
SASSIFI: Evaluating Resilience of GPU
Applications

Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W. Keckler, Joel Emer
NVIDIA

Abstract—As GPUs become more pervasive in both scalable
high-performance computing systems and safety-critical embed-
ded systems, evaluating and analyzing their resilience will grow
increasingly important. As soft errors, such as those caused
by high-energy particle strikes, form an important fraction of
in-field hardware errors, GPU designers must develop tools
and techniques to understand the effect of these soft errors
on applications. This paper presents an error injection-based
methodology to study the soft-error resilience of massively par-
allel applications running on state-of-the-art NVIDIA GPUs. Our
approach uses a low-level assembly-language instrumentation
tool called SASSI to profile and inject errors. SASSI provides
efficiency by allowing instrumentation code to execute entirely
on the GPU and provides the ability to inject into condition code
and predicate registers, in addition to general-purpose registers
and GPU memory. This paper describes our error injection tool
and presents some experiments to illustrate some possible lines of
analysis. We injected errors into Rodinia benchmark applications
and provide results from those experiments showing average
detected and silent error probabilities for applications, static
kernels, and dynamic kernel invocations. For applications with
multiple invocations of the same static kernel, we also show how
our tool can be used to study error propagation as a function of
the injection time. We also study the effect of errors on condition
code and predicate registers.

Index Terms—GPUs, Transient Errors, Silent Data Corrup-
tion, Architecture

I. INTRODUCTION

Transient hardware errors from soft errors, such as from
high-energy particle strikes, are a rising concern for processors
deployed in large-scale systems and safety-critical embedded
systems. These transient errors can propagate to the application
level and cause execution failures, also known as Detected
Unrecoverable Errors (DUEs), or silently corrupt application
output producing Silent Data Corruptions or SDCs. When
designing a system, it is important to accurately evaluate DUE
and SDC rates. Traditionally, hardware-level error injection
studies are performed to evaluate how low-level errors (e.g.,
errors at gate-level) propagate to the architecture level. This
approach provides an error derating factor that can be used
for full-chip resilience evaluation. However, measuring such
low-level error injections is often slow, and simulating the
application to completion to understand the effect of the error
on program output is difficult. As a result, developing insight
into whether and how transient errors can affect application
outputs is challenging.

The full application-level transient error derating factor
can be obtained through a two-tiered approach. The first tier
evaluates the derating factor from the circuit or gate level to
the architecture level. The second tier evaluates the derating
factor (masking, detection, and SDC rates) for errors at the

architecture level that propagate to application output. This
second step requires application-level error injection studies
with the ability and speed to run many error injection simula-
tions to application completion to evaluate their effect on the
program output. Such application-level studies also allow us
to understand what application sections are more vulnerable
than others, which can help to devise cost-effective error
mitigation schemes to improve application resilience. Until
recently, the tools that allow us to perturb and monitor GPU
state at the architecture level in an automated, efficient, and
user-friendly manner have not been available. A recent low-
level assembly-language instrumentation tool called SASSI
overcomes this challenge and provides a platform to perform
error injection studies at the architecture level with relatively
moderate execution overheads [1]. SASSI provides the ability
to instrument instructions in the low-level GPU assembly
language (SASS). The instrumentation allows callbacks to
arbitrary user-level functions which can execute before or after
the instrumented instructions.

This paper demonstrates how SASSI can be employed to
evaluate and analyze GPU application sensitivity to transient
hardware errors by injecting errors into the architecture state
of a running GPU. A similar technique used CUDA-GDB [2],
[3], but that work lacked the ability to modify predicate
and condition code registers and also required complex steps
to minimize performance overhead. Some studies investigate
GPU vulnerability using ACE analysis [4][5][6] or fault in-
jection [7], but few study the impact of error propagation and
masking at the GPU architectural level on application output.

Performing error injections using SASSI requires three
main steps: (1) profiling and identifying the error injection
space; (2) statistically selecting error injection sites; and (3)
injecting errors into executing applications and monitoring
error behavior. Steps (1) and (3) occur on different executions
of the SASSI instrumented application.

Overall, SASSI allows us to model and inject architecture-
level errors while GPU workloads are executing and evaluate
their effect on application behavior. In this study, we inject
single-bit errors in general purpose registers, condition code
registers, predicate registers, and store values and observe
their effect at the application level for 16 workloads from the
Rodinia benchmark suite [8].

Compared to simulation-based approaches, our methodol-
ogy achieves much greater experimental efficiency. However,
we are also limited to injecting errors into architecturally
visible state. As a result, we must abstract the effect of lower-
level physical faults into our set of injected errors. Our set
of injected errors is simplistic, i.e., single-bit flips distributed

uniformly over destination values of executing instructions.
Injections based on this error set introduce some bias into our
results. Nonetheless, we present initial results to illustrate the
possible types of analysis with our approach. Specifically, our
results show:

• Approximately 79% of errors injected into live GPU
architecture state (for our architecture-level error model)
have no effect on application execution. Only 7% produce
silent data corruptions (SDCs) and the remaining 14%
either result in a crash, a hang, or a visible symptom of a
failure that can be detected with appropriate error detec-
tors in place. Note that these architecture-level error rates
are higher than expected architectural vulnerability factor
(AVF) rates because our SASSI-based tool injects into
known live architecture state, while AVF measurements
also include injections into unused architecture state.

• Even within the same application, kernels vary in SDC
susceptibility. For example in bfs, we observed nearly 2×
differential in SDC rates between two different kernels.

• Different invocations of the same kernel can have dif-
ferent error outcomes. For example, the potential SDC
rate increases with increasing kernel invocation index
for pathfinder and decreases with invocation index for
gaussian and one of the static kernels in bfs.

• Injections into condition code (CC) registers, predicate
registers (PR), store values, and general purpose desti-
nation registers show different error results. Injections
into store values produce significantly higher application
crashes, hangs, and failure symptoms compared to injec-
tions in CC, PR, and general purpose registers. We did
not see any crashes or hangs from PR injections.

II. BACKGROUND AND RELATED WORK

A. Background: SASSI and CUPTI

SASSI is a compiler-based instrumentation tool that runs
as the final pass in NVIDIA’s production backend compiler
and assembler, ptxas. Because SASSI is invoked after the
original, un-instrumented SASS has already been finalized,
injected instrumentation does not disrupt the perceived final
instruction schedule or register usage.

SASSI must be instructed where to insert instrumentation,
and what instrumentation to insert. In this paper, we use SASSI
to inject instrumentation after all SASS instructions that mod-
ify registers or memory. For each of the instrumentation sites,
SASSI will insert a CUDA ABI-compliant function call to
a user-defined instrumentation handler function, passing site-
specific information as arguments to the handler. Therefore,
users must instruct SASSI what information to pass to the in-
strumentation handler(s). We can currently extract and pass to
an instrumentation handler, the following information for each
site: memory information (e.g., addresses read and written),
register usage information (e.g., registers read and written,
including their values), conditional branch information, and
register liveness information.

Unlike CPU instrumentation, GPU instrumentation must
coordinate with the host machine (CPU) to both initialize
instrumentation counters and to gather their values. CUPTI

allows host-side code to receive callbacks when certain impor-
tant CUDA events occur, such as kernel launches and exits [9].
We use the CUPTI library to initialize counters before kernels
launch and to copy profile information off the device after
kernels exit.

B. Resilience evaluation studies

Our work uses fault injection at the GPU architectural level
to study error propagation at the chip level and the software
level. Other chip-level approaches include the use of ACE
analysis to derive architectural vulnerability factors [10] and
mathematical models to understand the effect of different
design and technology parameters [11]. Fault injection can
also be performed at the RTL or gate level [12] to understand
the effect of errors on combinational and sequential logic and
the resulting manifestation of these lower-level faults at the
architectural level. Because our work assumes an architectural-
level error model, we are not able to capture the exact effect
of lower-level faults. However, our approach significantly
increases the efficiency of fault injection compared to lower-
level fault injection, which not only allows more faults to be
injected but also permits the execution of full applications.

Whereas our work uses compiler instrumentation for run-
time fault injection, a GPU debugger-based tool [2] can also
be used to inject architectural-level errors. Similar to our
work, the debugger approach can also inject into the register
file. However, our compiler approach also has the ability to
inject into condition code and predicate registers. Additionally,
we avoid the significant performance degradation of breaking
from GPU execution to the host system to inspect and/or
modify GPU state.

One prior study looked at measuring Architectural Vulner-
ability Factor (AVF) of some GPU hardware structures using
statistical fault injection to inject faults into register files, local
memory, and active mask stack [7]. Our work focuses on
application-level resilience evaluations by answering questions
such as which static kernel is more vulnerable and which
kernel invocation is more vulnerable.

Some work has used accelerated high energy particle beams
to measure the failure rates of GPUs [13]. Such studies are
able to study the effect of low-level faults with minimal
performance overhead but trade off determinism of results,
ability to control faults, and visibility into error propagation.

C. Error Model

Because we inject errors at the architectural level, we are
studying the vulnerability of the software in allowing lower-
level errors to propagate. In some respects, our approach
is similar to measuring the Program Vulnerability Factor as
defined in [14]. However, our approach uses fault injection
instead of ACE analysis. We also only select injection sites
from the subset of architectural state that is modified by the
application, in contrast to considering all architecturally ac-
cessible state. Our results, though not directly translatable into
AVF, show how our injected faults affect program outcomes.
A full evaluation of AVF requires the distribution of error
patterns at the architectural level based upon the propagation
of errors through the microarchitecture.

III. SASSIFI FRAMEWORK

SASSIFI is a SASSI-based error injection approach that
injects transient errors in ISA visible state such as general
purpose registers, store values, predicate registers, and con-
dition code registers. SASSIFI operates in three main steps:
(1) profiling and identifying the error injection space; (2)
statistically selecting error injection sites; and (3) injecting er-
rors into executing applications and monitoring error behavior.
Steps (1) and (3) occur on different executions of the SASSI
instrumented application on the GPU; step (2) is performed
on the host CPU.
Error Model: With the aim of modeling soft-errors in latches
and unprotected SRAM structures (e.g., pipeline buffers) at
architecture level, we inject bit-flips in outputs of executing
instructions. Specifically, we inject a single-bit flip in one
of the destination registers of an executing instruction per
application run. We exclude instructions that are predicated
out. If the destination register is a general purpose register
(32-bit value) or a condition code (4-bit value), one bit is
randomly selected to be flipped. For predicate registers, we
only flip one of the destination predicate bits that are written
by the instruction. For store instructions, we flip a randomly
selected bit in the stored value.

Since we inject errors directly into live state (destination
registers), our error model does not account for various mask-
ing factors in the lower layers of the hardware stack such
as circuit-, gate-, and microarchitecture-level masking as well
as masking due to errors in architecturally untouched values.
Our model does not directly provide insight into AVF of the
applications – our results in Section IV show the breakdown
in program outcomes (but does not imply any specific AVF,
or enable a comparison across different programs). A full
evaluation of AVF would need to (1) couple into a lower
level microarchitecture error model, and (2) account for pure
random injection of fault state.

Low-level transient errors may or may not propagate to the
architecture level as single-bit flips in destination values. Also,
our model uniformly selects dynamic instructions for error
injections. Since some instructions may be more amenable
to soft-errors than others (e.g., based on the number of
latches/flip-flops they exercise), we need further research to
derive accurate architecture-level transient error models to
better represent low-level transient errors and to bias injection
instruction selection.
Profiling and identifying the error injection space: For
the profiling step, we use SASSI to instrument after all
instructions, except for the instructions that are predicated out.
We collect and pass the register and memory information for
each instrumented instruction to the handler, which records the
state modifications so that an off-line tool can stochastically
select the error injection sites. Specifically, we collect the
following information to identify the error injection space: (1)
static kernel names in an application, (2) number of times each
kernel executes, (3) number of threads per kernel invocation,
and (4) number of dynamic instructions per thread that are
not predicated out and either write to a register or a memory
location. We use CUPTI to collect (1) and (2) and instrument

TABLE I
ERROR INJECTION OUTCOMES.

Category Explanation

Masked Application output is same as the error free output. No
error symptom is observed.

Crashes Application exits with non-zero exit status.
Hangs Executions that do not terminate within an allocated

threshold, which is 3× the fault-free runtime in our
study.

Failure Symptoms Unsuccessful kernel executions (detected by comparing
kernel exit status with cudaSuccess) or explicit error
messages in stdout/stderr (e.g., Error: misaligned ad-
dress). These errors can be categorized as detected if the
system has appropriate application or system monitors.

Stdout only different Application finishes without crashes, hangs, or failure
symptoms but the output of stdout is different. Output
file generated by the application is identical to the fault-
free run.

Output different Application finishes without crashes, hangs, or failure
symptoms but the output file generated by the appli-
cation is different than the output generated by the
fault-free run. Most of our applications produce a single
output file.

the instructions using SASSI to collect (3) and (4).
Statistically selecting error injection sites: Using this in-
formation, we randomly select 1,000 dynamic instructions
for error injections among all dynamic instructions across
all kernel invocations per application. At 95% confidence
intervals, the measured potential SDC rates have error bars
under 3%. For each selected dynamic instruction, we randomly
select a destination value (e.g., general purpose register or
predicate register) and then select the bit to be flipped, which
is also randomly selected from the bits that are being written
by the instruction (e.g., one bit is selected among the predicate
register bits that are being written by the instruction or one bit
among the 32 bits of a general purpose register). Specifically,
an error injection site is a tuple consisting of the static kernel
name, dynamic kernel invocation ID, thread ID, dynamic
instruction count, seed to select a destination value, and seed
to select the bit for injection. This step is performed on the
host CPU.
Error injections runs: In the last and the most important
step, we instrument the same set of instructions as in the
profiling step and use the instrumentation handler to inject the
error into the location selected by the stochastic process. We
inject one error per application run and monitor for crashes,
hangs, and output corruption. In each injection run, we check if
the dynamic invocation count of the kernel has been reached
using CUPTI. If so, we copy the remaining error site tuple
into the device memory. During kernel execution, we check
if the current thread is the selected thread for injection in the
instrumentation handler. For the selected thread, we maintain a
counter and check if the dynamic instruction that just executed
is the selected instruction for injection. For this instruction, we
inject the error based on the instruction and destination register
being selected. We select the bit using the seed that is passed
as input.

After the error injection, the application is then executed
to completion, unless a crash or a hang is detected. We
categorize the injection outcome based on the exit status of
the application, hang detection, error messages thrown during
execution, differences in stdout/stderr, and program output
(typically stored in a file) from that of the error-free runs.
Table I explains how we categorize error injection outcomes.

TABLE II
RODINIA APPLICATIONS.

Static # Dynamic
Benchmark Domain Kernels Kernel Calls

b+tree Search 2 2
backprop Pattern recognition 2 2

bfs Graph algorithm 2 24
pathfinder Grid traversal 1 5

kmeans Data mining 2 3
nn Data mining 1 1

streamcluster Data mining 1 1611
lud Linear algebra 3 46

gaussian Linear algebra 2 2046
mummergpu Bioinformatics 2 2

nw Bioinformatics 2 255
lavaMD Molecular dynamics 1 1
hotspot Physics simulation 1 1

heartwall Medical imaging 1 10
srad v1 Image processing 6 502
srad v2 Image processing 2 4

Crashes, hangs, and failure symptoms can be categorized as
detected unrecoverable errors (DUEs). Injections marked as
stdout only different and output different can be categorized
as potential silent data data corruptions (SDCs).

IV. EVALUATION

Our experimental flow targets NVIDIA Tesla K20 and Telsa
K10 G2 GPUs with 5GB and 8GB memory, respectively. Our
setup uses display driver version 340.29 and the CUDA 6.5
toolkit. The host system is an Intel Core 2 Quad CPU Q6600
with 4GB of memory. Table II lists the Rodinia applications
used in this study [8].

As mentioned above, we performed 1,000 error injection
runs per application using our error model that injects single-
bit transient errors directly into the destination values of exe-
cuting instructions. Figure 1 shows how different applications
behave with architecture-level errors. The figure shows that
approximately 79% of injected errors on average did not
have any effect on the program output. Only 10% resulted in
crashes or hangs. Approximately 4% of the injections showed
symptoms of failures that can be categorized as potential
crashes with appropriate error monitors. These categories are
unsuccessful kernel executions (detected by comparing kernel
exit status with cudaSuccess) or explicit error messages in
stdout/stderr (e.g., Error: misaligned address). The remaining
injections corrupt some application output (stdout, stderr, or
program defined output file). We categorize such cases as
potential silent data corruptions (SDCs). We observed that
1.5% of the injections showed differences only in stdout/stderr
when compared to error-free executions without corrupting
the program output file, which may be acceptable for some
applications. Lastly, only 5.4% showed differences in the
program output file.

A. Comparing error sensitivity of different static kernels

Several of our studied applications have more than one static
kernel that executes for a significant fraction of application
runtime. Data obtained through our error injection campaign
allows us to study the sensitivity of different static kernels to
architecture-level single-bit flips. Figure 2 shows our findings.
The height of the bars shows the number of injection experi-
ments performed per static kernel per application (these num-
bers sum to 1,000 per application). Since we select instructions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Output different Stdout only different Failure symptoms Hangs Crashes Masked

Potential Silent Data Corruptions (SDCs) Potential Detected Unrecoverable Errors

(DUEs)

Fig. 1. Error injection outcomes of different applications. Each bar shows
the results obtained from 1,000 error injection runs using our error model
that injects single-bit transient errors directly into the destination values of
executing instructions.

for error injection randomly across all the application dynamic
instructions, the heights of the bars can also be approximated
as the relative number of dynamic instructions per static kernel
across all its instantiations.

For some applications, not all static kernels in an application
appear in this figure. The number of dynamic instructions
executed in those kernels is small enough compared to other
kernels in that application such that no error injection site was
selected from that kernel (we randomly select 1,000 dynamic
instructions among all dynamic instructions across all dynamic
invocations of kernels).

Figure 2 shows that different static kernels within an appli-
cation behave differently for several applications. For example,
the bfs application has two kernels named Kernel and Kernel2,
with the second kernel (Kernel2) experiencing more potential
SDCs (output differences) and fewer failure symptoms. Sim-
ilarly, for srad v2, we observe that the srad cuda 2 kernel
experiences more output differences (potential SDCs) than the
srad cuda 1 kernel. For these two applications, the kernel that
experiences the higher number of potential SDCs executes
for a relatively smaller amount of time on the GPU, which
suggests that application-level error mitigation schemes such
as partial or full thread-level redundancy can be cost effective.

We also observe that for mummergpu, the kernel mum-
mergpuKernel experiences significantly more potential SDCs
(stdout only different) compared to the other kernel in that
application. Lastly, for srad v1, srad is the only static kernel
that experienced significant output differences.

The number of injections per static kernel (heights of
the bar) for most applications in Figure 2 are at least 300,
which is significant to study the trends. However, further
experimentation is required to develop the insights behind
these observations.

B. Comparing error sensitivity of different dynamic kernel
invocations of same static kernel

We also study how error outcomes change with different
dynamic kernel invocations of the same static kernel. Since
some applications have many dynamic kernel invocations, we
do not have a sufficient number of injections per dynamic
kernel invocation for all applications. However, for several
applications, we do have 10s to 100s of injections per dynamic

0

200

400

600

800

1,000

1,200

fin
dR

an
ge

K

fin
dK

bp
nn

_a
dj

us
t_

w
ei

gh
ts

_c
ud

a

bp
nn

_l
ay

er
fo

rw
ar

d_
C

U
D

A

K
er

ne
l2

K
er

ne
l

F
an

1

F
an

2

ke
rn

el

ca
lc

ul
at

e_
te

m
p

km
ea

ns
P

oi
nt

in
ve

rt
_m

ap
pi

ng

ke
rn

el
_g

pu
_c

ud
a

lu
d_

di
ag

on
al

lu
d_

in
te

rn
al

lu
d_

pe
rim

et
er

m
um

m
er

gp
uK

er
ne

l

pr
in

tK
er

ne
l

eu
cl

id

ne
ed

le
_c

ud
a_

sh
ar

ed
_1

ne
ed

le
_c

ud
a_

sh
ar

ed
_2

dy
np

ro
c_

ke
rn

el

pr
ep

ar
el

sr
ad

2

co
m

pr
es

s

re
du

ce

ex
tr

ac
t

sr
ad

sr
ad

_c
ud

a_
2

sr
ad

_c
ud

a_
1

ke
rn

el
_c

om
pu

te
_c

os
t

b+tree backprop bfs gaussian heart-
wall

hot-
spot

kmeans lava-
MD

lud mummer-
gpu

nn nw path-
finder

srad
v1

srad
v2

stream-
cluster

Output different Stdout only different Failure symptoms Hangs Crashes Masked

Fig. 2. Breakdown of the error injection outcomes per static kernel of different applications is shown here. Height of each bar (y-axis) shows the number
of injections performed per static kernel.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

0-
12

7

12
8-

25
5

25
6-

38
3

38
4-

51
1

51
2-

63
9

64
0-

76
7

76
8-

89
5

89
6-

10
23 1 2 3 4 5 6 7 8 9 0 1 2 3 4

Kernel2 Kernel Fan2 kernel dynproc_kernel

bfs gaussian heartwall pathfinder

Output different Stdout only different Failure symptoms Hangs Crashes Masked

Fig. 3. Error outcomes change with the kernel invocation index for different static kernels in bfs, gaussian, heartwall, and pathfinder.

kernel invocation to observe trends. We show these results in
Figure 3 for bfs, gaussian, heartwall, and pathfinder with the
x-axis as the dynamic invocation index for each static kernel,
which is equal to the number of dynamic kernel invocations
of that static kernel until the point of error injection.

For bfs, one static kernel experiences more output differ-
ences than the other. Figure 3 shows how error outcomes
differ between different dynamic kernel invocations for the
two static kernels. The two kernels (Kernel and Kernel2) are
called back to back in a loop that executes 12 times for the
input we selected. Although no pattern emerges for Kernel2,
for Kernel, the number of output differences decreases with
the dynamic invocation index, except for the invocation index
6 where we observe a steep increase.

We also observe a similar trend for gaussian (see Figure 3).
However, the number of potential SDCs (output differences)
decreases significantly with the dynamic invocation index,
and the number of masked cases increases. We hypothesize
that errors in the early invocation indices are exaggerated by
subsequent computation, causing this effect.

We also observe that for some application kernels, e.g.,
kernel in heartwall, there are hardly any noticeable differences
in outcomes across invocations (Figure 3). On the other
hand, for pathfinder we observed that the number of potential
SDCs (cases with stdout only different) increases with the
dynamic kernel invocation index. This effect may be due to the
application-level masking effects for errors in early invocation
indices, e.g., if an error is injected early in the execution, it
has more opportunity to get masked.

C. Sensitivity to error injections in different destination values

Here we show the error outcomes from single-bit error
injections in condition codes registers (CC), predicate registers
(PR), store values, and others general-purpose destination
registers. Recall that we inject errors into one of the randomly
selected destination values of an executing instruction. Since
the number of instructions that write to a CC, PR, or a store
value to memory is relatively small compared to the number of
instructions that write to general purpose registers, the number
of injections into CC, PR, and store values are significantly
lower. Nonetheless, the number of injections in CC, PR, and
store instructions across all the applications are 612, 1424, and
569, respectively, which we believe is sufficient to observe
trends.

We also observed that errors in predicate registers do not
result in crashes, hangs, or other failure symptoms. This effect
is likely due to the way predicate registers are used, which is
primarily to nullify a single instruction or multiple instructions
in a thread. Errors in these bits can either convert instructions
to null operations or vice versa.

Lastly, we observe that errors in store values produce more
potential SDCs when compared to errors in general-purpose
registers, PR, or CC bits. They also experience much higher
crashes or failure symptoms (or DUEs). Our hypothesis is
that applications use store values for control and address
computations as well (not just storing program values that are
used in pure data flow), thus increasing DUEs.

D. SASSIFI Slowdowns

We observed modest application level slowdowns compared
to uninstrumented runs for our error injection runs. We only
show slowdowns for injection runs because these are run 100s

TABLE III
SLOWDOWNS FOR RODINIA APPLICATIONS.

Slowdowns (×) Slowdowns (×)
Benchmark app kernel Benchmark app kernel

b+tree 1.7 – kmeans 1.9 105
backprop 4.7 240 lavaMD 13.2 451

bfs 1.6 141 lud 3.7 67
gaussian 5.0 40 mummergpu 1.1 101

heartwall 137.5 291 nn 4.1 –
hotspot 2.0 789 nw 4.7 54

pathfinder 1.7 660 streamcluster 23.9 347
srad v1 20.3 – srad v2 1.7 552

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

General Purpose
Registers

Store values Condition Codes Predicate
Registers

Average

Output different

Stdout only different

Failure symptoms

Crashes

Masked

Fig. 4. Outcomes of injections into CC, PR, store, and general purpose
destination registers averaged across the studied applications.

to 1000s of times per application, as opposed to profiling
runs that are run only once. Table III shows the application-
and kernel-level slowdowns for the injection runs that result
in masking (excluding early terminations due to crashes and
extra time needed for hangs). We observed 1.1× to 137.5×
slowdowns at the application level; at the kernel level the
slowdowns were much higher, ranging from 40× to 789×.

Since SASSI instrumented all instructions in our setup, the
kernel-level slowdowns are significant (due to added instruc-
tions and cache pollution). This overhead can be significantly
lowered by instrumenting only the static instructions that are
selected for error injections, which will most likely be a small
fraction of all static instructions.

V. CONCLUSIONS AND FUTURE WORK

This paper describes the SASSIFI tool and presents initial
fault injection experiments with SASSIFI that illustrate the
utility of the framework for analyzing error propagation within
a GPU while executing real applications. We present a prelim-
inary set of results as an example of the types of results and
analysis possible with SASSIFI. Based on this work, we plan
to improve the quality of results and to study other aspects of
error propagation, especially at the software level.

One very interesting line of analysis involves extracting
application characteristics that correlate with either detected
or silent errors. For example, certain programming constructs
or design patterns may be associated with greater error prop-
agation. Identification of those constructs or patterns allows
programmers to adjust their code to account for acceptable
levels of errors and overhead. This information may also allow
selection of highly vulnerable code sections to be protected by
software-implemented error detection and correction methods.

Our results show that different invocations of the same
kernel experience different error masking. While our current
experiments are not sufficient to explain this effect, we ex-
pect that deeper experimentation illuminate the causes. For
example, by inserting code to check for error propagation

at the end of each dynamic kernel, we can more precisely
study the effect of inter-kernel error propagation. This type of
study might permit the identification of a subset of dynamic
kernel invocations that provide sufficient error propagation
with acceptable overheads.

The experiments described in this paper assume a simplistic
error model, where lower-level faults propagate to the architec-
tural level as single-bit flips in destination registers and where
all instructions are equally likely to be injected with a soft
error. Deviation of this error model from reality introduces
inaccuracies into the SASSIFI results. Therefore, analysis of
the pre-architectural error propagation is needed to derive a
more realistic set of error patterns for SASSIFI injections. This
analysis may involve lower-level fault injection to derive more
precise error patterns or less resource-intensive modeling for
more approximate error models.

REFERENCES

[1] M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
M. O’Connor, D. Nellans, and S. W. Keckler, “Flexible Software Profil-
ing of GPU Architectures,” to appear in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2015.

[2] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin:
A Methodology for Evaluating the Error Resilience of GPGPU Applica-
tions,” in Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014, pp. 221–230.

[3] NVIDIA. (2014, August) CUDA-GDB :: CUDA Toolkit Documentation.
[Online]. Available: http://docs.nvidia.com/cuda/cuda-gdb/index.html

[4] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnera-
bility on gpgpu microarchitecture.” in Proceedings of the International
Symposium on Workload Characterization (IISWC), 2011, pp. 226–235.

[5] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi, and G. H. Loh,
“Architectural Vulnerability Modeling and Analysis of Integrated Graph-
ics Processors,” in Workshop on Silicon Errors in Logic - System Effects,
March 2013.

[6] M. Wilkening, V. Sridharan, S. Li, F. Previlon, S. Gurumurthi, and D. R.
Kaeli, “Calculating architectural vulnerability factors for spatial multi-
bit transient faults,” in Proceedings of the International Symposium on
Microarchitecture (MICRO). IEEE, 2014, pp. 293–305.

[7] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical Fault Injection-Based
AVF Analysis of a GPU Architecure,” in Workshop on Silicon Errors
in Logic - System Effects, April 2012.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proceedings of the International Symposium on Workload
Characterization (IISWC), October 2009, pp. 44–54.

[9] NVIDIA. (2014, November) CUPTI :: CUDA Toolkit Documentation.
[Online]. Available: http://docs.nvidia.com/cuda/cupti/index.html

[10] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor,” in Proceedings of
the International Symposium on Microarchitecture (MICRO), December
2003, pp. 29–42.

[11] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic,” in Proceedings of the International Conference
on Dependable Systems and Networks (DSN), June 2002, pp. 389–398.

[12] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K.
Iyer, “An Experimental Study of Soft Errors in Microprocessors,” IEEE
Micro, vol. 25, no. 6, pp. 30–39, November 2005.

[13] D. A. G. Oliveira, P. Rech, H. M. Quinn, T. D. Fairbanks, L. Monroe,
S. E. Michalak, C. Anderson-Cook, P. O. A. Navaux, and L. Carro,
“Modern GPUs Radiation Sensitivity Evaluation and Mitigation Through
Duplication With Comparison,” IEEE Transactions on Nuclear Science,
vol. 61, pp. 3115–3122, December 2014.

[14] V. Sridharan and D. Kaeli, “Eliminating Microarchitectural Depen-
dency from Architectural Vulnerability,” in Proceedings of the Interna-
tional Symposium on High-Performance Computer Architecture (HPCA),
February 2009, pp. 117–128.

