Value Iteration

- Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method
 - ... though the \(V_k \) vectors are also interpretable as time-limited values
Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of **rewards**
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to **maximize expected rewards**
 - All learning is based on observed samples of outcomes!
Example: Learning to Walk

Initial (19.5 cm/s) Learned Walk

After learning (28 cm/s)
Example: Atari from raw pixels

Before training
peaceful swimming
Example: Robot manipulation
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)

- Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Assume: $\gamma = 1$

Input Policy π

- A
- B
- C
- D
- E

Observed Episodes (Training)

<table>
<thead>
<tr>
<th>Episode 1</th>
<th>Episode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, east, C, -1</td>
<td>B, east, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, D, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>D, exit, x, +10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Episode 3</th>
<th>Episode 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, north, C, -1</td>
<td>E, north, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, A, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>A, exit, x, -10</td>
</tr>
</tbody>
</table>

Learned Model

$$\hat{T}(s, a, s')$$

- $T(B, \text{east}, C) =$
- $T(C, \text{east}, D) =$
- $T(C, \text{east}, A) =$
- \ldots

$$\hat{R}(s, a, s')$$

- $R(B, \text{east}, C) =$
- $R(C, \text{east}, D) =$
- $R(D, \text{exit, x}) =$
- \ldots
Example: Model-Based Learning

Assume: $\gamma = 1$

Input Policy π

- **Episode 1**
 - B, east, C, -1
 - C, east, D, -1
 - D, exit, x, +10

- **Episode 2**
 - B, east, C, -1
 - C, east, D, -1
 - D, exit, x, +10

- **Episode 3**
 - E, north, C, -1
 - C, east, D, -1
 - D, exit, x, +10

- **Episode 4**
 - E, north, C, -1
 - C, east, A, -1
 - A, exit, x, -10

Observed Episodes (Training)

Learned Model

- $\hat{T}(s, a, s')$
 - $T(B, \text{east}, C) = 1.00$
 - $T(C, \text{east}, D) = 0.75$
 - $T(C, \text{east}, A) = 0.25$

- $R(s, a, s')$
 - $R(B, \text{east}, C) = -1$
 - $R(C, \text{east}, D) = -1$
 - $R(D, \text{exit}, x) = +10$
Example: Expected Age

Goal: Compute expected age of CS 343 students

Known P(A)

\[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots \]

Unknown P(A): “Model Based”

\[\hat{P}(a) = \frac{\text{num}(a)}{N} \]

\[E[A] \approx \sum_a \hat{P}(a) \cdot a \]

Unknown P(A): “Model Free”

\[E[A] \approx \frac{1}{N} \sum_i a_i \]

Why does this work? Because eventually you learn the right model.

Why does this work? Because samples appear with the right frequencies.
Model-Free Learning
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

A -10
B +8
C +4
D +10
E -2
Problems with Direct Evaluation

- **What’s good about direct evaluation?**
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- **What bad about it?**
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- **Simplified Bellman updates calculate V for a fixed policy:**
 - Each round, replace V with a one-step-look-ahead layer over V

 \[
 V_0^\pi(s) = 0
 \]

 \[
 V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]
 \]

 - This approach fully exploited the connections between the states
 - Unfortunately, we need T and R to do it!

- **Key question:** how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi_k(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V^\pi_k(s'_1)$$
$$\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V^\pi_k(s'_2)$$
$$\vdots$$
$$\text{sample}_n = R(s, \pi(s), s'_n) + \gamma V^\pi_k(s'_n)$$

$$V^\pi_{k+1}(s) \leftarrow \frac{1}{n} \sum_i \text{sample}_i$$

Almost! But we can’t rewind time to get sample after sample from state s.
Temporal Difference Learning
Temporal Difference Learning

- **Big idea: learn from every experience!**
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$:

$$sample = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$$

Same update:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$$
Exponential Moving Average

- Exponential moving average
 - The running interpolation update:
 \[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important:
 \[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha [R(s, \pi(s), s') + \gamma V^\pi(s')]$
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

 $$\pi(s) = \arg \max_a Q(s, a)$$

 $$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Active Reinforcement Learning
Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- Q-Learning: sample-based Q-value iteration

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn Q(s,a) values as you go
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate: \(Q(s,a)\)
 - Consider your new sample estimate:
 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s, a) \leftarrow (1 - \alpha) Q(s, a) + (\alpha) [\text{sample}] \]
Demo of Q-Learning -- Gridworld
Demo of Q-Learning -- Crawler
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)