
A Patch Memory System For Image Processing
and Computer Vision

Jason Clemons, Chih-Chi Cheng∗, Iuri Frosio, Daniel Johnson, and Stephen W. Keckler
NVIDIA, ∗Qualcomm

Santa Clara, CA

Abstract—From self-driving cars to high dynamic range
(HDR) imaging, the demand for image-based applications is
growing quickly. In mobile systems, these applications place
particular strain on performance and energy efficiency. As
traditional memory systems are optimized for 1D memory ac-
cess, they are unable to efficiently exploit the multi-dimensional
locality characteristics of image-based applications which often
operate on sub-regions of 2D and 3D image data. We have
developed a new Patch Memory System (PMEM) tailored to
application domains that process 2D and 3D data streams.
PMEM supports efficient multidimensional addressing, auto-
matic handling of image boundaries, and efficient caching
and prefetching of image data. In addition to an optimized
cache, PMEM includes hardware for offloading structured
address calculations from processing units. We improve average
energy-delay by 26% compared to EVA, a memory system for
computer vision applications. Compared to a traditional cache,
our results show that PMEM can reduce processor energy by
34% for a selection of CV and IP applications, leading to
system performance improvement of up to 32% and energy-
delay product improvement of 48–86% on the applications in
this study.

I. INTRODUCTION

Image processing (IP) and computer vision (CV) have
become increasingly important application domains, driving
computational demand in mobile and embedded systems for
products such as smart phones, automobiles [1], cameras [2],
and augmented reality systems [3]. These application do-
mains require the ability to process large volumes of data,
often in real-time, taxing both computation and memory
system throughput. While IP/CV applications demand in-
creasingly higher computational capability, they are often
employed in embedded or mobile devices where energy
efficiency is of key importance, such as the automotive
market [4].

IP and CV algorithms continue to evolve at a rapid pace,
exhibiting a diverse set of computational characteristics.
While the demand for ever-more performance is constant,
the changing algorithmic landscape requires IP/CV systems
to provide sufficient flexibility and programmability to adapt.
As devices and systems add both more cameras and higher
resolution imaging sensors, the demand for flexible, high-
performance IP/CV processing will continue to increase. For
example, emerging automotive platforms can have six or
more high-resolution cameras with various fields of view,

Result 

Signal Reconstruction 

Defect 

Correction 

White  
Balance 

Tone  
Mapping 

Sharpness 

Enhance 

Demosaicing 

Domain Conversion 

Information 

Extraction 

Motion 

Vectors 

Corners 

Blobs 

Patches LBP 

Contextual 

Understanding 

Prediction 

Classification 

Model 

Generation 

Prior Model 

Image 

Fig. 1: Schematic of the IP/CV pipeline.

operating under varying weather conditions at both daytime
and nighttime. Different situations require different process-
ing algorithms, all within the same system — for instance,
pedestrian detection in visible light during daytime [5]
or in infrared at night [6]. The diversity of algorithms
combined with continuous development of new sensors and
requirements means programmability remains fundamental
to modern IP/CV processors.

Programmers in this domain require an efficient, high-
performance, and flexible programming target to meet these
needs. Researchers and engineers have developed architec-
tures targeted at these domains, including application spe-
cific processing engines [7], [8], hardwired accelerators [9],
and heterogeneous programmable processors [10], [11],
[12], [13], [14]. While these designs have generally focused
on improving the efficiency of computation, tremendous
opportunity lies in customizing the memory system that feeds
the computation units. For example, in our set of IP/CV
workloads, we find that an average of 33% of dynamic
instructions are attributable to address computation and
indexing — primarily due to accessing regularly structured,
multi-dimensional image data in local subregions known
as patches. A traditional memory system requires multi-
instruction sequences to compute address mappings from
the (x,y) coordinates in image space to the linear space
of traditional memory systems; to handle extrapolation at
the image border; and to shift the subregion of interest, or
patch, within the image data. This overhead can become a
substantial tax on both performance and energy.

Contemporary architectures use standard caches or
scratchpads (some with DMA engines) to manage the lo-
cality and movement of image data [14], [15]. Both caches
and scratchpads are designed on top of linear address
space memory systems; neither can exploit optimization
opportunities presented by multi-dimensional data structures978-1-5090-3508-3/16/$31.00 c©2016 IEEE



TABLE I: Comparison of memory system attributes.

Cache Scratch Prefetch Texture PMEM

Easy to use
Predictable
Low latency
2D addressing
Reduced addressing overhead

and access patterns common to IP and CV applications.
Caches are unable to effectively exploit 2D image locality.
While scratchpads can, they require manual management.
Prefetchers can assist caches in capturing 2D locality, but
are speculative and unpredictable (undesirable for real-time
systems) and may require similar effort as a scratchpad to
effectively exploit [16]. Both caches and scratchpads suffer
from addressing overheads when indexing multi-dimensional
data. GPUs provide Texture Units with caches to exploit 2D
image locality and implement graphics-oriented features for
filtering, interpolation, and boundary handling. While texture
units support 2D addressing using image coordinates, 2D
texture lookups are made relative to the image origin, not
relative to a local patch of interest. While texture caches take
advantage of common block-linear (and similar) memory
access patterns to optimize memory layout, they do not
implement prefetching; graphics-oriented texture units are
optimized for throughput and minimizing memory band-
width consumed, not low latency.

Table I compares key aspects of these memory system
architectures. An efficient, flexible IP/CV memory subsys-
tem should provide the 2D addressing capabilities of texture
units; the predictable data availability of scratchpads; the
ease of use of caches; and the memory latency reduction of
sophisticated prefetching systems.

We developed the Patch Memory System (PMEM) to
capture the benefits of these memory system features while
specifically optimizing for IP/CV applications. PMEM is
designed to exploit the attributes of CV and IP algorithms
to improve the efficiency of accessing and manipulating 2D
and 3D data. Our proposed memory system architecture
can be attached to various processing architectures, includ-
ing CPUs, DSPs, and GPUs. PMEM provides a memory
interface abstraction that is both high-performance and an
efficient target (in terms of productivity) for algorithm
developers. Towards these goals, our Patch Memory System
provides the following features:

• Accelerated 2D and 3D addressing. PMEM offloads
complex address calculations from the programmable
processor to dedicated address generation units.

• Multidimensional data primitives. Hardware support
for manipulating hierarchical data (images, patches, and
tensors).

• Patch-aware caching. PMEM caches multidimen-
sional image data based on image-space locality for
patches being processed.

• Efficient patch movement operations. Hardware sup-

port for sliding windows and block data transfer.
• Programmable border handling (“halos”).

PMEM provides automatic handling of image and patch
borders, eliminating the need for complex conditional
code.

Our results show that PMEM can eliminate up to 28%
of dynamically executed instructions and 34% of processor
energy relative to a system with a conventional cache. By
better exploiting structured data locality, PMEM improves
application performance by as much as 32% and energy-
delay by 48–86% on the applications in this work. We show
that PMEM provides better performance than both the com-
puter vision-specific memory system provided by EVA [16]
and 2D addressing alone, with energy-delay improvements
of 26% and 17% respectively over these approaches. PMEM
also provides a memory interface that simplifies program-
ming and can be used to directly support domain-specific
image processing languages such as Halide [17]

II. BACKGROUND

A. Image Processing/CV Pipeline

Image processing (IP) and computer vision (CV) algo-
rithms are used in a large number of applications that
exhibit similar structure in their processing. Figure 1 shows
a decomposition of a typical IP/CV pipeline into its logical
phases. While the primary data flow is down the pipeline
from phase to phase, feedback from one phase to a prior
one is also possible.

The first phase, signal reconstruction, converts the noisy,
analog image sensor data into the digital domain. This pro-
cess involves both performing transformations on the data,
such as demosaicing [18] (which converts Bayer pattern data
into RGB), and dealing with noise and errors introduced
in data capture using techniques such as defective pixel
identification [19] and noise reduction [20], [21].

In the second phase, information extraction, algorithms
process the image data to identify features or image char-
acteristics. These characteristics can include edges, corners,
motion vectors, or image gradients. For example, the FAST
corner detector locates primitive geometric features [22] and
the BRIEF descriptor summarizes the features using signa-
tures generated by concatenating pixel comparison results in
a region around the feature location [23].

In the last phase, contextual understanding, the results
from information extraction are combined with a model or
other information to develop a hypothesis on the content of
the image or image stream. This phase typically uses CV
procedures or machine learning techniques, such as support
vector machines [24] or decision trees [25], to determine
characteristics such as the likelihood of the presence of an
object or the pose of the camera in the scene.

The signal reconstruction and information extraction
phases both operate on multidimensional inputs such as
images or video. While signal reconstruction will often result



B 

G 

Patch 3 

Patch 1 

Patch 2 

Patch 0 

pixel 

d
ep

th
 

Tile 0 Tile 1 Tile 2 
Patch 0 

Patch 1 
Patch 2 

(A) Patches 

h
eigh

t 

width 

(B) Tiles 

R 

Image Tile Tensor Pixel 

Element 

Fig. 2: Image, tile, patch, tensor, pixel and element primi-
tives. In this example, the pixel represents the R, G, and B
channels of a color image.

in multidimensional output data such as denoised images, in-
formation extraction will typically result in a list of locations
and a 1D vector signature for each location. These results
are commonly fed to a contextual understanding phase for
computation. This phase typically outputs sparse information
about the original scene, such as the presence of a face or
3D structure of a scene. In this flow, the first two phases
operate on dense 2D inputs of multiple megabytes per image
(for example, 5.9MB for a 1920×1080 image), while the
contextual understanding phase may operate on smaller and
sparser data in the range of hundreds of kilobytes.

B. Data Primitives

The common input types for the first and second phases
lead to common access patterns and primitives for traversing
image data. Figure 2 shows a hierarchical decomposition of
the data primitives in IP and CV.

Element: An element is a single scalar value that can be
used to represent things like color intensity, luminance, or
chrominance.

Pixel: A pixel is a vector of elements representing the
characteristics of a 2D or 3D position in an image. Pixels
can use a range of formats, including RGB, YUV, or Bayer
encoding. For example, an RGB pixel has one element (or
channel) each for red, green, and blue color intensity.

Image: An image is a 2D (or 3D) data structure composed
of individual pixels that can be addressed using cartesian
coordinates. An image is typically treated as having an origin
at (0, 0). The image size depends upon its resolution.

Patch: A patch is a 2D (or 3D) subset of an image
that is operated on by an IP/CV computation kernel. For
example, a 3×3 convolution kernel requires a 2D patch of
9 pixels from the image to compute a single output pixel.
Patches are represented with origin coordinates relative to
the image origin and patch width and height. Algorithms
will often process many overlapping patches which provides
the memory system the opportunity to exploit inter-patch
locality.

Tensor: A tensor is a set of patches arranged in a stack
to form a 3D structure. The tensor can be constructed from
patches originating in different images in a video stream or
patches coming from different parts of the same image. A
3D pixel address within a tensor is formed by combining
the pixel offset location in a patch and the position of the

Image	  

Patch	  	  

Patch	  	  
Image	  

Patch	  	   Patch	  	  

Patch	  

Patch	  

Patch	  

Raster	  Scan	   Block	  Based	   Tensor	  Step	  

Fig. 3: Common patch access patterns.

patch in the patch stack. One example application that uses
this structure is block matching for denoising [20], [21].
A tensor can be used to aggregate the information from
multiple patches to produce a single output patch (or pixel).

Tile: An image can be decomposed into non-overlapping
regions that are 2D subsets of the image. While a patch is
exposed to IP/CV kernels as a primitive data structure, a
tile can be used to represent the unit of data to transfer to
and from DRAM. In a conventional processor architecture,
a tile could be a single cache line; other architectures can
employ larger tiles. In architectures that support software
caching in scratchpad memories, tiles may be exposed to
the programmer. Other architectures may maintain tiles as a
microarchitectural construct. Regardless of tile size, patches
may span multiple tiles, thus separating the logical view of
memory (patches) from the physical view of memory (tiles).

While the image processing abstractions operate on mul-
tidimensional data, image data is stored in DRAM in a
linear address space in row-major or column-major order.
Consequently, when an algorithm references a pixel, patch,
image, tensor, or tile, it must convert multidimensional
coordinates into a linear address.

i(x, y, c) = i0 + y · szrow + x · szpixel + c · szchnl. (1)

Equation 1 shows the computation required to convert an
element reference in an image into a linear address. The
szrow, szpixel, and szchnl are used to translate the given x,
y, and channel c coordinates into an offset that is added to
the image base address, i0. For a tensor, the addressing is
similar except either the data pointer or the x, y coordinates
are different for each patch in the stack. Computing these
linear addresses results in significant instruction overhead in
conventional processor architectures.

C. Data Access Patterns

Many IP/CV algorithms can operate on different patches
in parallel. For example, a 3×3 patch of an image may be
required to produce each output pixel during convolution, but
all of the output pixels can be computed in parallel. More
generally, data access patterns commonly use patches or
tensors and move the origin of this region through the input
image in algorithm-specific patterns to produce an output.
Figure 3 shows a set of common patch access patterns that
provide opportunities for hardware acceleration.

Raster: The raster scan order pattern processes patches
in a row-major or column-major linear order in the image.



The row-major pattern begins at the top left corner of the
image and proceeds by moving through the image to the
right until the end of the row. Once the end of the row
is reached, the pattern moves to the left most edge of the
next row. Patches can be stepped in units of a single pixel
or multiple pixels. A variation zig-zags back and forth from
row to row to exploit some locality among the adjacent rows.
However, for our purposes, these variations are essentially
the same. Convolution algorithms commonly access data in
a raster pattern.

Blocked: In the blocked pattern, the image is subdivided
into 2D regions called blocks. The blocks are processed in
a row-major or column-major raster scan order depending
on the application. Within each block, the pixel data are
typically processed in a raster scan order. This pattern
optimizes the reuse of data within a hardware or software
controlled cache. The FAST corner detector accesses image
data this fashion [22].

Tensor step: The tensor step pattern accesses tensors or a
stack of patches. Starting at the patch on the top or bottom of
the stack, the same x-y location is accessed on each patch.
Stacks of patches can be accessed in a raster or blocked
fashion within the image volume. This approach is used to
aggregate patches for non-local algorithms such as BM3D
denoising [20].

Data dependent: Data dependent patterns do not follow
a predetermined path through the image data, but instead
depend on the image contents. For example, the base loca-
tions of feature signatures are data dependent because the
locations of feature points depends on the image content.
Algorithms such as BRIEF [23] and BM3D [20] have data
dependent access patterns. These algorithms still rely upon
patches of image data that can exploit patch-level locality,
but the order of patch processing is not predetermined.

D. Image Borders

A final common operation in IP/CV algorithms is com-
puting pixels at image boundaries. IP algorithms that operate
on patches of data must account for missing pixels at
boundaries to compute the correct results. Missing pixels
can be clamped to zero, replicated from adjacent pixels,
or mirrored at the image border. Different algorithms im-
plement different strategies for handling border pixels, so
a single method cannot be hardwired. While the number of
border pixels is small (perimeter) relative to the total number
of pixels in the image (area), programmers may employ a
significant amount of time and number of lines of code on
the special border cases. A means of automatically filling in
the missing pixels provides an optimization opportunity.

III. PATCH MEMORY SYSTEM

To address the needs of accessing 2D and 3D data, we
designed the Patch Memory System around a multidimen-
sional addressing scheme. For example, to access the pixel
at coordinate (1, 5) the user specifies an image identifier

and the coordinates (1, 5). PMEM uses the identifier and
coordinates to check if the data is stored in the PMEM
caching system. If the data is not in local storage, PMEM
translates these specifiers into a linear memory address to
retrieve the data from the system memory. To enhance
locality, PMEM provides a caching architecture targeted to
the structured data from the IP/CV application domain. The
addressing and locality functionality leads to the features
below.

Image to linear addressing. While addressing in the
patch memory system takes place in a multidimensional
image domain, traditional memory systems use a linear
address space. Transactions with DRAM must be translated
between the image domain and a linear memory space. This
transform is handled by the PMEM memory interface using
image metadata and facilitates transfers in and out of the
PMEM.

Border extrapolation. The patch memory system handles
border extrapolation automatically, including clamp to value,
mirroring, and extending the edge pixel values as defined in
[26]. This hardware support helps eliminate border handling
code, streamlining CV and IP kernels.

2D caching. To exploit spatial locality, PMEM caches 2D
image regions, with the unit of transfer to/from DRAM being
a 2D tile instead of a 1D cache line. A patch is mapped to a
set of tiles which are loaded into the PMEM. The caching of
tiles is a form of prefetching that leverages the 2D locality
of the application.

A. Image and Patch State

The patch memory system includes the six key primitives
described in Section II-B. The image, patch, and tensor are
exposed to the programmer via an image table and patch
table which store the metadata required to describe the
2D/3D data structures.

Image table. The programmer defines images that will
be accessed by PMEM, described by a set of attributes
used when accessing the image data in DRAM space.
Image attributes include height, width, number of channels,
distance between rows in memory (row step), distance
between pixels of the same row in memory (col step),
and the distance between the channels in a given pixel
(channel step). The image table also encodes the mode for
border extrapolation and the clamp value when the clamp
mode is used. These attributes are stored for each image in
a table that can be modified by the programmer to support
multiple image sizes and formats. In general, we expect most
applications to operate simultaneously on a small number
of images. BRIEF and Convolution use a single image,
while algorithms such as HDR can operate on up to 16
images [27]. We expect that 32 entries in the image table
will be sufficient for most IP/CV algorithms.

Patch table. The programmer also defines the patches to
be accessed within the image. Patch attributes include an
index into the image table for the image that encompasses



TABLE II: Patch Memory System operations.

Operation Description
patch_ld patch_id Load patch/tensor from memory into cache using patch table state
patch_st patch_id Store patch/tensor from cache into memory using patch table state
patch_sft patch_id, delta_x, delta_y Shift patch/tensor in image space using (x,y) stride
pxlp_ld patch_id, R_dst, x, y Load pixel from patch at (x,y) from patch origin
pxli_ld image_id, R_dst, x, y Load pixel from image at (x,y) from image origin
pxlp_st patch_id, R_src, x, y Store pixel to patch at (x,y) from patch origin
pxli_st image_id, R_src, x, y Store pixel to image at (x,y) from image origin
vecp_ld patch_id, R_dst, x, y Load vector from patch at (x,y) from patch origin
veci_ld image_id, R_dst, x, y Load vector from image at (x,y) from image origin
vecp_st patch_id, R_src, x, y Store vector to patch at (x,y) from patch origin
veci_st image_id, R_src, x, y Store vector to image at (x,y) from image origin

pxli_ld (0, 0, 0)   Returns 1 
pxlp_ld (0, 0, 0)  Returns 6 
veci_ld (0, 0, 1)  Returns {6,8,4,0} 
vecp_ld (0, 0, 1) Returns {9,7,5,1} 
  

2 3 1 

6 8 4 

9 7 5 

4 

0 

1 

4 

2 

7 

6 

7 

1 

Image 

0 1 2 

0 

1 

3 4 5 

2 

X 
Y 

8 4 6 

9 7 5 

0 

1 

0 1 2 

0 

1 

3 

Patch 0 

(a) Addressing Example.

patch_sft (0,2,1) 

2 3 1 

6 8 4 

9 7 5 

4 

0 

1 

4 

2 

7 

6 

7 

1 

Image Patch 0 
Before Shift 

0 1 2 

0 

1 

3 4 5 

2 

X 
Y 

2 3 1 

6 8 4 

4 

0 

0 1 2 

0 

1 

3 

Patch 0 
After Shift 

0 2 4 

5 1 7 

7 

1 

0 1 2 

0 

1 

3 

Patch Table Entry 

ID Origin Height Width … 

Before 0 (0,0) 2 4 … 

After 0 (2,1) 2 4 … 

(b) Patch Shift Example.

Fig. 4: Examples of PMEM addressing.

the patch, the current patch origin within the image, patch
height, and patch width. To support tensor data types up to a
depth of four, the patch table entry replicates the origin and
parent image index fields four times. To optimize border
handling, the patch table entry can also hold the image
height, image width, and extrapolation information. Like the
image table, the patch table stores patch attributes and is
accessible by the programmer. To provide at least one patch
per image, the patch table has at least 32 entries.

B. PMEM ISA

PMEM extends the ISA of the accompanying compute en-
gine with instructions specific to images and patches. These
instructions trigger the multidimensional address calculation
and caching within the PMEM hardware. Table II lists the
operations provided by the patch memory system ISA.

Patch loads and stores. The patch load instruction
specifies the region of the image to prefetch into the patch
memory system. This prefetch operation allows the system
to ensure that later pixel and vector loads and stores from
the patch used by the compute kernel can be serviced by
the PMEM cache. The hardware enforces an interlock be-
tween patch ld/st operations and earlier/later memory
operations to ensure proper memory access semantics. Prior
to executing a patch ld/st instruction, the programmer
will have stored the patch metadata in the patch table.
Thus patch ld/st instructions need only to specify a

patch identifier. Patch st instructions evict patch data from
the PMEM cache and if dirty write it back to the next
level of the memory hierarchy. Tensor loads and stores use
the patch ld/st instructions but leverage the additional
tensor metadata in the patch table entry.

Patch shifts. The patch shift instruction moves the region
of interest (patch) within the image space, as specified by
the patch id, horizontal shift step, and vertical shift step.
This operation updates the patch table entry and can initiate
memory transfers to fill in data to make the new patch
complete. This instruction has an implicit memory barrier
for accesses to the patch.

Pixel loads and stores. PMEM supports accessing indi-
vidual elements and loading them into registers or storing
them into an image or patch. The pixel load instruction
comes in two flavors, one each for accessing data in patches
and images. These instructions specify a patch or image
identifier, a register target, and (x,y) coordinates. The PMEM
hardware computes the proper address using the patch or
image origin and the coordinates. For example, an image
pixel load with coordinates (1, 1) will return the image pixel
(1, 1). For a patch with origin (2, 3), a patch pixel load with
coordinates (1, 1) will deliver the data from image pixel
(3, 4), accessing the PMEM cache when possible. Misses in
the PMEM cache will cause the pixel to be fetched directly
from the next level of the memory hierarchy. Stores have a
similar format.



Patch Memory System 

Address 
Translation 

2D Translation  
Unit 

3D Translation  
Unit 

Border 
Handling Unit 

Image  
Table (608 B) 

Patch Data Engine 

SRAM 
Bank 0 
(16KB) 

Patch to 
Tile Unit Tile Location & 

Tag Engine 

Patch  
Table 

(868 B)  

Patch 
Shift 

Engine 

Patch  
LD/ST Unit  

Memory Interface 
 Vector/Word 

Access 
Tile 

Access 

SRAM 
Bank 1 
(16KB) 

SRAM 
Bank 2 
(16KB) 

SRAM 
Bank 3 
(16KB) 

Tag 
Array 

Data Select 

L2
 o

r 
D

R
A

M
 

A
d

d
re

ss
 

Patch Unit 

D
at

a 
in

 
D

at
a 

o
u

t 

= 

Fig. 5: The Patch Memory System (PMEM).

Vector loads and stores. PMEM implements vector load
and store operations that are very similar to pixel loads and
stores. In our design, the vector registers are four adjacent
32-bit registers.

Figure 4a shows example pixel and vector load instruc-
tions to illustrate the mapping of coordinates in image and
patch spaces. The patch in Figure 4a has an origin at (0, 1)
causing a pixel patch load from coordinate (0, 0) to return a
value of 6. The patch origin coordinates are added to patch
coordinates to produce the image coordinates to be accessed.
Vector loads fetch data starting at the given coordinate.
Figure 4b shows the effect of a patch shift. In this example,
the patch starts with an origin of (0, 0) represented by pixels
in the blue bounding box. The patch shift instruction moves
the origin by 2 pixels in the x-dimension and 1 pixel in
the y-dimension, resulting in a new patch origin of (2, 1)
represented by pixels in the black bounding box.

IV. PMEM MICROARCHITECTURE

Figure 5 shows the core components of the PMEM ar-
chitecture, including the Patch Unit, the Patch Data Engine,
the Address Translation Unit, and the Memory Interface.
Together, these units implement the features described in
Section III.

A. Patch Unit

The Patch Unit maintains the patch table and directs the
execution of PMEM data requests. The Patch Unit consists
of three sub-units: the patch ld/st unit, the patch shift engine,
and the patch table.

Patch LD/ST. This unit coordinates memory requests sent
to PMEM. If the request accesses a patch, this unit will query
the patch table to obtain the required metadata and forward
the request to the Border Handing Unit. This unit can also
bypass the Patch Data Engine and send a request directly to
the memory interface. The patch ld/st unit interfaces with
the patch shift engine when a shift instruction is issued.

Patch shift engine. The patch shift engine handles
traversal of patches and tensors through the image space
by manipulating their origins. A patch_sft instruction

TABLE III: Patch table entries.

Entry Use Bits
Image Id×4 Id for image source 32

Width Patch Width 6
Height Patch Height 6

Channels Number of Channels 3
Row Step Dist to next row in pixels 12

Column Step Dist to next column in bytes 5
Channel Step Dist to next channel in bytes 3
Parent Height Parent Height 15
Parent Width Parent Width 15

Origin In Image Origin in image 120
(x,y)×4 coordinates

Total 217

dictates the distance in image space that the patch is moved.
The unit computes the new patch location and sends a
command to the Patch Data Engine to initiate fetching of
data to fill in the shifted patch in the cache.

Patch table. Table III shows the metadata associated with
each patch entry. Using the information in the table, address
calculations for intra-patch accesses need only a few bits
instead of the full bit-width of a memory address. The table
itself is a small RAM array with 217-bit entries; with a total
of 32 entries, the patch table is 868 bytes. The origin and
the parent image entries in the table have four entries each
to support the tensor primitive.

B. Patch Data Engine

The Patch Data Engine manages the caching of 2D
data. This unit has two major components, the patch-to-tile
conversion unit and the tile cache. Together they provide the
physical caching support for the image data. For multicore
systems the Patch Data Engine would be shared but each
core would have a private Patch Unit.

Patch-to-tile conversion. This hardware unit converts the
coordinates in a patch to coordinates in a tile. The hardware
first translates the patch space coordinates into image space
coordinates by adding the patch (x,y) coordinates to the (x,y)
origin of the patch. These image coordinates are converted
to the tile coordinate space, called tile indices, based on the
fixed dimensions of the tiles. We limit the tile size to a power
of 2 to allow the hardware to use the low order bits from the
image (x,y) coordinates as the (x,y) coordinates within the
tile; the higher order bits are used as a tag to identify the
tile. We also limit the maximum patch size to be twice the
tile size to ensure that any patch covers at most nine tiles. As
a result, we can determine which tiles are needed to supply
data to the patch by computing the tile identifiers for each
of the corners of the patch. The unit can then request up to
the nine unique tiles necessary to cover the patch.

Cache unit. The cache unit stores data at the granularity
of the fixed-size tiles. Figure 6 shows how the tag and index
are formed from the coordinates passed to the Patch Data
Engine. The patch address is converted to image coordinates
and an image id using the state in the patch table. The tile



Tag 

Image ID 
Tile Id 

  X Y 

Tile Id 
  X Y Image ID 

Address To Data Array 

Set 
Tile Index 

  Y X 

Fig. 6: Tile cache tag and address generation.

x-index and tile y-index are formed using the lower 4 bits
of the image (x,y) coordinates (16×16 tiles). The tile x-id
and tile y-id are formed using the next 10 bits of the (x,y)
coordinates (max 16K×16K images). The tag is formed by
concatenating the image id, tile x-id, and tile y-id. The set
is chosen by xor-ing the tile x-id, tile y-id and the image id
together. The result is concatenated with the tile y-index and
tile x-index to produce the address for the cache data array.
The use of the image id allows for patches with the same
origin in different images to map to different sets. Storing
data based on the granularity of tiles reduces the tag array
size as compared to a traditional cache. Furthermore, the
cache unit uses bank swizzling similar to [28], [29] so that
it can provide both row and column vector access to 2D
data. Ordinary coherence mechanisms can be used to provide
cache coherence between the Patch Data Engine and other
caches in a multi-cache or multiprocessor system.

C. Address Translation

The Address Translation Unit translates between the mul-
tidimensional address space of PMEM and the linear address
space of DRAM. This unit has multiple subunits, including
an image table, a 2D/3D translation unit, and a border
handling unit.

Image table. The image table is a small RAM array with
each entry encoding the fields listed in Table IV. Each entry
is 152 bits and corresponds to a single image. This table
is accessed to obtain the parameters for Equation 1 needed
to translate from the image space to linear DRAM memory.
This table is shared by all the compute elements attached
to the patch memory system. With a total of 32 entries, the
image table is 608 bytes.

2D address translation. The 2D translation unit uses the
information in the image table to perform the translation
to linear space. This translation can be performed with one
shift, two multiplies, and three small integer adds, as defined
by Equation 1. To simplify the hardware, we assume the
channel step is a power of two since data types are power
of two bytes in length.

3D address translation. The 3D translation is for tensors
and is similar to the 2D component except that the base
image origin is chosen based on the tensor’s third (z)
component of the address. This unit generates up to N
addresses to be fetched to support gathering the data for
a given tensor access. For this work, we assume N equals
four to match the maximum tensor depth that we consider.

TABLE IV: Image table for tracking image data.

Entry Use Bits
Width Image Width 14
Height Image Height 14

Channels Number of Channels 3
Row Step Dist to next row in pixels 14
Col Step Dist to next column in bytes 5

Channel Step Dist to next channel in bytes 3
Image Origin Data ptr to image origin 64

Border Method Border Extrapolation Method 3
Border Clamp Value Border Clamp Value 32

Total 152

Border handling. Border handling is performed before
sending a request to the data fetch engine using information
from the patch table. The patch table contains the image
dimensions which the border handling unit uses to determine
whether the access is within the image boundaries. The
hardware uses the image coordinates from the patch unit and
performs comparisons to ensure that the (x,y) coordinates
are between zero and the image dimensions. Depending on
the border handling method, the unit will either modify the
requested address before forwarding to the data fetch engine
or return the data itself. For example, if the border method
is clamp then the request is handled by retrieving the clamp
value from the image table. If the method is replicate border
then the address is modified to the closest edge pixel and
sent through the normal data fetch path.

D. Memory Interface

The memory interface communicates with the memory
hierarchy outside of the PMEM. Specifically, it fetches
required data at the granularity of the external memory
hierarchy (e.g. cache line) and uses the memory translation
unit to compute the proper addresses. PMEM could be
integrated into a system as an alternative L1 with an L2
supplying data or as the only cache accessing data.

Vector/word unit. The vector/word unit fetches vector
and scalar word data from the next level of the memory
system. This unit coalesces across and within requests to
generate the fewest external references needed. In this paper,
we assume a vector length of four, but supporting different
vector lengths requires few changes to the architecture. Non-
unit stride vector accesses may require multiple references to
gather the data from the next level of the memory hierarchy.

Tile access unit. The access unit fetches tiles from the
next level of the memory hierarchy. This unit accepts the
address of the tile origin and the image dimensions from
the Address Translation Unit. It then generates the external
memory hierarchy requests to gather the data to fill the tile.
Each tile request is translated into multiple fetches from
the next level of the memory hierarchy based on the data
access granularity. Since the tile size is fixed, the hardware to
perform the gathers is inexpensive, requiring a simple set of
adders to increment the starting address based on the cache



1 Image input = load(“inputImage.png”);  

2 Image output (inputImage.getSize());  

3 Image coeffs = getCoeffientsImage(5,5);  

4 for (int oy = 0; oy < height; oy++){  

5  for (int ox = 0; ox < width; ox++){  

6    accum = 0;  

7    patch = input.data+(oy-2)*input.rowStep +ox-2;  

8    for (int y = 0; y < coeff_height; y++){  

9      coeffRow = coeffs.data + y*coeffs.rowStep; 

10      imgRow = patch + y* input.rowStep;  

11      for (int x = 0; x < coeff_width; x++){  

12        if(oy < 2|| oy >= input.height -2  

           || ox < 2 || ox >= input.width-2){  

13          imgX = ox-2;  

14          imgY = oy-2;  

15          pix = ((imgX >=0 && imgY >= 0) &&  

                 (imgX+4 <= input.width-1) &&  

                 (imgY+4 <= input.height-1)) ? 

        imgRowPtr[x]:0);  

16        }else{  

17           pix = *(imgRow+x);  

18          }  

19         coeff = *(coeffRow+x);  

20      }  

21       accum += pix * coeff  

22    }  

23  }  

24  *(output.data + oy*output.rowStep + ox)= accum;    

25 } 

(a) Conventional Version.

1 Image inputImage = load(“inputImage.png”);  

2 Image outputImage(inputImage.getSize()); 

3 Image coefficients = getCoeffsImage(5,5);  

4 Patch inputPatch (inputImage,-2,-2, 5,5);  

5 Patch coeffPatch (coefficients,0,0,5,5); 

6 patchld inputPatch 

7 patchld coeffPatch  

8 for (int oy = 0; oy < height; oy++){  

9   for (int ox = 0; ox < width; ox++){  

10    accum = 0;  

11     for (int y = 0; y < coeff_height; y++){  

12       for (int x = 0; x < coeff_width; x++){  

13         pxlp_ld inputPatch, pix, x,y;  

14         pxlp_ld coeffsPatch, coeff,x,y;  

15         accum += pix * coeff 

16         }  

17       }  

18       pxli_st outputImage, accum ,ox,oy;  

19       patch_sft inputPatch, 1,0;  

20     }  

21     patch_sft inputPatch,-width,1;  

22 } 

(b) PMEM Version.

Fig. 7: The pseudo-code for a 5×5 convolution.

line size and image row step. This unit sends the returned
data to the tile cache in the Patch Data Engine. Fetching
at the tile granularity promotes a regular access pattern that
can be exploited by a memory controller for good DRAM
efficiency. Specifically, PMEM can employ tile sizes and tile
fetch orderings to maximize hits per activate when accessing
DRAM.

V. EXAMPLE: 5×5 CONVOLUTION

To illustrate how the Patch Memory System operates, this
section first shows how PMEM simplifies code implement-
ing algorithmic kernels. It then describes how that code
exercises the elements of the PMEM hardware. We use a
5×5 image convolution to illustrate the key aspects of the
system.

A. Code Comparison

Figure 7a shows the pseudo-code for performing a 5×5
convolution on a traditional cache-based memory system,
with code for address calculations and border checking.
Figure 7b shows the corresponding code for a system with
PMEM. The PMEM code is more compact and better
matches the addressing in the image processing space,
while the conventional memory system code requires address
pointer calculations and special handling of the computations
at the border (Figure 7a, lines 9 and 15). The pointer calcu-
lations are replaced by the semantics of patches in PMEM
which allow for the code to specify an image (image_id)
and (x,y) offsets to access pixels and the patch_sft
instructions (lines 19 and 21) that adjusts the position of the

patch. Finally, the PMEM code does not require the complex
conditionals for border checking, as the hardware performs
the necessary extrapolations automatically.

B. Patch Memory System Execution

The different lines of pseudo-code in Figure 7b corre-
spond to activations of the hardware units in Figure 5. The
code begins in lines 1–5 by creating the images and patches,
which allocates and fills in entries in the image and patch
tables; this operation can be performed when the images
and patches are instantiated, hiding the complexity from the
application programmer. The code then uses PMEM to load
the initial patches at lines 6–7. The code then steps through
the output image computing each pixel as it progresses.
Each pixel and coefficient is fetched using 2D addressing
which engages PMEM (lines 13–14). The patch ld/st unit
handles the memory requests by accessing the patch table
and sending the required data to the border handling unit.
The border handling unit modifies the request based on the
border extrapolation mode or returns the pixel value if such
an extrapolation mode is set. This unit then forwards the
request on to the patch data engine, which either returns the
data if it is present in the patch memory system, or requests
that the memory interface fetch the data from the memory
hierarchy. Line 15 accumulates the product of the pixel value
and the weight to compute the convolution. Line 18 stores
the resulting summation to the corresponding pixel position
in the output image using PMEM. After storing the output
pixel, Line 19 shifts the patch over by one pixel position



along the horizontal axis of the image. At the end of the
row, Line 21 moves the patch to the beginning of the next
row using the patch shift operation.

VI. EXPERIMENTAL FRAMEWORK

Simulation framework. The PMEM simulator includes
a PMEM functional model, performance model, and energy
model, coupled to a SIMD vector processor simulator. We
avoid developing a compiler by implementing the bench-
marks in standard C++ and augmenting the code with API
calls for the patch memory primitives. All of the vector
instructions and the load/store instructions are included in
the functional API. Program control including loops and
conditionals are implemented in the base C++ application
code and we annotate these statements to account for per-
formance and energy.

The simulator tabulates hardware events to feed to the
energy model. To estimate the energy and area of the
system, we developed RTL models for components of the
PMEM and used an industry product design flow including
Synopsys tools and memory generators to synthesize the
design in 28 nm technology. We used our tools to provide
estimates of energy for various operations and combined
these energy numbers with the hardware event counters to
estimate system energy.

Architecture configurations. Table V shows the pa-
rameters used for evaluating PMEM. We compare PMEM
with three other memory systems: a baseline 64KB, 4-
way data cache architecture (Cache); the baseline cache
augmented with 2D addressing (2D Addr); and a prefetch-
based computer vision architecture (EVA) [16]. 2D Addr
provides 2D addressing instructions but lacks other PMEM
features. For EVA, we implemented loads with the ability
to prefetch neighboring tiles based on register values as
done in [16]. PMEM is configured as a 64 KB, 4-way set-
associative tile cache with tiles of 16×16 pixels, and an LRU
replacement policy. Pixel elements are 32 bits each.

While our Patch Memory System can be paired with a
variety of computational engines, this evaluation uses an in-
order RISC scalar core with a 4-wide SIMD engine, bypass-
ing, interlocks, and a 1GHz clock rate. The use of in-order
compute pipeline is similar to modern CV systems [14],
[15]. We model a cache bandwidth of 128 bits per cycle
and a fixed cache miss latency of 40 cycles. This latency is
similar to that of an SOC-wide L2 cache experiencing some
contention.

Benchmarks. Table VI lists the benchmarks used to
evaluate PMEM. Each of the benchmarks employs block-
based computation which subdivides the image space into
2D regions and processes them in an order conducive to
memory locality [17]. This approach naturally exploits the
features of PMEM. The first three benchmarks are from
signal reconstruction: (1) a 5×5 convolution, used in many
image processing applications for FIR filters; (2) the block
matching portion of BM3D denoising, which matches a

TABLE V: Memory system configurations.

Element Parameter Value
Baseline Cache and 2D Addr Size 64 KB

Associativity 4-way
Line Size 64 Bytes

PMEM and EVA Size 64 KB
Associativity 4-way

Tile Size 16x16

TABLE VI: Benchmarks.

Benchmark Processing Phase Input
5x5 Convolution Signal 1920x1080

Reconstruction Image
Block Match [20] Signal 768x512

Reconstruction Image
Debayer [18] Signal 1920x1080

Reconstruction Image
FAST [30], [22] Information 1920x1080

Extraction Image
BRIEF [23] Information 1920x1080

Extraction Image
Gaussian Mixture Information 640x480

Model [31] Extraction Video Frame

target patch to other patches within an image [20]; and
(3) Debayer, which converts an image from the Bayer
sensor pattern to RGB [18]. The second three are from
the information extraction domain: (4) FAST, which detects
corners in an image using contrast [30], [22]; (5) BRIEF,
which computes a feature signature using comparisons of
pixel intensities within a region around a feature point [23];
and (6) Gaussian Mixture Model, which uses up to five
Gaussian models at each pixel to perform foreground and
background segmentation [31]. We use 32-bit floating-point
data throughout the benchmarks.

VII. EVALUATION

A. Instruction Count

Figure 8 shows the fraction of instructions that are elimi-
nated due to hardware support for 2D addressing and border
handling. 2D Addr eliminates 7%–28% of total instructions
issued. In certain applications such as Conv, Block, and
BRIEF, the additional support for border handling in PMEM
eliminates another 5–10% of instructions. The EVA system
sees a small increase in total instruction count from loading
the registers for the prefetch operations. PMEM shows the
most benefit for FAST, reducing instruction count by 28%
by optimizing the address computation for each pixel in the
pattern used for determining the presence of a corner. The
smallest improvement is in Debayer, where instruction count
was reduced by only 9%. While we were able to reduce
instructions attributable to addressing computations by 30%
and to eliminate the border handling instructions, these
operations only constitute about 30% of total instructions
in our applications.



0
0.2
0.4
0.6
0.8

1

EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM

Conv Block Debayer FAST BRIEF GMM

N
o

rm
al

iz
e

d
 In

st
ru

ct
io

n
 

C
o

u
n

t 
 

Compute Control Address Border

Fig. 8: Instruction count reduction (normalized to conventional cached memory) for EVA, 2D Addressing, and PMEM.

0.8

0.85

0.9

0.95

1

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

Conv Block Debayer FAST BRIEF GMM

C
ac

h
e

 H
it

 R
at

e
 

Fig. 9: Cache hit rate for the conventional memory system,
EVA, 2D Addressing, and PMEM.

B. Memory Behavior

Figure 9 shows the cache hit rate of our four memory
configurations. PMEM improves cache hit rate by exploiting
2D locality while EVA improves hit rates via 2D prefetching.
In both architectures, locality is captured in both dimensions
and leads to improved efficiency. While the increase is not
large in terms of percentage points, Figure 10 shows that
cache hit rate improvements translate directly into reductions
in average memory latency. The GMM benchmark shows
the largest reduction in the number of cache misses. The
benchmark steps through multiple planes of data for the
Gaussian models at each pixel. While this access pattern
causes conflicts in a traditional cache, PMEM avoids the
conflicts by mapping the same tile in two images to different
cache sets. With a cache hit rate of 99%, PMEM approaches
the ideal memory system where data is fetched only once
from memory.

C. Performance

Figure 11 shows the relative performance of EVA, 2D
Addr, and PMEM, normalized to the baseline cache architec-
ture. The 2D prefetching of EVA improves performance by
an average of 7.3% over the baseline by reducing the number
of cache misses. The addressing capabilities of 2D Addr help
it improve by an average of 16.5% over the baseline by
optimizing the common addressing mode. PMEM exceeds
both, improving performance for all of the applications, on
average by 34%; no applications see performance degrada-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM

Conv Block Debayer FAST BRIEF GMM

N
o

rm
al

iz
e

 A
ve

ra
ge

 M
e

m
o

ry
 

La
te

n
cy

 

Fig. 10: The average memory latency normalized to tradi-
tional memory system.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM EV
A

2
D

 A
d

d
r

P
M

EM

Conv Block Debayer FAST BRIEF GMM

Sp
e

e
d

u
p

 

Fig. 11: Speedup for EVA, 2D Addressing, and PMEM
normalized to traditional cache architecture.

tion. This is due to PMEM reducing cache misses with less
overhead than EVA and 2D addressing with border handling.
Frame processing latency when using PMEM is thus much
better than with a conventional cache, enabling higher frame
rates, higher resolutions, and more complex algorithms.

D. Energy

Figure 12 compares the system energy for the four
memory architectures, normalized to that of a system using
a conventional cache. The bars are subdivided into ALU
computation energy (Compute), memory system (cache and
DRAM) access energy (Mem), address calculation opera-
tions (Addressing), and border handling operations (Border).
The category Other includes energy from instruction fetch,
control, and static energy. EVA, 2D Addr, and PMEM all



TABLE VII: Area costs normalized to conventional cache.

Unit Normalized Area
Conventional Cache

Cache data arrays 75.5%
Tag and control logic 24.5%
Total 100%

PMEM
Patch Unit 6.0%
Address Translation 6.8%
Cache data arrays 75.5%
Tag and control logic 21.2%
Total 109.6%

demonstrate improved energy efficiency over the baseline.
The majority of PMEM’s efficiency gain comes from re-
duced address computation overhead for multidimensional
data although a significant amount can be attributed to
locality as well. PMEM saves energy by replacing multiple
addressing instructions with application specific instructions,
thus reducing the instruction fetch and decode energy for
accessing a given pixel as well as the dynamic energy.
The additional performance of EVA, 2D Addr, and PMEM
decrease leakage energy by increasing the cache hit rate
and reducing the time spent waiting for data. PMEM has
a specific advantage over the other architectures for Conv
and Block by eliminating the border handling overheads. The
computations for addressing are optimized to take advantage
of the limited range of image sizes, enabling use of smaller,
more efficient, data paths.

E. Area

To examine the area costs of PMEM, we implemented
the key components in Verilog RTL and synthesized them
using Synopsys tools to a 28nm library. Table VII shows
the relative area for key components of the baseline cache
(data arrays and tag/control logic) and PMEM, normalized
to the total area of the baseline. The tag and control area
decreases because the tag array is smaller due to using tiles
which are larger than traditional cache lines. This also leads
to decreased tag array access energy, thus improving system
energy. As expected, cache memory array dominates the area
in both the conventional cache and PMEM. The additional
hardware to support multidimensional addressing accounts
for 11.7% of the area of the PMEM system. Compared to
a conventional cache, we consume only 9.6% more area to
support all of the PMEM system features.

F. Discussion

The Patch Memory System provides both performance
and energy improvements for image processing applica-
tions. In particular, the 2D addressing instructions and the
automatic boundary handling delivers substantial reduction
in cycle count by using specialized hardware to perform
these computations. The use of specialized hardware also
leads to more efficient computations by using data paths
optimized for this application space. PMEM also reduces

energy by eliminating the need to fetch instructions for
these common operations. While a 2D addressing memory
system (2D Addr) shows the benefits of hardware support
of 2D addressing, the lack of border handling or 2D cache
locality leads to less performance improvement on average
than PMEM. Some benchmarks use more of the specialized
hardware than others. For example, block matching, BRIEF,
and convolution show significant utilization of the border
handling hardware, while GMM does not use this hardware
at all. Such logic would be amenable to standard clock gating
strategies to further improve energy efficiency.

Providing support for addressing computations increases
the energy per hit compared to a traditional cache, but
this increase is offset by the smaller tag array. Patches
work as a form of prefetching based on explicit information
from the programmer and eliminate both the speculation
that is inherent in hardware prefetchers and the explicit
prefetch instructions used in typical software prefetching.
These capabilities provide PMEM with the benefits of
prefetching without the typical costs. While EVA provides
similar capability, the programmer must manipulate specific
registers when performing a special load. The patch table al-
lows PMEM to elide prefetch control operations, decreasing
overall instruction count. The instruction count for PMEM
is further reduced due to 2D addressing support. PMEM
also delivers productivity benefits due to the hardware/ISA
matching common programming primitives for the target
problem domain.

Overall, PMEM improves the energy delay product (EDP)
by 14–52% (average improvement of 42%) compared to a
system with a conventional cache. In contrast, EVA and the
2D addressing scheme provide an average EDP improvement
of 18% and 25%, respectively.

VIII. RELATED WORK

Prefetching. Prefetching techniques can be applied to
improve performance for workloads with dense, regular,
or otherwise predictable access patterns. Simple prefetch-
ers such as stride prefetchers can effectively capture one-
dimensional locality [32]. However, hardware prefetching
approaches operate speculatively and outside the program-
mer’s control. Previous work has shown that stride prefetch-
ers have problems stabilizing when accessing data within
a 2D window [16]. Algorithms such as BRIEF can have
random steps within a patch causing further problems for
stride prefetchers. Two-dimensional spatial prefetchers have
been proposed, targeted specifically at image data [16],
[33]. The EVA memory system includes a cache with a
flexible prefetcher capable of handling both 1D and 2D
memory access patterns [16]. EVA requires the programmer
manually insert specialized load instructions that prefetch
tiles. Our results show that the additional 2D addressing,
border handling, and patch-based memory operations lead
to improved performance of PMEM over EVA. Larabi et
al. propose using a 2D tracker to prefetch data for image



0

0.2

0.4

0.6

0.8

1

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

C
ac

h
e

EV
A

2
D

 A
d

d
r

P
M

EM

Conv Block Debayer FAST BRIEF GMM

N
o

rm
al

iz
e

d
 E

n
e

rg
y 

Compute Mem Addressing Border Other

Fig. 12: System energy (normalized to conventional cached memory) for EVA, 2D Addressing, and PMEM.

processing [34]. However, this tracker will not be as accurate
as getting the correct region to fetch from the programmer.

Texture Units. Graphics processors have been used to
run computer vision applications to achieve high perfor-
mance [35], [36]. However, there is still room for improved
efficiency when operating on image-based workloads. GPUs
employ specialized texture memory units to accelerate com-
mon image access and interpolation options [37]. Texture
units offer special modes for clamping at boundaries, using
interpolated floating-point coordinates, and various filtering
and sampling modes. They also offer support for access
patterns with 2D locality [38]. However, the 2D locality is
typically limited to small texel sizes [37]. Texture units do
not provide a patch equivalent, so they cannot exploit the
benefits of subregion addressing or prefetching that PMEM
can. We expect texture units to perform slightly better than
the 2D addressing model we studied here.

Scratchpad and Specialized Memory Systems. DSPs
commonly deploy scratchpads for various workloads [39].
While scratchpads can improve locality and latency, they
require the programmer to manage the local storage using
explicit load or DMA operations. Furthermore, scratch-
pads do not natively provide 2D addressing, caching, or
prefetching without elaborate software support. Scatter-
gather memory systems have also been used for IP/CV
workloads. However, they require expensive generation of
linear 1D addresses and do not fully take into account the
2D/3D nature of data structures, leading to lower expected
performance than PMEM. Prior work has also examined
specialized programmable architectures targeted at common
imaging operations. The convolution engine [8] is opti-
mized for the data access patterns and locality observed
in convolution stencil computations. The engine employs
a set of special 1D and 2D shift registers to manage data
transfers. Compared to a scratchpad or architectures with
limited configurability, PMEM provides a more traditional
cache interface with scratchpad-like performance. PMEM
concepts such as 2D addressing and border handling could
be applied to scratchpad memory systems. Specialization
for memory access patterns can also be incorporated into

memory controllers to optimize for DRAM characteristics.
PPMC provides such a specialized memory controller for
accelerators and is complementary to PMEM [40]; PPMC
could be integrated into the memory interface of PMEM.

IX. CONCLUSIONS

Patch Memory (PMEM) provides three main features to
improve locality and energy efficiency for image processing
and computer vision algorithms: 2D and 3D addressing,
2D caching and prefetching of data to exploit locality,
and automatic border extrapolation. PMEM provides spe-
cial instructions based on data types such as patches and
images that are common to many image-based applications.
These primitives make program code more compact and
better matched to the application space. Our results show
that PMEM can reduce processor energy by 34%, increase
performance by 32% and improve energy-delay product by
48–86% on the applications in this work.

Along with performance and energy improvements,
PMEM delivers productivity benefits due to matching the
underlying hardware to common programming primitives
for the problem domain. Such specialization enables both
improvements in efficiency and flexibility for developers in
a domain with rapidly evolving applications and algorithms.

ACKNOWLEDGMENT

This research was developed, in part, with funding from
the Defense Advanced Research Projects Agency (DARPA).
The views, opinions, and/or findings contained in this arti-
cle/presentation are those of the author/presenter and should
not be interpreted as representing the official views or poli-
cies of the Department of Defense or the U.S. Government.

REFERENCES

[1] NVIDIA, “Advanced Driver Assistance Systems (ADAS),” http://
www.nvidia.com/object/advanced-driver-assistance-systems.html.

[2] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan,
“Light Field Photography with a Hand-held Plenoptic Camera,”
Stanford University, Computer Science Department, Tech. Rep. CSTR
2005-02, 2005.

[3] Microsoft, “Microsoft HoloLens,” https://www.microsoft.com/
microsoft-hololens/en-us.



[4] F. Stein, “The Challenge of Putting Vision Algorithms into a Car,” in
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), June 2012, pp. 89–94.

[5] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection:
An Evaluation of the State of the Art,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 4, pp. 743–761, April
2012.

[6] S. Krotosky and M. Trivedi, “On Color-, Infrared-, and Multimodal-
Stereo Approaches to Pedestrian Detection,” IEEE Transactions on
Intelligent Transportation Systems, vol. 8, no. 4, pp. 619–629, De-
cember 2007.

[7] R. Rithe, P. Raina, N. Ickes, S. Tenneti, and A. Chandrakasan, “Recon-
figurable Processor for Energy-Efficient Computational Photography,”
IEEE Journal of Solid-State Circuits (JSSC), vol. 48, no. 11, pp. 2908–
2919, November 2013.

[8] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution Engine: Balancing Efficiency and
Flexibility in Specialized Computing,” in International Symposium on
Computer Architecture (ISCA), June 2013, pp. 24–35.

[9] T. Ohmaru, T. Nakagawa, S. Maeda, Y. Okamoto, M. Kozuma,
S. Yoneda, H. Inoue, Y. Kurokawa, T. Ikeda, Y. Ieda, N. Yamade,
H. Miyairi, M. Ikeda, and S. Yamazaki, “25.3µW at 60fps 240×160-
pixel Vision Sensor for Motion Capturing with In-pixel Non-volatile
Analog Memory Using Crystalline Oxide Semiconductor FET,” in In-
ternational Solid-State Circuits Conference (ISSCC), February 2015.

[10] J. Tanabe, S. Toru, Y. Yamada, T. Watanabe, M. Okumura,
M. Nishiyama, T. Nomura, K. Oma, N. Sato, M. Banno, H. Hayashi,
and T. Miyamori, “A 1.9TOPS and 564GOPS/W Heterogeneous
Multicore SoC with Color-based Object Classification Accelerator for
Image-recognition Applications,” in International Solid-State Circuits
Conference (ISSCC), February 2015.

[11] I. Hong, K. Bong, D. Shin, S. Park, K. Lee, Y. Kim, and H.-J.
Yoo, “A 2.71nJ/pixel 3D-stacked Gaze-activated Object-recognition
System for Low-power Mobile HMD Applications,” in International
Solid-State Circuits Conference (ISSCC), February 2015.

[12] T. Kurafuji, M. Haraguchi, M. Nakajima, T. Nishijima, T. Tanizaki,
H. Yamasaki, T. Sugimura, Y. Imai, M. Ishizaki, T. Kumaki, K. Mu-
rata, K. Yoshida, E. Shimomura, H. Noda, Y. Okuno, S. Kamijo,
T. Koide, H. Mattausch, and K. Arimoto, “A Scalable Massively
Parallel Processor for Real-Time Image Processing,” IEEE Journal of
Solid-State Circuits (JSSC), vol. 46, no. 10, pp. 2363–2373, October
2011.

[13] M. Demler, “Synopsys Embeds Vision Processing,” Microprocessor
Report, April 2015.

[14] T. R. Halfhill, “Ceva Sharpens Computer Vision,” Microprocessor
Report, April 2015.

[15] TMS320C64x+ DSP Cache User’s Guide (Rev. B), Texas Instruments.
[Online]. Available: http://www.ti.com/litv/pdf/spru862b

[16] J. Clemons, A. Pellegrini, S. Savarese, and T. Austin, “EVA: An
Efficient Vision Architecture for Mobile Systems,” in International
Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), September 2013, pp. 1–10.

[17] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A Language and Compiler for Optimiz-
ing Parallelism, Locality, and Recomputation in Image Processing
Pipelines,” in Conference on Programming Language Design and
Implementation (PLDI), June 2013, pp. 519–530.

[18] H. Malvar, L.-W. He, and R. Cutler, “High-quality Linear Interpola-
tion for Demosaicing of Bayer-patterned Color Images,” in Proceed-
ings of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), May 2004.

[19] I. Frosio and N. Borghese, “Statistical Based Impulsive Noise Re-
moval in Digital Radiography,” IEEE Transactions on Medical Imag-
ing, vol. 28, no. 1, pp. 3–16, January 2009.

[20] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising
by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE

Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095,
August 2007.

[21] G. Yu and G. Sapiro, “DCT Image Denoising: A Simple and Effective
Image Denoising Algorithm,” Image Processing On Line, vol. 1, 2011.

[22] E. Rosten and T. Drummond, “Machine Learning for High-speed
Corner Detection,” in Proceedings of the European Conference on
Computer Vision (ECCV), May 2006, pp. 430–443.

[23] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
Robust Independent Elementary Features,” in Proceedings of the
European Conference on Computer Vision (ECCV), September 2010,
pp. 778–792.

[24] T. Joachims, “Making Large-Scale SVM Learning Practical,” in
Advances in Kernel Methods - Support Vector Learning, B. Schölkopf,
C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999,
ch. 11, pp. 169–184.

[25] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, October 2001.

[26] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Upper Saddle River, NJ: Prentice-Hall, Inc., 2006.

[27] D. Jacobs, O. Gallo, and K. Pulli, “Dynamic Image Stacks,” in
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), June 2014.

[28] M. Bojnordi, N. Sedaghati-Mokhtari, O. Fatemi, and M. Hashemi,
“An Efficient Self-Transposing Memory Structure for 32-bit Video
Processors,” in Asia Pacific Conference on Circuits and Systems
(APCCAS), December 2006, pp. 1438–1441.

[29] T.-C. Chen, Y.-H. Chen, S.-F. Tsai, S.-Y. Chien, and L.-G. Chen,
“Fast Algorithm and Architecture Design of Low-Power Integer
Motion Estimation for H.264/AVC,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 17, no. 5, pp. 568–577, May
2007.

[30] E. Rosten and T. Drummond, “Fusing Points and Lines for High Per-
formance Tracking,” in IEEE International Conference on Computer
Vision, October 2005, pp. 1508–1511.

[31] C. Stauffer and W. Grimson, “Adaptive Background Mixture Models
for Real-time Tracking,” in Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 1999.

[32] J.-L. Baer and T.-F. Chen, “Effective Hardware-Based Data Prefetch-
ing for High-Performance Processors,” IEEE Transactions on Com-
puters., vol. 44, no. 5, pp. 609–623, May 1995.

[33] N. Zhou, F. Qiao, and H. Yang, “A Hybrid Cache Architecture with
2D-based Prefetching Scheme for Image and Video Processing,” in
International Conference on Communications and Signal Processing
(ICCSP), April 2013, pp. 1092–1096.

[34] Z. Larabi, Y. Mathieu, and S. Mancini, “High Efficiency Reconfig-
urable Cache for Image Processing,” in International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA), July
2009, pp. 226–232.

[35] J.-P. Farrugia and P. Horain, “GPUCV: A Framework for Image
Processing Acceleration with Graphics Processors,” in International
Conference on Multimedia and Expo (ICME), July 2006, pp. 585–588.

[36] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, “Accelerating Com-
puter Vision Algorithms Using OpenCL Framework on the Mobile
GPU - A Case Study,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), May 2013, pp. 2629–2633.

[37] H. Igehy, M. Eldridge, and K. Proudfoot, “Prefetching in a Texture
Cache Architecture,” in SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, 1998.

[38] N. Wilt, The CUDA Handbook: A Comprehensive Buide to GPU
Programming, 1st ed. Addison-Wesley Professional, 2013.

[39] S. Gilani, N. S. Kim, and M. Schulte, “Scratchpad Memory Op-
timizations for Digital Signal Processing Applications,” in Design,
Automation Test in Europe (DATE), 2011, March 2011, pp. 1–6.

[40] T. Hussain, M. Shafiq, M. Pericàs, N. Navarro, and E. Ayguadé,
“PPMC: A Programmable Pattern Based Memory Controller,” in In-
ternational Conference on Reconfigurable Computing: Architectures,
Tools and Applications, March 2012, pp. 89–101.


