CS 343: Artificial Intelligence

CSPs II + Local Search

Prof. Scott Niekum

The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Last time: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

- Goals:
 - Here: find any solution
 - Also: find all, find best, etc.
Last time: Backtracking
Last time: Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

What went wrong here?
Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it’s all still NP-hard

- Filtering: Can we detect inevitable failure early?

- Ordering:
 - Which variable should be assigned next? (MRV)
 - In what order should its values be tried? (LCV)

- Structure: Can we exploit the problem structure?
Structure
Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact

- Independent subproblems are identifiable as connected components of constraint graph

- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is $O((n/c)(d^c))$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$

- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning
Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children
 - Remove backward: For $i = n : 2$, apply RemoveInconsistent(Parent(X_i), X_i)
 - Assign forward: For $i = 1 : n$, assign X_i consistently with Parent(X_i)

- Runtime: $O(n d^2)$ (why?)
Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
 - Proof: Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
 - Proof: Induction on position

- Why doesn’t this algorithm work with cycles in the constraint graph?

- Note: we’ll see this basic idea again with Bayes’ nets
Nearly Tree-Structured CSPs
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O\left((d^c) (n-c) d^2 \right)$, very fast for small c
Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured), removing any inconsistent domain values w.r.t. cutset assignment

\(d^c\)

\((n-c)d^2\)
Find the smallest cutset for the graph below.
Local search methods typically work with “complete” states, i.e., all variables assigned.

To apply to CSPs:
- Take an assignment with unsatisfied constraints
- Operators *reassign* variable values
- No fringe! Live on the edge.

Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \text{total number of violated constraints} \)

Can get stuck in local minima (we’ll come back to this idea in a few slides)
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n) =$ number of attacks
Video of Demo Iterative Improvement – n Queens
Runtime of min-conflicts is on n-queens is \textit{roughly independent of problem size!}

- Why?? Solutions are densely distributed in state space

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000) in ~50 steps!

- The same appears to be true for any randomly-generated CSP \textit{except} in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]
Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints

- Basic solution: backtracking search

- Speed-ups:
 - Ordering
 - Filtering
 - Structure

- Iterative min-conflicts is often effective in practice
Local Search
Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can’t make it better (no fringe!)
- New successor function: local changes
- Generally much faster and more memory efficient (but incomplete and suboptimal)
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What’s bad about this approach?
 - Complete?
 - Optimal?

- What’s good about it?
Hill Climbing Diagram

- **objective function**
- **global maximum**
- **shoulder**
- **local maximum**
- **"flat" local maximum**
- **current state**
- **state space**
Hill Climbing Quiz

Starting from X, where do you end up?
Starting from Y, where do you end up?
Starting from Z, where do you end up?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
- But make them rarer as time goes on

```plaintext
function Simulated-Annealing(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                   next, a node
                   T, a "temperature" controlling prob. of downward steps

  current ← MAKE-NODE(INITIAL-STATE[problem])
  for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```

Shake!

Shake!
Simulated Annealing

- **Theoretical guarantee:**
 - If T decreased slowly enough, will converge to optimal state!

- **Is this an interesting guarantee?**

- **Sounds like magic, but reality is reality:**
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
Beam Search

- Like greedy hillclimbing search, but keep K states at all times:

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?
Gradient Methods

- Continuous state spaces
 - Problem! Cannot select optimal successor

- Discretization or random sampling
 - Choose from a finite number of choices

- Continuous optimization: Gradient ascent
 - Take a step along the gradient (vector of partial derivatives)

- What if you can’t compute gradient?
 - i.e. maybe you can only sample the function
 - Estimate gradient from samples!
 - “Stochastic gradient descent”
 - We will return to this in neural networks / deep learning
Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety

- Possibly the most misunderstood, misapplied (and even maligned) technique around
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?