

Performance Computer Architecture (HPCA), 2014, pp. 568–578.

[40] L. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid
Memory Systems,” in International Conference on Supercomputing
(ICS), June 2011, pp. 85–99.

[41] S. Srinath, O. Mutlu, H. Kim, and Y. Patt, “Feedback Directed
Prefetching: Improving the Performance and Bandwidth-Efficiency
of Hardware Prefetchers,” in International Symposium on High-
Performance Computer Architecture (HPCA), February 2007, pp. 63–
74.

[42] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Comput-
ing,” IMPACT Technical Report, IMPACT-12-01, University of Illi-
nois, at Urbana-Champaign, Tech. Rep., March 2012.

[43] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach using
Superpages Backed by Shadow Memory,” in International Symposium
on Computer Architecture (ISCA), June 1998, pp. 204–213.

[44] D. Tam, R. Azimi, and M. Stumm, “Thread Clustering: Sharing-aware
Scheduling on SMP-CMP-SMT Multiprocessors,” in European Con-
ference on Computer Systems (EuroSys), March 2007, pp. 47–58.

[45] J. Tramm, A. Siegel, T. Islam, and M. Schulz, “XSBench - The De-
velopment and Verification of a Performance Abstraction for Monte
Carlo Reactor Analysis,” The Role of Reactor Physics toward a Sus-
tainable Future (PHYSOR), September 2014.

[46] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
System Support for Improving Data Locality on CC-NUMA Compute
Servers,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Septem-
ber 1996, pp. 279–289.

[47] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. Vetter, “Explor-
ing Hybrid Memory for GPU Energy Efficiency Through Software-
hardware Co-design,” in International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), September 2013, pp.
93–103.

[48] K. Wilson and B. Aglietti, “Dynamic Page Placement to Improve Lo-
cality in CC-NUMA Multiprocessors for TPC-C,” in International
Conference on High Performance Networking and Computing (Su-
percomputing), November 2001, pp. 33–35.

[49] J. Zhao, G. Sun, G. Loh, and Y. Xie, “Optimizing GPU Energy Ef-
ficiency with 3D Die-stacking Graphics Memory and Reconfigurable
Memory Interface,” ACM Transactions on Architecture and Code Op-
timization, vol. 10, no. 4, pp. 24:1–24:25, December 2013.

[50] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing Shared
Resource Contention in Multicore Processors via Scheduling,” in In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2010, pp. 129–
142.

13

357

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://nvidianews.nvidia.com/News/NVIDIA-Launches-World-s-First- High-Speed-GPU-Interconnect-Helping-Pave-the-Way-to-Exascale-Computin-ad6.aspx
http://nvidianews.nvidia.com/News/NVIDIA-Launches-World-s-First- High-Speed-GPU-Interconnect-Helping-Pave-the-Way-to-Exascale-Computin-ad6.aspx
http://nvidianews.nvidia.com/News/NVIDIA-Launches-World-s-First- High-Speed-GPU-Interconnect-Helping-Pave-the-Way-to-Exascale-Computin-ad6.aspx

