
Compression of Partially Ordered Strings

Rajeev Alur, Swarat Chaudhuri, Kousha Etessami, Sudipto Guha, and Mihalis

Yannakakis

1

Department of Computer and Information S
ien
e, University of Pennsylvania

2

Department of Computer and Information S
ien
e, University of Pennsylvania

3

S
hool of Informati
s, University of Edinburgh

4

Department of Computer and Information S
ien
e, University of Pennsylvania

5

Department of Computer S
ien
e, Stanford University

Abstra
t. We introdu
e the problem of
ompressing partially ordered

strings: given string � 2 �

�

and a binary independen
e relation I over �,

how
an we
ompa
tly represent an input if the de
ompressor is allowed

to re
onstru
t any string that
an be obtained from � by repeatedly

swapping adja
ent independent symbols? Su
h partially ordered strings

are also known as Mazurkiewi
z tra
es, and naturally model exe
utions

of
on
urrent programs. Compression te
hniques have been applied with

mu
h su

ess to sequential program tra
es not only to store them
om-

pa
tly but to dis
over important pro�ling patterns within them. For

ompression to a
hieve similar aims for
on
urrent program tra
es we

should exploit the extra freedom provided by the independen
e relation.

Many popular string
ompression s
hemes are grammar-based s
hemes

that produ
e a small
ontext-free grammar generating uniquely the given

string. We
onsider three
lasses of strategies for
ompression of partially-

ordered strings: (i) we adapt grammar-based s
hemes by rewriting the

input string � into an \equivalent" one before applying grammar-based

string
ompression, (ii) we represent the input by a
olle
tion of proje
-

tions before applying (i) to ea
h proje
tion, and (iii) we
ombine (i) and

(ii) with relabeling of symbols. We present some natural algorithms for

ea
h of these strategies, and present some experimental eviden
e that

the extra freedom does enable extra
ompression. We also prove that

a strategy of proje
ting the string onto ea
h pair of dependent symbols

an indeed lead to exponentially more su

in
t representations
ompared

with only rewriting, and is within a fa
tor of j�j

2

of the optimal strategy

for
ombining proje
tions with rewriting.

1 Introdu
tion

Algorithms for text
ompression view the input as a linearly ordered sequen
e

of symbols and try to dis
over repeating patterns so that the input
an be rep-

resented more
ompa
tly. In this paper, we initiate the study of
ompression of

partially ordered strings. Given an independen
e relation over an alphabet, two

strings are said to be equivalent if one
an be obtained from the other by repeat-

edly
ommuting adja
ent independent symbols. An equivalen
e
lass of su
h a

type is known as a Mazurkiewi
z tra
e in
on
urren
y theory [Maz87,DM97℄.

The new
ompression problem is then to
ompa
tly represent an input string if

the de
ompressor is allowed to output any string that is equivalent to the original

string. For instan
e, if all the symbols are pair-wise independent of ea
h other,

then a string
an simply be represented by listing the number of o

uren
es of

ea
h o

uring symbol of the alphabet in the string. In this
ase, the original

string may be un
ompressible, but the extra freedom a�orded by independen
e

allows a representation that is logarithmi
 in the original size.

Many popular algorithms for string
ompression, su
h as the Lempel-Ziv

algorithms [ZL77,ZL78℄ and SEQUITUR [NW97℄, are variant of grammar-based

s
hemes, whi
h work by essentially
omputing a small
ontext-free grammar

that generates the input string uniquely (see [KY00,CLL

+

02℄). Su
h grammars

are deterministi
 and
ontain no
y
les, and hen
e
an be viewed simply as

hierar
hi
al representations of the string. Larus ([Lar99℄), using the SEQUITUR

s
heme, has shown that su
h
ompa
t hierar
hi
al representations of sequential

program tra
es
an be used pro�tably to extra
t a variety of useful pro�ling

information, su
h as dete
tion of hotspots and hot subpaths, for analyzing and

optimizing a program's dynami
 behavior ([Lar99,BL00℄).

While exe
utions of sequential programs
an be des
ribed naturally by strings

of events, the behavior of a
on
urrent system is more appropriately modeled

as a partially-ordered sequen
e of events [Lam78,Pra86,Maz87℄, re
e
ting the

fa
t that if events o

urring on distin
t pro
esses are not
ausally related their

a
tual order of o

urren
e may be irrelevant. Message sequen
e
harts (MSCs)

o�er a visual depi
tion of message ex
hanges in a
on
urrent system, and are

used, e.g., for des
ribing high-level requirements in the Uni�ed Modeling Lan-

guage [BJR97℄. MSCs are also best formalized as partially ordered strings. Model

he
king tools like SPIN [Hol97℄ generate MSCs as outputs for simulation runs

and
ounterexample tra
es. Hierar
hi
al representations of MSCs
an be used to

improved
omprehension and visualization of su
h outputs whi
h are often large.

All this suggests that
ompression of partially ordered strings should be used for

on
urrent program tra
es to a
hieve similar aims as string
ompression a
hieves

for sequential program exe
utions. In doing so, however, we should exploit the

extra freedom provided by the independen
e relation to �nd patterns that are

not available in a �xed sequential view of a partially ordered tra
e.

While
ompression has been studied for de
ades from both theoreti
al and

pra
ti
al viewpoints, we are not aware of any resear
h that expli
itly addresses

ompression of partially ordered strings.

1

Our �rst
lass of algorithms involves adaptation of grammar-based s
hemes

dire
tly to partial-order strings. For strings it is NP-hard to �nd an optimal

grammar ([SS82℄) but su
h a grammar is approximable to within a log fa
tor

in polynomial time [CLL

+

02℄. We present two algorithms for �nding potentially

smaller grammar representations by exploiting the independen
e relation. Our

�rst algorithm is a modi�
ation of SEQUITUR ([NW97℄) that greedily
hooses

1

Based on the work we have initiated here, S. Savari has begun an information-

theoreti
 study of su
h stru
tures based on entropy
onsiderations [Sav03a,Sav03b℄.

the next symbol to be pro
essed from the minimal elements of the remaining

partial order by giving preferen
e to the one that would lead to an already

en
ountered pattern. Se
ond is an o�ine algorithm that repeatedly repla
es the

most frequently o

urring pair of dependent or independent symbols by a new

nonterminal. As su
h, it does not stri
tly speaking produ
e a string grammar,

but rather a limited form of more general graph grammars ([Eng97℄). We report

on a prototype implementation of these algorithms, and experimental results

that indi
ate improvements in
ompression.

Our se
ond
lass of algorithms
onsists of representing a string by an ade-

quate
olle
tion of proje
tions onto subsets of the alphabet, and then
ompress-

ing ea
h proje
tion by a grammar-based string
ompression algorithm or by one

of the algorithms of the �rst
lass. A ne
essary and suÆ
ient
ondition for be-

ing able to re
onstru
t the original string up to equivalen
e is that ea
h pair

of dependent symbols must o

ur in one of the proje
tions. A natural strategy

for proje
tion is to proje
t the string onto every pair of dependent symbols.

Surprisingly, this strategy
an be exponentially more su

in
t than the optimal

representation using just rewriting. In fa
t, this exponential gap holds even for

ordinary strings (that is, when the independen
e relation is empty). Further-

more, the strategy of proje
ting onto dependent pairs produ
es output within a

fa
tor of d of that of the optimal algorithm in this
lass, where d is the number of

dependent pairs, and this fa
tor is tight. When the alphabet is partitioned into k

sets su
h that symbols are dependent i� they belong to the same partition, then

the natural strategy is to proje
t the input string onto ea
h of the partitions.

Compared to
ompressing the original string, this
an be exponentially better

in the best
ase, and it is always within a fa
tor of k
ompared to the optimal

algorithm using just rewriting.

Finally, the third
lass of algorithms allows
ollapsing of symbols using re-

labeling in addition to the proje
tions and rewriting. One strategy in this
lass

is the following. For every symbol a, we proje
t the string onto a and all the

symbols dependent on a, then
ollapse all these dependent symbols to a single

symbol b. This leads to j�j strings, ea
h over a two-letter alphabet, and
an be

ompressed separately. We show how to re
onstru
t the original string, up to

equivalen
e, from these proje
tions.

2 Grammar-based Compression Up To Equivalen
e

2.1 Equivalen
e
lasses of strings and labeled partial orders

Our model
onsists of a set � of terminals and an irre
exive symmetri
 inde-

penden
e relation I � � � �. Two terminals a,b are said to be independent if

(a; b) 2 I . Intuitively, two strings are equivalent if one
an be obtained from the

other by a sequen
e of swaps of adja
ent independent symbols. Formally, �

I

is the smallest binary equivalen
e relation on �

�

satisfying �ab� �

I

�ba� , for

all (a; b) 2 I and for all strings �; � 2 �

�

. We shall represent the equivalen
e

lass
orresponding to a string � by [�℄

�

I

. Su
h equivalen
e
lasses are
alled

Mazurkiewi
z tra
es in the
on
urren
y literature [Maz87℄.

Equivalen
e
lasses indu
ed by �

I

orrespond to labeled partial orders of a

parti
ular form. A labeled partial order respe
ting I is a stru
ture P = (V;E; �),

where V is a �nite set of nodes, E is a set of edges over V su
h that the re
exive-

transitive
losure E

�

is a partial order over V , and � : V ! � is a labeling of

nodes by terminals su
h that for all u; v 2 V ,

1. if (u; v) 2 E, then (�(u); �(v)) =2 I;

2. if (�(u); �(v)) =2 I , then either (u; v) 2 E

�

or (v; u) 2 E

�

.

A linearization � of the labeled partial order P = (V;E; �) is a string �

1

�

2

� � ��

jV j

over� su
h that there exists an ordering v

1

v

2

� � � v

jV j

of the nodes in V satisfying

(1) �

i

= �(v

i

) for 1 � i � jV j, and (2) for all (v

i

; v

j

) 2 E, i < j. We
an de�ne a

orresponden
e between equivalen
e
lasses of strings and labeled partial orders.

Namely, given a string � and an independen
e relation I , there is an algorithm to

onstru
t the labeled partial order P

�;I

with j�j verti
es whose linearizations are

the strings in [�℄

�

I

. The details of the algorithm to
onstru
t P

�;I

are standard,

and omitted from this abstra
t.

2.2 Grammar-based
ompression

In grammar-based
ompression algorithms for strings, given an input string �,

the algorithm
omputes a
ontext-free grammar G that generates the singleton

language f�g. The grammar G then serves as a su

in
t hierar
hi
al represen-

tation of �. From now on, we shall refer to su
h a grammar as a grammar for

�. Over the years, several interesting grammar-based string
ompression algo-

rithms have been proposed. Of them, the algorithm Sequitur [NW97℄ has been

used for
ompression as well as to gather pro�ling information from program

exe
utions [Lar99,BL00,GRM03℄, and is of parti
ular interest to us. Sequitur is

an online algorithm that greedily
onstru
ts a hierar
hy out of an input string. It

s
ans the input from left to right, identi�es repeated pairs of adja
ent symbols

(digrams) in the representation of the input that it has pro
essed so far, and

repla
es them by nonterminals. A grammar rule maps every nonterminal to the

digram it represents.

A good measure of the performan
e of a grammar-based
ompression algo-

rithm is the size of the grammar, where the size of a grammar G is de�ned to be

the sum of the lengths of the right-hand sides of all the rules in G. The optimal

grammar-based
ompression algorithm needs to �nd the smallest grammar for

the given input string. Unfortunately, this problem is NP-
omplete [SS82℄. How-

ever, some re
ent resear
h is aimed at �nding approximation algorithms for this

problem: Lehman et al [LS02℄ �nd approximation ratios for some previously pro-

posed grammar-based
ompression algorithms (e.g., the well known LZ78 has an

approximation ratio O((n= log n)

2=3

)), and prove the hardness of approximating

the smallest grammar beyond a
ertain
onstant fa
tor; Charikar et al [CLL

+

02℄

present an algorithm with an approximation ratio O(log(n=g

�

)), where g

�

is the

size of the smallest grammar.

2.3 Compression up to equivalen
e

In this paper, we are interested in generating a small grammar-based repre-

sentation of a given string up to the equivalen
e indu
ed by an independen
e

relation. We propose three di�erent methodologies for a
hieving this, and pose

three di�erent optimization problems that these methods
orrespond to.

Finding optimal equivalent strings. In our �rst approa
h, we �nd a string

that is equivalent to the input string and
an be represented by a small grammar.

The output is the grammar for this string. For example, suppose � = fa; b;
g

and b and
 are independent of ea
h other. Then, the strategy of
lustering all

the b's (and
's) together between every pair of a's is a good heuristi
 to in
rease

ompressibility. For instan
e, ab

ba
bb
 will be rewritten to (ab

2

2

)

2

to redu
e

the size of the grammar-based representation. The
orresponding optimization

problem is as follows. Let C(�) represent the size of the smallest grammar for

a given string �. Then, given a string � and an independen
e relation I , the

problem is to �nd � 2 [�℄

�

I

su
h that C(�) is the minimum of the set fC(�

0

) j

�

0

2 [�℄

�

I

g. From now on, we refer to this optimal value C(�) as C

I

(�).

Proje
tions and
ompression. In our se
ond approa
h, we
onsider the
om-

pression algorithms that proje
t the input string onto a sequen
e of subsets

of � su
h that the original string (up to equivalen
e)
an be re
overed from

these proje
tions, and
ompress the proje
tions separately. In the example with

� = fa; b;
g with b and
 independent, we
an represent � by two proje
-

tions, one onto fa; bg and one onto fa;
g, and
ompress the two separately (e.g.,

ab

ba
bb
 will be repla
ed by the pair (abbabb, a

a

)).

The proje
tion of a string � on a subalphabet �

0

� � is obtained by erasing

all symbols in � that are not in �

0

, and is represented by � "�

0

. Subalphabets

�

1

; �

2

; : : : ; �

m

� �
over an independen
e relation I , if there is a re
onstru
tion

algorithm A su
h that, for all strings �, given the proje
tions � "�

i

, A outputs

some �

0

2 [�℄

�

I

.

In this
ase, the
ompression methodology is as follows. We �rst proje
t

the input string � on a set of
overing subalphabets. Then we �nd grammars

for these proje
tions using an approximation algorithm for string
ompression.

The
ompressed representation of the string (and the equivalen
e
lass) is the

olle
tion of all these grammars. In order to un
ompress, we regenerate the

proje
tions from their grammars and use a re
onstru
tion algorithm to generate

a string equivalent to �. Formally, the optimization problem is as follows. Given

a � and an independen
e relation I , �nd a
over �

1

; �

2

; : : : ; �

m

for I su
h that

P

m

i=1

C

I

(� "�

i

) is minimized. Let us denote

P

m

i=1

C

I

(� "�

i

) for the optimal

over by C

p

I

(�).

Relabeling, proje
tions, and
ompression. In our third approa
h, we allow

relabeling of symbols during proje
tions as long as the original string
an be

re
overed up to equivalen
e. Going ba
k to our example with independent b's

and
's, we
an represent a string by a pair, where the �rst one is a proje
tion

onto fa; bg and the se
ond one is obtained by renaming b to
. For instan
e,

ab
b

a
b
bb
an be represented by (abbabbb; a

5

a

5

). In this example, it is
lear

that the original string
an be re
onstru
ted up to equivalen
e, and relabeling

an be exploited to minimize grammar sizes.

A relabeling
 is a fun
tion from � to �, and we use
(�) to denote the string

obtained from � by repla
ing ea
h symbol s in � by the
orresponding symbol

(s). A sequen
e of subalphabets �

1

; �

2

; : : : ; �

m

� � and a
orresponding

sequen
e of relabelings

1

;

2

; : : :

m

are said to
over an independen
e relation I

if there is a re
onstru
tion algorithm A su
h that, for all strings �, given renamed

proje
tions

i

(� " �

i

), outputs some �

0

2 [�℄

�

I

. The optimization problem is

de�ned as in the previous
ase. Given a string � and an independen
e relation

I , �nd a set of subalphabets �

1

; �

2

; : : : ; �

m

together with relabeling fun
tions

1

;

2

; : : :

m

su
h that the two sequen
es
over I , and

P

m

i=1

C

I

(

i

(� " �

i

)) is

minimized. Let us denote the optimal sum by C

pr

I

(�). Note that, by de�nition,

C

pr

I

(�) � C

p

I

(�) � C

I

(�) � C(�):

3 Compression Algorithms

3.1 Lo
ally greedy algorithm for �nding good linearizations.

We �rst des
ribe an algorithm that takes labeled partial orders as inputs, and

outputs grammars for
ertain \good" linearizations. Given a string � and in-

dependen
e relation I , we
an �rst
onstru
t the partial order P

�;I

. Algorithm

of Figure 1 is an online algorithm inspired by Sequitur [NW97℄ and traverses

the input partial order P from top to bottom. At ea
h step, one of the minimal

nodes (nodes without any in
oming edges from unpro
essed nodes) is
hosen

and removed from P . The
hoi
e is made greedily by giving preferen
e to a node

that will
reate a digram that has already appeared. Its label a is appended to

a list L representing the part of the input already seen. Following Sequitur, we

enfor
e digram uniqueness on L; that is, if a digram xy o

urs at two separate

lo
ations on L, they are to be repla
ed by a nonterminal. If this digram has not

been seen in the input pro
essed so far, we add a rule A ! xy, for some new

nonterminal A, to the grammar.

In our implementation of this algorithm, we maintain a map from digrams

to positions in L. This map is maintained as a hashtable, so that we are able to

mat
h rules in
onstant time. Changes to the list L { required when a digram

is repla
ed by a nonterminal { are implemented through low-level pointer op-

erations. At ea
h step we
ontra
t one edge of the partial order; we terminate

when there are no edges left to explore. Sin
e the edge relation is the
overing

relation of the partial order, there are at most a linear number of edges. If n is

the length of the input string, and k is the width of the partial order P

�;I

(that

is, the maximum number of pair-wise unordered symbols), then the algorithm

runs in time O(k � n).

input : Labeled partial order P = (V; E; �).

output : Grammar G for some linearization of P .

begin

G := ;.

List of symbols L := [�(w)℄ for some minimal element w of P . Remove w

from P .

Hashtable of digrams D := ;.

repeat

Min := Set of minimal elements of P .

p:= last element appended to L.

if there is v 2 Min and digram A! u�(v) in D then

Remove v from P . Append q = �(v) to L

Repla
e the pair pq at the end of L by nonterminal A

If the rule A ! pq is not already in G, then add it. In this
ase

there is a previous unrepla
ed o

urren
e of pq pointed to by Æ in

the hashtable. Repla
e that as well.

Update D with digrams generated by these
hanges. If the digram

uniqueness property is found to be violated, repeatedly repla
e the

violating digrams by nonterminals till there is no repetition.

else

Choose some arbitrary v 2 Min. Remove v from P .

Add a digram A! p�(v) to D for some new nonterminal A. Make

it \point" to the
urrent last position in L.

Append �(v) to L.

end

until Min = ;.

G := G [fS ! Lg, where S is a new starting nonterminal.

Output G.

end

Algorithm 1: Top-to-bottom

Consider the labeled partial order P
orresponding to the string
ab
ba
 with

a and b independent. Let us follow a run of this algorithm on P . The stages of

the algorithm are des
ribed in the table in Figure 1. The key step is step 5,

where a is preferred over b as it
auses a repeating digram.

3.2 Repla
e most frequent pair.

Our next algorithm is a greedy o�ine algorithm that
hooses the most frequently

o

urring pair of dependent or independent symbols, and repla
es this digram by

a nonterminal. Consider a labeled partial order P = (V;E; �). The frequen
y of

a pair of dependent symbols (p; q) is the maximum number of edges of the form

(u; v) with �(u) = p and �(v) = q su
h that no two edges share an end-point

(note that sharing of end-points
an happen when p = q); while the frequen
y of

a pair of independent symbols (p; q) is the maximum number of pair-wise disjoint

Step List L Comments

1
 Only one
hoi
e.

2
a Symbol a
hosen arbitrarily.

3
ab No other
hoi
e.

4
ab
 No other
hoi
e.

5
ab
a Choi
e made to repeat digram
a. Rule A!
a added.

6 AbAb Symbol b appended. Digram Ab repeated. Add rule B ! Ab.

7 BB
 End of partial order rea
hed. Add rule S ! BB
.

Fig. 1. Sample run of the Top-to-bottom Algorithm

sets of nodes of the form fu; vg su
h that �(u) = p, �(v) = q, and neither uE

�

v

nor vE

�

u. The
ontra
tion of (u; v) 2 E by a node w is the following operation

on P : remove u; v from V ; add w to V ; repla
e (s; t) 2 E, where t 2 fu; vg and

s 6= u, by (s; w); repla
e (s; t) 2 E, where s 2 fu; vg and t 6= v, by (w; t); and

remove (u; v). For a pair (u; v) of unrelated nodes, the
ontra
tion by a node

w is de�ned similarly: remove u; v from V , add w to V ; repla
e (s; t) 2 E with

t 2 fu; vg by (s; w); and repla
e (s; t) 2 E with s 2 fu; vg by (w; t). Finally, we

will modify our de�nition of the labeling fun
tion � a bit so that a labeled partial

order
an also have nodes labeled with arbitrary nonterminals. The de�nitions

of frequen
y and
ontra
tion apply to su
h nodes also. If su
h a new node w is

labeled with a new nonterminal A, then A is de
lared to be dependent on all the

symbols that are dependent on p as well as the symbols dependent on q.

At ea
h step of this algorithm, we identify a pair of symbols (p; q) with the

maximum frequen
y. Then we add a rule A! pq, for some new nonterminal A,

and
ontra
t a disjoint
olle
tion of node pairs labeled (p; q) by a node labeled A.

Computing the frequen
y of dependent pairs is straightforward, we simply need

to s
an all the edges and maintain a
ount for every pair of symbols. Computing

the frequen
y of independent symbols requires more
are, we need to make sure

that if a node labeled p is unrelated to two nodes labeled q, then only one pair

gets
ounted to the frequen
y of (p; q). In this
ase, mat
hing the p-labeled node

with the �rst possible q-labeled node that is a potential mat
h, is a safe strategy

to maximize the
ount of disjoint pairs. Note that the resulting grammar is not,

stri
tly speaking, a string grammar be
ause we are also allowed to introdu
e

new nonterminals for pairs of independent symbols. Rather, it
an be viewed

as a limited form of more general graph grammars ([Eng97℄), and hen
e as a

generalization of the grammar-based string
ompression approa
h to a graph

grammar-based approa
h for
ompression of partial orders.

Consider again the labeled partial order P
orresponding to the string
ab
ba

with a and b independent. At the �rst step, we have to
hoose a set of disjoint

edges labeled by the same symbol-pairs. We arbitrarily
hoose the symbol-pair

(a;
) (we
ould also have
hosen (b;
), (
; a), (a; b) or (
; b), all have frequen
y

2), add the rule A ! a
, and
ontra
t. The partial order now be
omes the one

orresponding to the string
bAbA. At the next step, we
ontra
t the two edges

input : Proje
tions �

i

, 1 � i � m, with �

i

= �"�

i

. The following
ondition

is satis�ed: for all (a; b) =2 I, there is an i su
h that a; b 2 �

i

.

output : A string �

0

satisfying �

0

�

I

�.

begin

p

i

 � 1 for ea
h 1 � i � m

Proj

a

 � fi : a 2 �

i

g for ea
h a 2 �

j � 0

repeat

Sele
t a 2 � su
h that for all i 2 Proj

a

, we have p

i

� j�

i

j and �

i

(p

i

) = a

p

i

:= p

i

+ 1 for all i 2 Proj

a

�

0

(j) := a; j := j + 1

until no su
h a
an be sele
ted.

end

Algorithm 2: A re
onstru
tion algorithm

labeled (b; A) and add a rule B ! bA. The partial order now be
omes a
hain

BB. There is no way to
ontra
t further.

3.3 Algorithms using proje
tions

The �rst step in the algorithms that employ proje
tion is to
ompute a
over

for the given independen
e relation. The next theorem identi�es a key property

of the
over. (We have been informed that [CP85℄
ontains this result. We pro-

vide a proof here for
ompleteness and be
ause our proof provides an eÆ
ient

re
onstru
tion algorthm whi
h we use.)

Theorem 1. ([CP85℄) Subalphabets �

1

; �

2

; : : : ; �

m

over an independen
e re-

lation I i� for all (a; b) =2 I, there is an i su
h that a; b 2 �

i

.

Proof: ()) Suppose there is a pair of symbols (a; b) =2 I su
h that there is no

i with a; b 2 �

i

. Then, the proje
tions of the non-equivalent strings ab and ba

will be identi
al, and hen
e, re
onstru
tion is impossible.

(() For this dire
tion, we give a re
onstru
tion algorithm for any set of

subalphabets satisfying the above
ondition. In Algorithm 2, �(i) represents the

i-th symbol of �. The algorithm keeps a
urrent pointer 1 � p

i

� j�

i

j for ea
h

proje
tion 1 � i � m. For ea
h proje
tion we advan
e this pointer from the

beginning to the end. The
orre
tness proof is omitted due to la
k of spa
e.

The re
onstru
tion algorithm, with appropriate book-keeping,
an be made

to run in time linear in the size of its input (that is, the sum of the sizes of the

proje
tions). In the
ontext of this theorem, a reasonable strategy is to proje
t on

a set of maximal
liques
overing all the edges in the graph for the
omplement D

of the independen
e relation. We present two spe
ial
ases of this methodology.

{ The algorithm edge-
over proje
ts on the set of subalphabets fa; bg for

every pair (a; b) in the
omplement D of the independen
e relation I . This

algorithm
an be optimized by
onsidering only the pairs (a; b) su
h that the

dependen
y is realized within the input string �, that is, the partial order

P

�;I

ontains an edge whose endpoints are labeled with a and b.

{ An interesting spe
ial
ase is when the independen
e relation is a k-partite

graph: the alphabet � is partitioned into sets �

1

; : : : �

k

su
h that two sym-

bols are independent i� they belong to separate partitions. In this
ase, this

partition makes a natural
hoi
e for the
lique
over.

3.4 Algorithms with relabeling and proje
tion

If the subalphabets �

j

and relabelings

j

over an independen
e relation I , then

for (a; b) 62 I , there must be an index j su
h that a; b 2 �

j

and

j

(a) 6=

j

(b).

That is, a ne
essary
ondition for re
onstru
tion is that every pair of dependent

symbols must belong to a proje
tion whose relabeling does not
ollapse them.

Now, we present an alternative to the
overing the dependen
y graph using

liques. Given an independen
e relation I , for every symbol a 2 �, let �

a

=

fb 2 � j (a; b) =2 Ig be the set of symbols dependent on a. Let # be a spe
ial

symbol that is dependent on every symbol, and let

a

be the relabeling that

maps a to a and renames all other symbols to #. The strategy star-
over is to

proje
t the input string onto �

a

, and apply the relabeling

a

before applying

the standard string
ompression. Note that, like the edge-
over algorithm of the

previous se
tion, this strategy also leads to a
olle
tion of 2-symbol strings, but

now, we are guaranteed that we have only j�j proje
tions, one per symbol in �.

Theorem 2. The subalphabets �

a

and relabelings

a

, for ea
h a 2 �,
over the

independen
e relation I.

Proof: The re
onstru
tion algorithm is similar to Algorithm 2. Let �

a

=

a

(�"

�

a

). As before, we maintain a pointer p

a

for ea
h proje
tion �

a

. At every step,

we try to sele
t a symbol a 2 � su
h that �

a

(p

a

) = a and for ea
h b 2 �

a

with

b 6= a, �

b

(p

b

) = #. If su
h a symbol a is found, the algorithm outputs a, and

in
rements all the pointers p

b

for b 2 �

a

. If there are two su
h symbols, then

they must be independent, and the
hoi
e does not matter.

3.5 Experiments

In this se
tion, we dis
uss preliminary experimental results for the top-to-bottom

and repla
e-most-frequent
ompression algorithms presented earlier. We experi-

mented with two distributed programs shipped as demos with the popular SPIN

veri�
ation toolkit [Hol97℄. One of them (mobile1) is a model of a
ellphone

hand-o� strategy, the other (pftp) is a
ow
ontrol proto
ol. These models
on-

sist of a number of pro
esses
ommuni
ating through message
hannels. Now

onsider the natural alphabet of send and re
eive events. There is a natural de-

penden
e relation on this alphabet: any send is dependent on the
orresponding

re
eive. Also, the lo
al
lo
k for every pro
ess de�nes a dependen
e between

MSC size Sequitur (random linearization) Top-to-bottom Repla
e-most-frequent

20000 13800 5612 4203

40000 24945 9679 7123

60000 35490 13441 12226

80000 45617 16641 22157

100000 55228 19759 -

Fig. 2. Grammar representations
onstru
ted by di�erent algorithms: mobile1

MSC size Sequitur (random linearization) Top-to-bottom Repla
e-most-frequent

20000 7048 4474 3457

40000 12470 7571 5128

60000 17433 10700 12461

80000 22026 13453 15233

100000 27081 15456 -

Fig. 3. Grammar representations
onstru
ted by di�erent algorithms: pftp

any two sends or re
eives that it parti
ipates in. Su
h an independen
e rela-

tion indu
es a spe
ial sub
lass of labeled partial orders
alled message sequen
e

harts. We made SPIN perform random simulations of pftp and mobile1 and

produ
e message sequen
e
harts (MSCs) of di�erent lengths. These MSCs were

fed as inputs to implementations of algorithms Top-to-bottom and Repla
e-

most-frequent. We also fed random linearizations of these
harts to the string

ompression algorithm Sequitur. A performan
e
omparison is des
ribed in Fig-

ures 2 and 3. The tables
ompare average sizes of grammar representations of

MSCs of given lengths. The quadrati
-time algorithm Repla
e-most-frequent did

not terminate within a reasonable time for the longest input.

The above results suggest there is a pra
ti
al advantage in
hoosing a lin-

earization judi
iously (as opposed to randomly). We experimented with this sep-

aration more, by studying the performan
e of the Sequitur algorithm on di�erent

linearizations of an MSC outputted by mobile1 (Figure 4). These linearizations

are
hosen with various \degrees" of arbitrariness. More pre
isely, while gener-

ating a linearization, we pro
eed along the lines of the Top-to-bottom algorithm,

but make random
hoi
es at some of the steps. Of
ourse, we
annot hope to

generate the entire spe
trum of linearizations of a large MSC this way; however,

we do seem to get linearizations ni
ely
overing the spa
e between random and

greedily
hosen linearizations. Note that it is very possible that linearizations

with mu
h smaller grammars exist; it is just not easy to �nd them.

4 Bounds on performan
e

In this se
tion, we provide some theoreti
al bounds for the
ompression problem

and strategies mentioned in the previous se
tion.

MSC size Size of Sequitur output on di�erent linearizations

20000 5612, 7381, 8909, 11584, 13800

40000 9679, 12303, 18911, 21526, 24945

60000 13441, 20121, 27212, 31443, 35490

80000 16641, 23117, 30235, 39318, 45617

100000 19759, 30257, 38221, 47116, 55228

Fig. 4. Impa
t of the
hoi
e of linearization on Sequitur

We �rst demonstrate an exponential separation between the optimals C

I

and C

p

I

. We en
ode the sequen
e h0; 1; 2; : : : ; 2

k

� 1i in binary as follows. Our

alphabet is � = f#g [([

i=1;:::;k

fb

0

i

; b

1

i

g). The spe
ial symbol # will separate

two su

essive numbers in the sequen
e. The en
oding of a number that has 0

or 1 as its j-th bit will have, respe
tively, b

0

j

or b

1

j

as its j-th bit. That is, we

onsider the string

� = #b

0

1

b

0

2

:::b

0

k

#b

0

1

b

0

2

: : : b

1

k

#b

0

1

: : : b

1

k�1

b

0

k

: : : :

Our independen
e relation is I = f(b

p

i

; b

q

j

) : b

p

i

6= b

q

j

g. In other words, distin
t

b

p

i

-s are independent of ea
h other and are all dependent on #. In any string that

is equivalent to �, the set of symbols between every pair of #'s en
odes a distin
t

number 0 � n < 2

k

. This makes su
h a string in
ompressible using grammar-

based algorithms; intuitively, every interval between su

essive #'s
ontributes

at least one symbol to the grammar. Formally, we show that the appli
ation of

the Lempel-Ziv
ompression algorithm [ZL77℄ to �
ompresses it at most by a

fa
tor k. Then we will use a relation between C

I

(�) and this
ompressed form

proved by Charikar et al. [CLL

+

02℄ to show that C

I

(�) is smaller than � by at

most a fa
tor of k. Finally, we show that C

p

I

(�) is logarithmi
 in j�j.

Lemma 1. If � �

I

�, then LZ77-en
oding of � is
(2

k

).

Proof: The LZ77 algorithm des
ribes a string w using a sequen
e s

1

s

2

: : : s

d

of

widgets. Ea
h widget s

i

is either a symbol of the alphabet of w or of the form

s

i

= (j; r). Intuitively, the latter means \start at the position j of the string

en
oded by s

1

: : : s

i�1

and read the next r symbols." More pre
isely, a widget

(j; r) represents the substring w(j)w(j +1) : : : w(j+ r� 1), assuming the length

of the string represented by s

1

: : : s

i�1

is at least j.

We show there is no way to en
ode any
onsistent ordering of � with fewer

than
2

k

widgets, for some
. Assume S = s

1

: : : s

d

is the LZ77 form for some

ordering � of �. Then no widget of the form s

i

= (j; r) in S
an en
ode a

substring
ontaining two or more o

urren
es of symbol #. This is be
ause the

set of b's that o

urs between ea
h pair of #'s in � is unique, and thus there

is no part of s

1

: : : s

i�1

that one
an refer to obtain the same set, irrespe
tive

of how b's are ordered. Consequently, we
an have at most two # in the string

denoted by (j; r), and thus r < 2k. Then the
laim holds for
 = 1=2.

The result of [CLL

+

02℄ shows that if � is the length of the LZ77-en
oding

of a string �, then � � C(�) log j�j. It follows that C

I

(�) =
(2

k

). Suppose

the edge-
over algorithm will proje
t � onto subalphabets �

i;d

= fb

d

i

;#g, where

i 2 f1; : : : ; kg and d 2 f0; 1g. There are 2k su
h subalphabets. It
an be shown

that ea
h of these proje
tions has a periodi
 nature and, as a result, a grammar

of size O(k). For instan
e, the proje
tion on b

0

k

and # is (#b

0

k

#)

2

k�1

. This

shows that C

p

I

(�) = O(k

2

): Note that the
hoi
e of k is arbitrary in the above.

Consequently, we
on
lude the following theorem:

Theorem 3. For ea
h n, there is an alphabet �, an independen
e relation I

and a string � su
h that j�j � n and C

I

(�) =
(2

j�j

C

p

I

(�)).

It is worth noting the exponential separation holds even when the independen
e

relation is empty, that is, even for
ompressing ordinary strings. Consider the

string in the above proof. Clearly, � itself
annot be
ompressed. Now, all symbols

are pair-wise dependent, and there are O(k

2

) proje
tions. It is easy to verify that

proje
tions onto ea
h pair fb

p

i

; b

q

j

g is periodi
 and has a grammar of size O(k).

Thus, C

p

(�) = O(k

3

).

Now we pro
eed to give an upper bound for the edge-
over algorithm whi
h,

given a string �, proje
ts it onto ea
h edge (a; b) in the
omplement D of the

independen
e relation I . Let these proje
tions be
alled �

1

; �

2

; : : : ; �

k

. Let C

e

I

(�)

be the sum of C(�

i

).

Theorem 4. For all strings � and independen
e relations I, C

e

I

(�) � j�j

2

C

p

I

(�).

Proof: Consider the proje
tion � of the string � on a pair (a; b) of dependent

symbols. In the optimal proje
tion based algorithm, one of the
overing sub-

alphabets �

j

must in
lude the pair (a; b). Let � be a string that is equivalent

to � "�

j

. Consider a grammar G for � . Note that � " fa; bg equals �. We
an

remove all other terminals from ea
h rule of G to get a grammar for � without

in
reasing the size of G. Therefore, C(�) � C(�). Hen
e, C(�) � C

I

(� "�

j

),

and C(�) � C

p

I

(�). There are at most j�j

2

edges in D, and the result follows.

To
ompress proje
tions of � onto single pairs of dependent symbols, we
an

use any grammar based algorithm, in parti
ular, the algorithm by Charikar et

al [CLL

+

02℄, thereby approximating C

p

I

(�) up to fa
tor j�j

2

log (j�j=g

�

), where

g

�

is the size of the optimal grammar. The bound for the edge-
over strategy is

tight. Suppose � = fa

1

; : : : a

k

g su
h that all symbols are dependent. Consider

the string � = (a

1

� � � a

k

)

n

. The grammar of � is of size k + log n, while the

grammar for ea
h �"fa

i

; a

j

g is of size log n, and thus, C

e

I

(�) is k

2

log n.

An interesting spe
ial
ase for the
lique-
over is when the alphabet is union

of disjoint alphabets �

1

; : : :�

k

and two symbols are dependent i� they belong

to the same partition �

i

. In this
ase, a natural
hoi
e for
over is the parti-

tion �

1

; : : : �

k

. Let C

I

(�) denote the sum of C(� "�

i

). This strategy
an be

quite bene�
ial over
ompressing the original string. For example, if there are

two independent symbols a and b, then a random string � won't
ompress well,

while the two proje
tions onto individual symbols
arry the minimal informa-

tion, namely, the number of a's and number of b's. As the next theorem shows,

proje
ting onto
liques
an be worse than
ompressing the original string, or

even an equivalent linearization, by at most by a fa
tor of the number of
liques.

Theorem 5. If the alphabet is a disjoint union of k
liques, then for any string

�, C

I

(�) � kC

I

(�).

Proof: The proof is similar to the proof of Theorem 4. Consider any
lique �

i

in

D, let �

i

= �"�

i

, and let � be any string equivalent to �. Sin
e all the terminals

in �

i

depend on ea
h other, one
an show that the size of the optimal grammar

for �

i

is bounded by the size of the optimal grammar for � .

Again, this bound is tight. Suppose � = fa

1

; : : : a

k

g su
h that all symbols

are independent (that is, there are k singleton
liques). Consider the string � =

(a

1

� � � a

k

)

n

. The grammar of � is of size k + log n, while the grammar for ea
h

�"fa

i

g is of size log n, and thus, C

I

(�) is k log n.

Finally, for the star-
over algorithm that uses both proje
tions and relabeling,

we
an show that every relabeled proje
tion

a

(�"�

a

) has a grammar of size at

most that of the smallest grammar for any string equivalent to the original.

Theorem 6. For all strings � and independen
e relations I, for ea
h a 2 �,

C(

a

(�"�

a

)) � C

I

(�).

5 Con
lusions

In this paper, we have formulated and initiated the study of the
ompression

problem of partially ordered strings. It is worth noting that even for
ompres-

sion of ordinary strings, the use of proje
tions and relabeling, and the resulting

su

in
tness of the representation, has not been studied earlier. While we have

shown that proje
tion
an lead to exponential su

in
tness for a
lass of strings,

it remains to be seen if proje
tions, possibly augmented with relabeling,
an be

engineered to lead to pra
ti
al general
ompression te
hniques.

There are many dire
tions for future resear
h. The appli
ation to pro�ling

of exe
utions of
on
urrent programs, and for visualization large MSCs gener-

ated by tools like SPIN in
ompa
t form, both seem promising. A re
ent paper

applies standard string
ompression te
hniques to parallel program exe
utions

[GRM03℄, and our te
hniques
an potentially improve their results. Compres-

sion of partially ordered strings
an be studied from an information theoreti

perspe
tive. Based on the work we have initiated here, Savari has begun a

study of the graph entropy of su
h stru
tures and of rewriting strings to normal

forms [Sav03a,Sav03b℄. We would also like to sharpen the approximability of the

optimization measures introdu
ed in this paper. In parti
ular, approximability

bounds for the measure C

I

, and improving the j�j

2

bound for the measure C

p

I

,

are open problems. Finally, it would be interesting to study
ompression of la-

beled partial orders based on more general
lasses of graph grammars ([Eng97℄)

than those impli
it in Algorithm 1.

A
knowledgements: Thanks to Serap Savari for dis
ussions and
omments.

Referen
es

[BJR97℄ G. Boo
h, I. Ja
obson, and J. Rumbaugh. Uni�ed Modeling Language User

Guide. Addison Wesley, 1997.

[BL00℄ T. Ball and J. Larus. Using paths to measure, explain, and enhan
e program

behavior. IEEE Computer, 33(7):57{65, 2000.

[CLL

+

02℄ M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala,

A. Sahai, and A. Shelat. Approximating the smallest grammar: Kolmogorov

omplexity in natural models. In Pro
eedings of the 34th ACM Symposium

on Theory of Computing, pages 792{801, 2002.

[CP85℄ R. Cori and D. Perrin. Sur la Re
onnaissabilite dans les monoides partielle-

ment
ommutatifs libres. R.A.I.R.O.-Informatique Thorique et Appli
ations,

19:21-32, 1985.

[DM97℄ V. Diekert and Y. Metivier. Partial
ommutation and tra
es. In Handbook

of Formal Languages: Beyond Words, pages 457{534. Springer, 1997.

[Eng97℄ J. Engelfriet. Context-free graph grammars. In Handbook of Formal Lan-

guages, vol. 3, ed. G. Rozenberg and A. Salomaa, Springer-Verlag, 1997.

[GRM03℄ A. Goel, A. Roy
houdhury, and T. Mitra. Compa
tly representing parallel

program exe
utions. In Pro
eedings of the ACM Symposium on Prin
iples

and Pra
ti
e of Parallel Programming, 2003.

[Hol97℄ G.J. Holzmann. The model
he
ker SPIN. IEEE Transa
tions on Software

Engineering, 23(5):279{295, 1997.

[KY00℄ J. Kie�er and E. Yang. Grammar-based
odes: a new
lass of universal

lossless sour
e
odes. IEEE Transa
tions on Information Theory, 46:737{

754, 2000.

[Lam78℄ L. Lamport. Time,
lo
ks, and the ordering of events in a distributed system.

Communi
ations of the ACM, 21:558{565, 1978.

[Lar99℄ J. Larus. Whole program paths. In Pro
eedings of the ACM Conferen
e on

Programming Languages Design and Implementation, pages 259{269, 1999.

[LS02℄ E. Lehman and A. Shelat. Approximation algorithms for grammar-based

ompression. In Pro
eedings of the 13th ACM-SIAM Symposium on Dis
rete

Algorithms, pages 205{212, 2002.

[Maz87℄ A. Mazurkiewi
z. Tra
e theory. In Advan
es in Petri nets: Pro
eedings of

an advan
ed
ourse, LNCS 255, pages 279{324. Springer-Verlag, 1987.

[NW97℄ C. Nevill-Manning and I. Witten. Identifying hierar
hi
al stru
ture in se-

quen
es: A linear-time algorithm. Journal of Arti�
ial Intelligen
e Resear
h,

7:67{82, 1997.

[Pra86℄ V.R. Pratt. Modeling
on
urren
y with partial orders. International Journal

of Parallel Programming, 15(1), 1986.

[Sav03a℄ S. Savari. Con
urrent pro
esses and inter
hange entropy. In IEEE Int. Symp.

on Information Theory, 2003. To appear.

[Sav03b℄ S. Savari. On
ompressing inter
hange
lasses of events in a
on
urrent

system. IEEE Data Compression Conferen
e, 2003.

[SS82℄ J. Storer and T.G. Szymanski. Data
ompression via textual substitution.

Journal of the ACM, 29:928{951, 1982.

[ZL77℄ J. Ziv and A. Lempel. A universal algorithm for sequential data
ompression.

IEEE Transa
tions on Information Theory, 23(3):337{343, 1977.

[ZL78℄ J. Ziv and A. Lempel. Compression of individual sequen
es via variable-rate

oding. IEEE Transa
tions on Information Theory, 24(5):530{536, 1978.

