
Compression of Partially Ordered Strings

Rajeev Alur, Swarat Chaudhuri, Kousha Etessami, Sudipto Guha, and Mihalis

Yannakakis

1

Department of Computer and Information Siene, University of Pennsylvania

2

Department of Computer and Information Siene, University of Pennsylvania

3

Shool of Informatis, University of Edinburgh

4

Department of Computer and Information Siene, University of Pennsylvania

5

Department of Computer Siene, Stanford University

Abstrat. We introdue the problem of ompressing partially ordered

strings: given string � 2 �

�

and a binary independene relation I over �,

how an we ompatly represent an input if the deompressor is allowed

to reonstrut any string that an be obtained from � by repeatedly

swapping adjaent independent symbols? Suh partially ordered strings

are also known as Mazurkiewiz traes, and naturally model exeutions

of onurrent programs. Compression tehniques have been applied with

muh suess to sequential program traes not only to store them om-

patly but to disover important pro�ling patterns within them. For

ompression to ahieve similar aims for onurrent program traes we

should exploit the extra freedom provided by the independene relation.

Many popular string ompression shemes are grammar-based shemes

that produe a small ontext-free grammar generating uniquely the given

string. We onsider three lasses of strategies for ompression of partially-

ordered strings: (i) we adapt grammar-based shemes by rewriting the

input string � into an \equivalent" one before applying grammar-based

string ompression, (ii) we represent the input by a olletion of proje-

tions before applying (i) to eah projetion, and (iii) we ombine (i) and

(ii) with relabeling of symbols. We present some natural algorithms for

eah of these strategies, and present some experimental evidene that

the extra freedom does enable extra ompression. We also prove that

a strategy of projeting the string onto eah pair of dependent symbols

an indeed lead to exponentially more suint representations ompared

with only rewriting, and is within a fator of j�j

2

of the optimal strategy

for ombining projetions with rewriting.

1 Introdution

Algorithms for text ompression view the input as a linearly ordered sequene

of symbols and try to disover repeating patterns so that the input an be rep-

resented more ompatly. In this paper, we initiate the study of ompression of

partially ordered strings. Given an independene relation over an alphabet, two

strings are said to be equivalent if one an be obtained from the other by repeat-

edly ommuting adjaent independent symbols. An equivalene lass of suh a

type is known as a Mazurkiewiz trae in onurreny theory [Maz87,DM97℄.

The new ompression problem is then to ompatly represent an input string if

the deompressor is allowed to output any string that is equivalent to the original

string. For instane, if all the symbols are pair-wise independent of eah other,

then a string an simply be represented by listing the number of ourenes of

eah ouring symbol of the alphabet in the string. In this ase, the original

string may be unompressible, but the extra freedom a�orded by independene

allows a representation that is logarithmi in the original size.

Many popular algorithms for string ompression, suh as the Lempel-Ziv

algorithms [ZL77,ZL78℄ and SEQUITUR [NW97℄, are variant of grammar-based

shemes, whih work by essentially omputing a small ontext-free grammar

that generates the input string uniquely (see [KY00,CLL

+

02℄). Suh grammars

are deterministi and ontain no yles, and hene an be viewed simply as

hierarhial representations of the string. Larus ([Lar99℄), using the SEQUITUR

sheme, has shown that suh ompat hierarhial representations of sequential

program traes an be used pro�tably to extrat a variety of useful pro�ling

information, suh as detetion of hotspots and hot subpaths, for analyzing and

optimizing a program's dynami behavior ([Lar99,BL00℄).

While exeutions of sequential programs an be desribed naturally by strings

of events, the behavior of a onurrent system is more appropriately modeled

as a partially-ordered sequene of events [Lam78,Pra86,Maz87℄, reeting the

fat that if events ourring on distint proesses are not ausally related their

atual order of ourrene may be irrelevant. Message sequene harts (MSCs)

o�er a visual depition of message exhanges in a onurrent system, and are

used, e.g., for desribing high-level requirements in the Uni�ed Modeling Lan-

guage [BJR97℄. MSCs are also best formalized as partially ordered strings. Model

heking tools like SPIN [Hol97℄ generate MSCs as outputs for simulation runs

and ounterexample traes. Hierarhial representations of MSCs an be used to

improved omprehension and visualization of suh outputs whih are often large.

All this suggests that ompression of partially ordered strings should be used for

onurrent program traes to ahieve similar aims as string ompression ahieves

for sequential program exeutions. In doing so, however, we should exploit the

extra freedom provided by the independene relation to �nd patterns that are

not available in a �xed sequential view of a partially ordered trae.

While ompression has been studied for deades from both theoretial and

pratial viewpoints, we are not aware of any researh that expliitly addresses

ompression of partially ordered strings.

1

Our �rst lass of algorithms involves adaptation of grammar-based shemes

diretly to partial-order strings. For strings it is NP-hard to �nd an optimal

grammar ([SS82℄) but suh a grammar is approximable to within a log fator

in polynomial time [CLL

+

02℄. We present two algorithms for �nding potentially

smaller grammar representations by exploiting the independene relation. Our

�rst algorithm is a modi�ation of SEQUITUR ([NW97℄) that greedily hooses

1

Based on the work we have initiated here, S. Savari has begun an information-

theoreti study of suh strutures based on entropy onsiderations [Sav03a,Sav03b℄.

the next symbol to be proessed from the minimal elements of the remaining

partial order by giving preferene to the one that would lead to an already

enountered pattern. Seond is an o�ine algorithm that repeatedly replaes the

most frequently ourring pair of dependent or independent symbols by a new

nonterminal. As suh, it does not stritly speaking produe a string grammar,

but rather a limited form of more general graph grammars ([Eng97℄). We report

on a prototype implementation of these algorithms, and experimental results

that indiate improvements in ompression.

Our seond lass of algorithms onsists of representing a string by an ade-

quate olletion of projetions onto subsets of the alphabet, and then ompress-

ing eah projetion by a grammar-based string ompression algorithm or by one

of the algorithms of the �rst lass. A neessary and suÆient ondition for be-

ing able to reonstrut the original string up to equivalene is that eah pair

of dependent symbols must our in one of the projetions. A natural strategy

for projetion is to projet the string onto every pair of dependent symbols.

Surprisingly, this strategy an be exponentially more suint than the optimal

representation using just rewriting. In fat, this exponential gap holds even for

ordinary strings (that is, when the independene relation is empty). Further-

more, the strategy of projeting onto dependent pairs produes output within a

fator of d of that of the optimal algorithm in this lass, where d is the number of

dependent pairs, and this fator is tight. When the alphabet is partitioned into k

sets suh that symbols are dependent i� they belong to the same partition, then

the natural strategy is to projet the input string onto eah of the partitions.

Compared to ompressing the original string, this an be exponentially better

in the best ase, and it is always within a fator of k ompared to the optimal

algorithm using just rewriting.

Finally, the third lass of algorithms allows ollapsing of symbols using re-

labeling in addition to the projetions and rewriting. One strategy in this lass

is the following. For every symbol a, we projet the string onto a and all the

symbols dependent on a, then ollapse all these dependent symbols to a single

symbol b. This leads to j�j strings, eah over a two-letter alphabet, and an be

ompressed separately. We show how to reonstrut the original string, up to

equivalene, from these projetions.

2 Grammar-based Compression Up To Equivalene

2.1 Equivalene lasses of strings and labeled partial orders

Our model onsists of a set � of terminals and an irreexive symmetri inde-

pendene relation I � � � �. Two terminals a,b are said to be independent if

(a; b) 2 I . Intuitively, two strings are equivalent if one an be obtained from the

other by a sequene of swaps of adjaent independent symbols. Formally, �

I

is the smallest binary equivalene relation on �

�

satisfying �ab� �

I

�ba� , for

all (a; b) 2 I and for all strings �; � 2 �

�

. We shall represent the equivalene

lass orresponding to a string � by [�℄

�

I

. Suh equivalene lasses are alled

Mazurkiewiz traes in the onurreny literature [Maz87℄.

Equivalene lasses indued by �

I

orrespond to labeled partial orders of a

partiular form. A labeled partial order respeting I is a struture P = (V;E; �),

where V is a �nite set of nodes, E is a set of edges over V suh that the reexive-

transitive losure E

�

is a partial order over V , and � : V ! � is a labeling of

nodes by terminals suh that for all u; v 2 V ,

1. if (u; v) 2 E, then (�(u); �(v)) =2 I;

2. if (�(u); �(v)) =2 I , then either (u; v) 2 E

�

or (v; u) 2 E

�

.

A linearization � of the labeled partial order P = (V;E; �) is a string �

1

�

2

� � ��

jV j

over� suh that there exists an ordering v

1

v

2

� � � v

jV j

of the nodes in V satisfying

(1) �

i

= �(v

i

) for 1 � i � jV j, and (2) for all (v

i

; v

j

) 2 E, i < j. We an de�ne a

orrespondene between equivalene lasses of strings and labeled partial orders.

Namely, given a string � and an independene relation I , there is an algorithm to

onstrut the labeled partial order P

�;I

with j�j verties whose linearizations are

the strings in [�℄

�

I

. The details of the algorithm to onstrut P

�;I

are standard,

and omitted from this abstrat.

2.2 Grammar-based ompression

In grammar-based ompression algorithms for strings, given an input string �,

the algorithm omputes a ontext-free grammar G that generates the singleton

language f�g. The grammar G then serves as a suint hierarhial represen-

tation of �. From now on, we shall refer to suh a grammar as a grammar for

�. Over the years, several interesting grammar-based string ompression algo-

rithms have been proposed. Of them, the algorithm Sequitur [NW97℄ has been

used for ompression as well as to gather pro�ling information from program

exeutions [Lar99,BL00,GRM03℄, and is of partiular interest to us. Sequitur is

an online algorithm that greedily onstruts a hierarhy out of an input string. It

sans the input from left to right, identi�es repeated pairs of adjaent symbols

(digrams) in the representation of the input that it has proessed so far, and

replaes them by nonterminals. A grammar rule maps every nonterminal to the

digram it represents.

A good measure of the performane of a grammar-based ompression algo-

rithm is the size of the grammar, where the size of a grammar G is de�ned to be

the sum of the lengths of the right-hand sides of all the rules in G. The optimal

grammar-based ompression algorithm needs to �nd the smallest grammar for

the given input string. Unfortunately, this problem is NP-omplete [SS82℄. How-

ever, some reent researh is aimed at �nding approximation algorithms for this

problem: Lehman et al [LS02℄ �nd approximation ratios for some previously pro-

posed grammar-based ompression algorithms (e.g., the well known LZ78 has an

approximation ratio O((n= log n)

2=3

)), and prove the hardness of approximating

the smallest grammar beyond a ertain onstant fator; Charikar et al [CLL

+

02℄

present an algorithm with an approximation ratio O(log(n=g

�

)), where g

�

is the

size of the smallest grammar.

2.3 Compression up to equivalene

In this paper, we are interested in generating a small grammar-based repre-

sentation of a given string up to the equivalene indued by an independene

relation. We propose three di�erent methodologies for ahieving this, and pose

three di�erent optimization problems that these methods orrespond to.

Finding optimal equivalent strings. In our �rst approah, we �nd a string

that is equivalent to the input string and an be represented by a small grammar.

The output is the grammar for this string. For example, suppose � = fa; b; g

and b and are independent of eah other. Then, the strategy of lustering all

the b's (and 's) together between every pair of a's is a good heuristi to inrease

ompressibility. For instane, abbabb will be rewritten to (ab

2

2

)

2

to redue

the size of the grammar-based representation. The orresponding optimization

problem is as follows. Let C(�) represent the size of the smallest grammar for

a given string �. Then, given a string � and an independene relation I , the

problem is to �nd � 2 [�℄

�

I

suh that C(�) is the minimum of the set fC(�

0

) j

�

0

2 [�℄

�

I

g. From now on, we refer to this optimal value C(�) as C

I

(�).

Projetions and ompression. In our seond approah, we onsider the om-

pression algorithms that projet the input string onto a sequene of subsets

of � suh that the original string (up to equivalene) an be reovered from

these projetions, and ompress the projetions separately. In the example with

� = fa; b; g with b and independent, we an represent � by two proje-

tions, one onto fa; bg and one onto fa; g, and ompress the two separately (e.g.,

abbabb will be replaed by the pair (abbabb, aa)).

The projetion of a string � on a subalphabet �

0

� � is obtained by erasing

all symbols in � that are not in �

0

, and is represented by � "�

0

. Subalphabets

�

1

; �

2

; : : : ; �

m

� � over an independene relation I , if there is a reonstrution

algorithm A suh that, for all strings �, given the projetions � "�

i

, A outputs

some �

0

2 [�℄

�

I

.

In this ase, the ompression methodology is as follows. We �rst projet

the input string � on a set of overing subalphabets. Then we �nd grammars

for these projetions using an approximation algorithm for string ompression.

The ompressed representation of the string (and the equivalene lass) is the

olletion of all these grammars. In order to unompress, we regenerate the

projetions from their grammars and use a reonstrution algorithm to generate

a string equivalent to �. Formally, the optimization problem is as follows. Given

a � and an independene relation I , �nd a over �

1

; �

2

; : : : ; �

m

for I suh that

P

m

i=1

C

I

(� "�

i

) is minimized. Let us denote

P

m

i=1

C

I

(� "�

i

) for the optimal

over by C

p

I

(�).

Relabeling, projetions, and ompression. In our third approah, we allow

relabeling of symbols during projetions as long as the original string an be

reovered up to equivalene. Going bak to our example with independent b's

and 's, we an represent a string by a pair, where the �rst one is a projetion

onto fa; bg and the seond one is obtained by renaming b to . For instane,

abbabbb an be represented by (abbabbb; a

5

a

5

). In this example, it is lear

that the original string an be reonstruted up to equivalene, and relabeling

an be exploited to minimize grammar sizes.

A relabeling is a funtion from � to �, and we use (�) to denote the string

obtained from � by replaing eah symbol s in � by the orresponding symbol

(s). A sequene of subalphabets �

1

; �

2

; : : : ; �

m

� � and a orresponding

sequene of relabelings

1

;

2

; : : :

m

are said to over an independene relation I

if there is a reonstrution algorithm A suh that, for all strings �, given renamed

projetions

i

(� " �

i

), outputs some �

0

2 [�℄

�

I

. The optimization problem is

de�ned as in the previous ase. Given a string � and an independene relation

I , �nd a set of subalphabets �

1

; �

2

; : : : ; �

m

together with relabeling funtions

1

;

2

; : : :

m

suh that the two sequenes over I , and

P

m

i=1

C

I

(

i

(� " �

i

)) is

minimized. Let us denote the optimal sum by C

pr

I

(�). Note that, by de�nition,

C

pr

I

(�) � C

p

I

(�) � C

I

(�) � C(�):

3 Compression Algorithms

3.1 Loally greedy algorithm for �nding good linearizations.

We �rst desribe an algorithm that takes labeled partial orders as inputs, and

outputs grammars for ertain \good" linearizations. Given a string � and in-

dependene relation I , we an �rst onstrut the partial order P

�;I

. Algorithm

of Figure 1 is an online algorithm inspired by Sequitur [NW97℄ and traverses

the input partial order P from top to bottom. At eah step, one of the minimal

nodes (nodes without any inoming edges from unproessed nodes) is hosen

and removed from P . The hoie is made greedily by giving preferene to a node

that will reate a digram that has already appeared. Its label a is appended to

a list L representing the part of the input already seen. Following Sequitur, we

enfore digram uniqueness on L; that is, if a digram xy ours at two separate

loations on L, they are to be replaed by a nonterminal. If this digram has not

been seen in the input proessed so far, we add a rule A ! xy, for some new

nonterminal A, to the grammar.

In our implementation of this algorithm, we maintain a map from digrams

to positions in L. This map is maintained as a hashtable, so that we are able to

math rules in onstant time. Changes to the list L { required when a digram

is replaed by a nonterminal { are implemented through low-level pointer op-

erations. At eah step we ontrat one edge of the partial order; we terminate

when there are no edges left to explore. Sine the edge relation is the overing

relation of the partial order, there are at most a linear number of edges. If n is

the length of the input string, and k is the width of the partial order P

�;I

(that

is, the maximum number of pair-wise unordered symbols), then the algorithm

runs in time O(k � n).

input : Labeled partial order P = (V; E; �).

output : Grammar G for some linearization of P .

begin

G := ;.

List of symbols L := [�(w)℄ for some minimal element w of P . Remove w

from P .

Hashtable of digrams D := ;.

repeat

Min := Set of minimal elements of P .

p:= last element appended to L.

if there is v 2 Min and digram A! u�(v) in D then

Remove v from P . Append q = �(v) to L

Replae the pair pq at the end of L by nonterminal A

If the rule A ! pq is not already in G, then add it. In this ase

there is a previous unreplaed ourrene of pq pointed to by Æ in

the hashtable. Replae that as well.

Update D with digrams generated by these hanges. If the digram

uniqueness property is found to be violated, repeatedly replae the

violating digrams by nonterminals till there is no repetition.

else

Choose some arbitrary v 2 Min. Remove v from P .

Add a digram A! p�(v) to D for some new nonterminal A. Make

it \point" to the urrent last position in L.

Append �(v) to L.

end

until Min = ;.

G := G [fS ! Lg, where S is a new starting nonterminal.

Output G.

end

Algorithm 1: Top-to-bottom

Consider the labeled partial order P orresponding to the string abba with

a and b independent. Let us follow a run of this algorithm on P . The stages of

the algorithm are desribed in the table in Figure 1. The key step is step 5,

where a is preferred over b as it auses a repeating digram.

3.2 Replae most frequent pair.

Our next algorithm is a greedy o�ine algorithm that hooses the most frequently

ourring pair of dependent or independent symbols, and replaes this digram by

a nonterminal. Consider a labeled partial order P = (V;E; �). The frequeny of

a pair of dependent symbols (p; q) is the maximum number of edges of the form

(u; v) with �(u) = p and �(v) = q suh that no two edges share an end-point

(note that sharing of end-points an happen when p = q); while the frequeny of

a pair of independent symbols (p; q) is the maximum number of pair-wise disjoint

Step List L Comments

1 Only one hoie.

2 a Symbol a hosen arbitrarily.

3 ab No other hoie.

4 ab No other hoie.

5 aba Choie made to repeat digram a. Rule A! a added.

6 AbAb Symbol b appended. Digram Ab repeated. Add rule B ! Ab.

7 BB End of partial order reahed. Add rule S ! BB.

Fig. 1. Sample run of the Top-to-bottom Algorithm

sets of nodes of the form fu; vg suh that �(u) = p, �(v) = q, and neither uE

�

v

nor vE

�

u. The ontration of (u; v) 2 E by a node w is the following operation

on P : remove u; v from V ; add w to V ; replae (s; t) 2 E, where t 2 fu; vg and

s 6= u, by (s; w); replae (s; t) 2 E, where s 2 fu; vg and t 6= v, by (w; t); and

remove (u; v). For a pair (u; v) of unrelated nodes, the ontration by a node

w is de�ned similarly: remove u; v from V , add w to V ; replae (s; t) 2 E with

t 2 fu; vg by (s; w); and replae (s; t) 2 E with s 2 fu; vg by (w; t). Finally, we

will modify our de�nition of the labeling funtion � a bit so that a labeled partial

order an also have nodes labeled with arbitrary nonterminals. The de�nitions

of frequeny and ontration apply to suh nodes also. If suh a new node w is

labeled with a new nonterminal A, then A is delared to be dependent on all the

symbols that are dependent on p as well as the symbols dependent on q.

At eah step of this algorithm, we identify a pair of symbols (p; q) with the

maximum frequeny. Then we add a rule A! pq, for some new nonterminal A,

and ontrat a disjoint olletion of node pairs labeled (p; q) by a node labeled A.

Computing the frequeny of dependent pairs is straightforward, we simply need

to san all the edges and maintain a ount for every pair of symbols. Computing

the frequeny of independent symbols requires more are, we need to make sure

that if a node labeled p is unrelated to two nodes labeled q, then only one pair

gets ounted to the frequeny of (p; q). In this ase, mathing the p-labeled node

with the �rst possible q-labeled node that is a potential math, is a safe strategy

to maximize the ount of disjoint pairs. Note that the resulting grammar is not,

stritly speaking, a string grammar beause we are also allowed to introdue

new nonterminals for pairs of independent symbols. Rather, it an be viewed

as a limited form of more general graph grammars ([Eng97℄), and hene as a

generalization of the grammar-based string ompression approah to a graph

grammar-based approah for ompression of partial orders.

Consider again the labeled partial order P orresponding to the string abba

with a and b independent. At the �rst step, we have to hoose a set of disjoint

edges labeled by the same symbol-pairs. We arbitrarily hoose the symbol-pair

(a;) (we ould also have hosen (b;), (; a), (a; b) or (; b), all have frequeny

2), add the rule A ! a, and ontrat. The partial order now beomes the one

orresponding to the string bAbA. At the next step, we ontrat the two edges

input : Projetions �

i

, 1 � i � m, with �

i

= �"�

i

. The following ondition

is satis�ed: for all (a; b) =2 I, there is an i suh that a; b 2 �

i

.

output : A string �

0

satisfying �

0

�

I

�.

begin

p

i

 � 1 for eah 1 � i � m

Proj

a

 � fi : a 2 �

i

g for eah a 2 �

j � 0

repeat

Selet a 2 � suh that for all i 2 Proj

a

, we have p

i

� j�

i

j and �

i

(p

i

) = a

p

i

:= p

i

+ 1 for all i 2 Proj

a

�

0

(j) := a; j := j + 1

until no suh a an be seleted.

end

Algorithm 2: A reonstrution algorithm

labeled (b; A) and add a rule B ! bA. The partial order now beomes a hain

BB. There is no way to ontrat further.

3.3 Algorithms using projetions

The �rst step in the algorithms that employ projetion is to ompute a over

for the given independene relation. The next theorem identi�es a key property

of the over. (We have been informed that [CP85℄ ontains this result. We pro-

vide a proof here for ompleteness and beause our proof provides an eÆient

reonstrution algorthm whih we use.)

Theorem 1. ([CP85℄) Subalphabets �

1

; �

2

; : : : ; �

m

over an independene re-

lation I i� for all (a; b) =2 I, there is an i suh that a; b 2 �

i

.

Proof: ()) Suppose there is a pair of symbols (a; b) =2 I suh that there is no

i with a; b 2 �

i

. Then, the projetions of the non-equivalent strings ab and ba

will be idential, and hene, reonstrution is impossible.

(() For this diretion, we give a reonstrution algorithm for any set of

subalphabets satisfying the above ondition. In Algorithm 2, �(i) represents the

i-th symbol of �. The algorithm keeps a urrent pointer 1 � p

i

� j�

i

j for eah

projetion 1 � i � m. For eah projetion we advane this pointer from the

beginning to the end. The orretness proof is omitted due to lak of spae.

The reonstrution algorithm, with appropriate book-keeping, an be made

to run in time linear in the size of its input (that is, the sum of the sizes of the

projetions). In the ontext of this theorem, a reasonable strategy is to projet on

a set of maximal liques overing all the edges in the graph for the omplement D

of the independene relation. We present two speial ases of this methodology.

{ The algorithm edge-over projets on the set of subalphabets fa; bg for

every pair (a; b) in the omplement D of the independene relation I . This

algorithm an be optimized by onsidering only the pairs (a; b) suh that the

dependeny is realized within the input string �, that is, the partial order

P

�;I

ontains an edge whose endpoints are labeled with a and b.

{ An interesting speial ase is when the independene relation is a k-partite

graph: the alphabet � is partitioned into sets �

1

; : : : �

k

suh that two sym-

bols are independent i� they belong to separate partitions. In this ase, this

partition makes a natural hoie for the lique over.

3.4 Algorithms with relabeling and projetion

If the subalphabets �

j

and relabelings

j

over an independene relation I , then

for (a; b) 62 I , there must be an index j suh that a; b 2 �

j

and

j

(a) 6=

j

(b).

That is, a neessary ondition for reonstrution is that every pair of dependent

symbols must belong to a projetion whose relabeling does not ollapse them.

Now, we present an alternative to the overing the dependeny graph using

liques. Given an independene relation I , for every symbol a 2 �, let �

a

=

fb 2 � j (a; b) =2 Ig be the set of symbols dependent on a. Let # be a speial

symbol that is dependent on every symbol, and let

a

be the relabeling that

maps a to a and renames all other symbols to #. The strategy star-over is to

projet the input string onto �

a

, and apply the relabeling

a

before applying

the standard string ompression. Note that, like the edge-over algorithm of the

previous setion, this strategy also leads to a olletion of 2-symbol strings, but

now, we are guaranteed that we have only j�j projetions, one per symbol in �.

Theorem 2. The subalphabets �

a

and relabelings

a

, for eah a 2 �, over the

independene relation I.

Proof: The reonstrution algorithm is similar to Algorithm 2. Let �

a

=

a

(�"

�

a

). As before, we maintain a pointer p

a

for eah projetion �

a

. At every step,

we try to selet a symbol a 2 � suh that �

a

(p

a

) = a and for eah b 2 �

a

with

b 6= a, �

b

(p

b

) = #. If suh a symbol a is found, the algorithm outputs a, and

inrements all the pointers p

b

for b 2 �

a

. If there are two suh symbols, then

they must be independent, and the hoie does not matter.

3.5 Experiments

In this setion, we disuss preliminary experimental results for the top-to-bottom

and replae-most-frequent ompression algorithms presented earlier. We experi-

mented with two distributed programs shipped as demos with the popular SPIN

veri�ation toolkit [Hol97℄. One of them (mobile1) is a model of a ellphone

hand-o� strategy, the other (pftp) is a ow ontrol protool. These models on-

sist of a number of proesses ommuniating through message hannels. Now

onsider the natural alphabet of send and reeive events. There is a natural de-

pendene relation on this alphabet: any send is dependent on the orresponding

reeive. Also, the loal lok for every proess de�nes a dependene between

MSC size Sequitur (random linearization) Top-to-bottom Replae-most-frequent

20000 13800 5612 4203

40000 24945 9679 7123

60000 35490 13441 12226

80000 45617 16641 22157

100000 55228 19759 -

Fig. 2. Grammar representations onstruted by di�erent algorithms: mobile1

MSC size Sequitur (random linearization) Top-to-bottom Replae-most-frequent

20000 7048 4474 3457

40000 12470 7571 5128

60000 17433 10700 12461

80000 22026 13453 15233

100000 27081 15456 -

Fig. 3. Grammar representations onstruted by di�erent algorithms: pftp

any two sends or reeives that it partiipates in. Suh an independene rela-

tion indues a speial sublass of labeled partial orders alled message sequene

harts. We made SPIN perform random simulations of pftp and mobile1 and

produe message sequene harts (MSCs) of di�erent lengths. These MSCs were

fed as inputs to implementations of algorithms Top-to-bottom and Replae-

most-frequent. We also fed random linearizations of these harts to the string

ompression algorithm Sequitur. A performane omparison is desribed in Fig-

ures 2 and 3. The tables ompare average sizes of grammar representations of

MSCs of given lengths. The quadrati-time algorithm Replae-most-frequent did

not terminate within a reasonable time for the longest input.

The above results suggest there is a pratial advantage in hoosing a lin-

earization judiiously (as opposed to randomly). We experimented with this sep-

aration more, by studying the performane of the Sequitur algorithm on di�erent

linearizations of an MSC outputted by mobile1 (Figure 4). These linearizations

are hosen with various \degrees" of arbitrariness. More preisely, while gener-

ating a linearization, we proeed along the lines of the Top-to-bottom algorithm,

but make random hoies at some of the steps. Of ourse, we annot hope to

generate the entire spetrum of linearizations of a large MSC this way; however,

we do seem to get linearizations niely overing the spae between random and

greedily hosen linearizations. Note that it is very possible that linearizations

with muh smaller grammars exist; it is just not easy to �nd them.

4 Bounds on performane

In this setion, we provide some theoretial bounds for the ompression problem

and strategies mentioned in the previous setion.

MSC size Size of Sequitur output on di�erent linearizations

20000 5612, 7381, 8909, 11584, 13800

40000 9679, 12303, 18911, 21526, 24945

60000 13441, 20121, 27212, 31443, 35490

80000 16641, 23117, 30235, 39318, 45617

100000 19759, 30257, 38221, 47116, 55228

Fig. 4. Impat of the hoie of linearization on Sequitur

We �rst demonstrate an exponential separation between the optimals C

I

and C

p

I

. We enode the sequene h0; 1; 2; : : : ; 2

k

� 1i in binary as follows. Our

alphabet is � = f#g [([

i=1;:::;k

fb

0

i

; b

1

i

g). The speial symbol # will separate

two suessive numbers in the sequene. The enoding of a number that has 0

or 1 as its j-th bit will have, respetively, b

0

j

or b

1

j

as its j-th bit. That is, we

onsider the string

� = #b

0

1

b

0

2

:::b

0

k

#b

0

1

b

0

2

: : : b

1

k

#b

0

1

: : : b

1

k�1

b

0

k

: : : :

Our independene relation is I = f(b

p

i

; b

q

j

) : b

p

i

6= b

q

j

g. In other words, distint

b

p

i

-s are independent of eah other and are all dependent on #. In any string that

is equivalent to �, the set of symbols between every pair of #'s enodes a distint

number 0 � n < 2

k

. This makes suh a string inompressible using grammar-

based algorithms; intuitively, every interval between suessive #'s ontributes

at least one symbol to the grammar. Formally, we show that the appliation of

the Lempel-Ziv ompression algorithm [ZL77℄ to � ompresses it at most by a

fator k. Then we will use a relation between C

I

(�) and this ompressed form

proved by Charikar et al. [CLL

+

02℄ to show that C

I

(�) is smaller than � by at

most a fator of k. Finally, we show that C

p

I

(�) is logarithmi in j�j.

Lemma 1. If � �

I

�, then LZ77-enoding of � is
(2

k

).

Proof: The LZ77 algorithm desribes a string w using a sequene s

1

s

2

: : : s

d

of

widgets. Eah widget s

i

is either a symbol of the alphabet of w or of the form

s

i

= (j; r). Intuitively, the latter means \start at the position j of the string

enoded by s

1

: : : s

i�1

and read the next r symbols." More preisely, a widget

(j; r) represents the substring w(j)w(j +1) : : : w(j+ r� 1), assuming the length

of the string represented by s

1

: : : s

i�1

is at least j.

We show there is no way to enode any onsistent ordering of � with fewer

than 2

k

widgets, for some . Assume S = s

1

: : : s

d

is the LZ77 form for some

ordering � of �. Then no widget of the form s

i

= (j; r) in S an enode a

substring ontaining two or more ourrenes of symbol #. This is beause the

set of b's that ours between eah pair of #'s in � is unique, and thus there

is no part of s

1

: : : s

i�1

that one an refer to obtain the same set, irrespetive

of how b's are ordered. Consequently, we an have at most two # in the string

denoted by (j; r), and thus r < 2k. Then the laim holds for = 1=2.

The result of [CLL

+

02℄ shows that if � is the length of the LZ77-enoding

of a string �, then � � C(�) log j�j. It follows that C

I

(�) =
(2

k

). Suppose

the edge-over algorithm will projet � onto subalphabets �

i;d

= fb

d

i

;#g, where

i 2 f1; : : : ; kg and d 2 f0; 1g. There are 2k suh subalphabets. It an be shown

that eah of these projetions has a periodi nature and, as a result, a grammar

of size O(k). For instane, the projetion on b

0

k

and # is (#b

0

k

#)

2

k�1

. This

shows that C

p

I

(�) = O(k

2

): Note that the hoie of k is arbitrary in the above.

Consequently, we onlude the following theorem:

Theorem 3. For eah n, there is an alphabet �, an independene relation I

and a string � suh that j�j � n and C

I

(�) =
(2

j�j

C

p

I

(�)).

It is worth noting the exponential separation holds even when the independene

relation is empty, that is, even for ompressing ordinary strings. Consider the

string in the above proof. Clearly, � itself annot be ompressed. Now, all symbols

are pair-wise dependent, and there are O(k

2

) projetions. It is easy to verify that

projetions onto eah pair fb

p

i

; b

q

j

g is periodi and has a grammar of size O(k).

Thus, C

p

(�) = O(k

3

).

Now we proeed to give an upper bound for the edge-over algorithm whih,

given a string �, projets it onto eah edge (a; b) in the omplement D of the

independene relation I . Let these projetions be alled �

1

; �

2

; : : : ; �

k

. Let C

e

I

(�)

be the sum of C(�

i

).

Theorem 4. For all strings � and independene relations I, C

e

I

(�) � j�j

2

C

p

I

(�).

Proof: Consider the projetion � of the string � on a pair (a; b) of dependent

symbols. In the optimal projetion based algorithm, one of the overing sub-

alphabets �

j

must inlude the pair (a; b). Let � be a string that is equivalent

to � "�

j

. Consider a grammar G for � . Note that � " fa; bg equals �. We an

remove all other terminals from eah rule of G to get a grammar for � without

inreasing the size of G. Therefore, C(�) � C(�). Hene, C(�) � C

I

(� "�

j

),

and C(�) � C

p

I

(�). There are at most j�j

2

edges in D, and the result follows.

To ompress projetions of � onto single pairs of dependent symbols, we an

use any grammar based algorithm, in partiular, the algorithm by Charikar et

al [CLL

+

02℄, thereby approximating C

p

I

(�) up to fator j�j

2

log (j�j=g

�

), where

g

�

is the size of the optimal grammar. The bound for the edge-over strategy is

tight. Suppose � = fa

1

; : : : a

k

g suh that all symbols are dependent. Consider

the string � = (a

1

� � � a

k

)

n

. The grammar of � is of size k + log n, while the

grammar for eah �"fa

i

; a

j

g is of size log n, and thus, C

e

I

(�) is k

2

log n.

An interesting speial ase for the lique-over is when the alphabet is union

of disjoint alphabets �

1

; : : :�

k

and two symbols are dependent i� they belong

to the same partition �

i

. In this ase, a natural hoie for over is the parti-

tion �

1

; : : : �

k

. Let C

I

(�) denote the sum of C(� "�

i

). This strategy an be

quite bene�ial over ompressing the original string. For example, if there are

two independent symbols a and b, then a random string � won't ompress well,

while the two projetions onto individual symbols arry the minimal informa-

tion, namely, the number of a's and number of b's. As the next theorem shows,

projeting onto liques an be worse than ompressing the original string, or

even an equivalent linearization, by at most by a fator of the number of liques.

Theorem 5. If the alphabet is a disjoint union of k liques, then for any string

�, C

I

(�) � kC

I

(�).

Proof: The proof is similar to the proof of Theorem 4. Consider any lique �

i

in

D, let �

i

= �"�

i

, and let � be any string equivalent to �. Sine all the terminals

in �

i

depend on eah other, one an show that the size of the optimal grammar

for �

i

is bounded by the size of the optimal grammar for � .

Again, this bound is tight. Suppose � = fa

1

; : : : a

k

g suh that all symbols

are independent (that is, there are k singleton liques). Consider the string � =

(a

1

� � � a

k

)

n

. The grammar of � is of size k + log n, while the grammar for eah

�"fa

i

g is of size log n, and thus, C

I

(�) is k log n.

Finally, for the star-over algorithm that uses both projetions and relabeling,

we an show that every relabeled projetion

a

(�"�

a

) has a grammar of size at

most that of the smallest grammar for any string equivalent to the original.

Theorem 6. For all strings � and independene relations I, for eah a 2 �,

C(

a

(�"�

a

)) � C

I

(�).

5 Conlusions

In this paper, we have formulated and initiated the study of the ompression

problem of partially ordered strings. It is worth noting that even for ompres-

sion of ordinary strings, the use of projetions and relabeling, and the resulting

suintness of the representation, has not been studied earlier. While we have

shown that projetion an lead to exponential suintness for a lass of strings,

it remains to be seen if projetions, possibly augmented with relabeling, an be

engineered to lead to pratial general ompression tehniques.

There are many diretions for future researh. The appliation to pro�ling

of exeutions of onurrent programs, and for visualization large MSCs gener-

ated by tools like SPIN in ompat form, both seem promising. A reent paper

applies standard string ompression tehniques to parallel program exeutions

[GRM03℄, and our tehniques an potentially improve their results. Compres-

sion of partially ordered strings an be studied from an information theoreti

perspetive. Based on the work we have initiated here, Savari has begun a

study of the graph entropy of suh strutures and of rewriting strings to normal

forms [Sav03a,Sav03b℄. We would also like to sharpen the approximability of the

optimization measures introdued in this paper. In partiular, approximability

bounds for the measure C

I

, and improving the j�j

2

bound for the measure C

p

I

,

are open problems. Finally, it would be interesting to study ompression of la-

beled partial orders based on more general lasses of graph grammars ([Eng97℄)

than those impliit in Algorithm 1.

Aknowledgements: Thanks to Serap Savari for disussions and omments.

Referenes

[BJR97℄ G. Booh, I. Jaobson, and J. Rumbaugh. Uni�ed Modeling Language User

Guide. Addison Wesley, 1997.

[BL00℄ T. Ball and J. Larus. Using paths to measure, explain, and enhane program

behavior. IEEE Computer, 33(7):57{65, 2000.

[CLL

+

02℄ M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala,

A. Sahai, and A. Shelat. Approximating the smallest grammar: Kolmogorov

omplexity in natural models. In Proeedings of the 34th ACM Symposium

on Theory of Computing, pages 792{801, 2002.

[CP85℄ R. Cori and D. Perrin. Sur la Reonnaissabilite dans les monoides partielle-

ment ommutatifs libres. R.A.I.R.O.-Informatique Thorique et Appliations,

19:21-32, 1985.

[DM97℄ V. Diekert and Y. Metivier. Partial ommutation and traes. In Handbook

of Formal Languages: Beyond Words, pages 457{534. Springer, 1997.

[Eng97℄ J. Engelfriet. Context-free graph grammars. In Handbook of Formal Lan-

guages, vol. 3, ed. G. Rozenberg and A. Salomaa, Springer-Verlag, 1997.

[GRM03℄ A. Goel, A. Royhoudhury, and T. Mitra. Compatly representing parallel

program exeutions. In Proeedings of the ACM Symposium on Priniples

and Pratie of Parallel Programming, 2003.

[Hol97℄ G.J. Holzmann. The model heker SPIN. IEEE Transations on Software

Engineering, 23(5):279{295, 1997.

[KY00℄ J. Kie�er and E. Yang. Grammar-based odes: a new lass of universal

lossless soure odes. IEEE Transations on Information Theory, 46:737{

754, 2000.

[Lam78℄ L. Lamport. Time, loks, and the ordering of events in a distributed system.

Communiations of the ACM, 21:558{565, 1978.

[Lar99℄ J. Larus. Whole program paths. In Proeedings of the ACM Conferene on

Programming Languages Design and Implementation, pages 259{269, 1999.

[LS02℄ E. Lehman and A. Shelat. Approximation algorithms for grammar-based

ompression. In Proeedings of the 13th ACM-SIAM Symposium on Disrete

Algorithms, pages 205{212, 2002.

[Maz87℄ A. Mazurkiewiz. Trae theory. In Advanes in Petri nets: Proeedings of

an advaned ourse, LNCS 255, pages 279{324. Springer-Verlag, 1987.

[NW97℄ C. Nevill-Manning and I. Witten. Identifying hierarhial struture in se-

quenes: A linear-time algorithm. Journal of Arti�ial Intelligene Researh,

7:67{82, 1997.

[Pra86℄ V.R. Pratt. Modeling onurreny with partial orders. International Journal

of Parallel Programming, 15(1), 1986.

[Sav03a℄ S. Savari. Conurrent proesses and interhange entropy. In IEEE Int. Symp.

on Information Theory, 2003. To appear.

[Sav03b℄ S. Savari. On ompressing interhange lasses of events in a onurrent

system. IEEE Data Compression Conferene, 2003.

[SS82℄ J. Storer and T.G. Szymanski. Data ompression via textual substitution.

Journal of the ACM, 29:928{951, 1982.

[ZL77℄ J. Ziv and A. Lempel. A universal algorithm for sequential data ompression.

IEEE Transations on Information Theory, 23(3):337{343, 1977.

[ZL78℄ J. Ziv and A. Lempel. Compression of individual sequenes via variable-rate

oding. IEEE Transations on Information Theory, 24(5):530{536, 1978.

