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Abstract. We introduce the problem of compressing partially ordered
strings: given string o € X" and a binary independence relation I over X,
how can we compactly represent an input if the decompressor is allowed
to reconstruct any string that can be obtained from o by repeatedly
swapping adjacent independent symbols? Such partially ordered strings
are also known as Mazurkiewicz traces, and naturally model executions
of concurrent programs. Compression techniques have been applied with
much success to sequential program traces not only to store them com-
pactly but to discover important profiling patterns within them. For
compression to achieve similar aims for concurrent program traces we
should exploit the extra freedom provided by the independence relation.
Many popular string compression schemes are grammar-based schemes
that produce a small context-free grammar generating uniquely the given
string. We consider three classes of strategies for compression of partially-
ordered strings: (7) we adapt grammar-based schemes by rewriting the
input string o into an “equivalent” one before applying grammar-based
string compression, (i) we represent the input by a collection of projec-
tions before applying (%) to each projection, and (4i7) we combine (i) and
(7¢) with relabeling of symbols. We present some natural algorithms for
each of these strategies, and present some experimental evidence that
the extra freedom does enable extra compression. We also prove that
a strategy of projecting the string onto each pair of dependent symbols
can indeed lead to exponentially more succinct representations compared
with only rewriting, and is within a factor of | X|* of the optimal strategy
for combining projections with rewriting.

1 Introduction

Algorithms for text compression view the input as a linearly ordered sequence
of symbols and try to discover repeating patterns so that the input can be rep-
resented more compactly. In this paper, we initiate the study of compression of
partially ordered strings. Given an independence relation over an alphabet, two
strings are said to be equivalent if one can be obtained from the other by repeat-
edly commuting adjacent independent symbols. An equivalence class of such a



type is known as a Mazurkiewicz trace in concurrency theory [Maz87,DM97].
The new compression problem is then to compactly represent an input string if
the decompressor is allowed to output any string that is equivalent to the original
string. For instance, if all the symbols are pair-wise independent of each other,
then a string can simply be represented by listing the number of occurences of
each occuring symbol of the alphabet in the string. In this case, the original
string may be uncompressible, but the extra freedom afforded by independence
allows a representation that is logarithmic in the original size.

Many popular algorithms for string compression, such as the Lempel-Ziv
algorithms [ZL77,ZL78] and SEQUITUR [NW97], are variant of grammar-based
schemes, which work by essentially computing a small context-free grammar
that generates the input string uniquely (see [KY00,CLL*02]). Such grammars
are deterministic and contain no cycles, and hence can be viewed simply as
hierarchical representations of the string. Larus ([Lar99]), using the SEQUITUR
scheme, has shown that such compact hierarchical representations of sequential
program traces can be used profitably to extract a variety of useful profiling
information, such as detection of hotspots and hot subpaths, for analyzing and
optimizing a program’s dynamic behavior ([Lar99,BLO00]).

While executions of sequential programs can be described naturally by strings
of events, the behavior of a concurrent system is more appropriately modeled
as a partially-ordered sequence of events [Lam78,Pra86,Maz87], reflecting the
fact that if events occurring on distinct processes are not causally related their
actual order of occurrence may be irrelevant. Message sequence charts (MSCs)
offer a visual depiction of message exchanges in a concurrent system, and are
used, e.g., for describing high-level requirements in the Unified Modeling Lan-
guage [BJR97]. MSCs are also best formalized as partially ordered strings. Model
checking tools like SPIN [Hol97] generate MSCs as outputs for simulation runs
and counterexample traces. Hierarchical representations of MSCs can be used to
improved comprehension and visualization of such outputs which are often large.
All this suggests that compression of partially ordered strings should be used for
concurrent program traces to achieve similar aims as string compression achieves
for sequential program executions. In doing so, however, we should exploit the
extra freedom provided by the independence relation to find patterns that are
not available in a fixed sequential view of a partially ordered trace.

While compression has been studied for decades from both theoretical and
practical viewpoints, we are not aware of any research that explicitly addresses
compression of partially ordered strings.!

Our first class of algorithms involves adaptation of grammar-based schemes
directly to partial-order strings. For strings it is NP-hard to find an optimal
grammar ([SS82]) but such a grammar is approximable to within a log factor
in polynomial time [CLLT02]. We present two algorithms for finding potentially
smaller grammar representations by exploiting the independence relation. Our
first algorithm is a modification of SEQUITUR ([NW97]) that greedily chooses

! Based on the work we have initiated here, S. Savari has begun an information-
theoretic study of such structures based on entropy considerations [Sav03a,Sav03b].



the next symbol to be processed from the minimal elements of the remaining
partial order by giving preference to the one that would lead to an already
encountered pattern. Second is an offline algorithm that repeatedly replaces the
most frequently occurring pair of dependent or independent symbols by a new
nonterminal. As such, it does not strictly speaking produce a string grammar,
but rather a limited form of more general graph grammars ([Eng97]). We report
on a prototype implementation of these algorithms, and experimental results
that indicate improvements in compression.

Our second class of algorithms consists of representing a string by an ade-
quate collection of projections onto subsets of the alphabet, and then compress-
ing each projection by a grammar-based string compression algorithm or by one
of the algorithms of the first class. A necessary and sufficient condition for be-
ing able to reconstruct the original string up to equivalence is that each pair
of dependent symbols must occur in one of the projections. A natural strategy
for projection is to project the string onto every pair of dependent symbols.
Surprisingly, this strategy can be exponentially more succinct than the optimal
representation using just rewriting. In fact, this exponential gap holds even for
ordinary strings (that is, when the independence relation is empty). Further-
more, the strategy of projecting onto dependent pairs produces output within a
factor of d of that of the optimal algorithm in this class, where d is the number of
dependent pairs, and this factor is tight. When the alphabet is partitioned into &
sets such that symbols are dependent iff they belong to the same partition, then
the natural strategy is to project the input string onto each of the partitions.
Compared to compressing the original string, this can be exponentially better
in the best case, and it is always within a factor of & compared to the optimal
algorithm using just rewriting.

Finally, the third class of algorithms allows collapsing of symbols using re-
labeling in addition to the projections and rewriting. One strategy in this class
is the following. For every symbol a, we project the string onto a and all the
symbols dependent on a, then collapse all these dependent symbols to a single
symbol b. This leads to |X| strings, each over a two-letter alphabet, and can be
compressed separately. We show how to reconstruct the original string, up to
equivalence, from these projections.

2 Grammar-based Compression Up To Equivalence

2.1 Equivalence classes of strings and labeled partial orders

Our model consists of a set X' of terminals and an irreflexive symmetric inde-
pendence relation I C X x X. Two terminals a,b are said to be independent if
(a,b) € I. Intuitively, two strings are equivalent if one can be obtained from the
other by a sequence of swaps of adjacent independent symbols. Formally, =;
is the smallest binary equivalence relation on X* satisfying cabr =; obar, for
all (a,b) € I and for all strings 0,7 € X*. We shall represent the equivalence
class corresponding to a string o by [0]=,. Such equivalence classes are called
Mazurkiewicz traces in the concurrency literature [Maz87).



Equivalence classes induced by =; correspond to labeled partial orders of a
particular form. A labeled partial order respecting I is a structure P = (V, E, \),
where V' is a finite set of nodes, F is a set of edges over V' such that the reflexive-
transitive closure E* is a partial order over V', and A : V' — X is a labeling of
nodes by terminals such that for all u,v € V,

1. if (u,v) € E, then (A(u), A(v)) ¢ I,
2. if (A(u), A(v)) ¢ I, then either (u,v) € E* or (v,u) € E*.

A linearization o of the labeled partial order P = (V, E, \) is astring 0102 - - - oy
over X' such that there exists an ordering vy vs - - Oy | of the nodes in V' satisfying
(1) o3 = AMw;) for 1 < i < |V, and (2) for all (v;,v;) € E, i < j. We can define a
correspondence between equivalence classes of strings and labeled partial orders.
Namely, given a string ¢ and an independence relation I, there is an algorithm to
construct the labeled partial order P, ; with |o| vertices whose linearizations are
the strings in [o]=,. The details of the algorithm to construct P, r are standard,
and omitted from this abstract.

2.2 Grammar-based compression

In grammar-based compression algorithms for strings, given an input string o,
the algorithm computes a context-free grammar G that generates the singleton
language {o}. The grammar G then serves as a succinct hierarchical represen-
tation of o. From now on, we shall refer to such a grammar as a grammar for
o. Over the years, several interesting grammar-based string compression algo-
rithms have been proposed. Of them, the algorithm Sequitur [NW97] has been
used for compression as well as to gather profiling information from program
executions [Lar99,BL00,GRMO03], and is of particular interest to us. Sequitur is
an online algorithm that greedily constructs a hierarchy out of an input string. It
scans the input from left to right, identifies repeated pairs of adjacent symbols
(digrams) in the representation of the input that it has processed so far, and
replaces them by nonterminals. A grammar rule maps every nonterminal to the
digram it represents.

A good measure of the performance of a grammar-based compression algo-
rithm is the size of the grammar, where the size of a grammar G is defined to be
the sum of the lengths of the right-hand sides of all the rules in G. The optimal
grammar-based compression algorithm needs to find the smallest grammar for
the given input string. Unfortunately, this problem is NP-complete [SS82]. How-
ever, some recent research is aimed at finding approximation algorithms for this
problem: Lehman et al [LS02] find approximation ratios for some previously pro-
posed grammar-based compression algorithms (e.g., the well known LZ78 has an
approximation ratio O((n/log n)%/?)), and prove the hardness of approximating
the smallest grammar beyond a certain constant factor; Charikar et al [CLLT02]
present an algorithm with an approximation ratio O(log(n/g*)), where g* is the
size of the smallest grammar.



2.3 Compression up to equivalence

In this paper, we are interested in generating a small grammar-based repre-
sentation of a given string up to the equivalence induced by an independence
relation. We propose three different methodologies for achieving this, and pose
three different optimization problems that these methods correspond to.

Finding optimal equivalent strings. In our first approach, we find a string
that is equivalent to the input string and can be represented by a small grammar.
The output is the grammar for this string. For example, suppose X' = {a, b, c}
and b and ¢ are independent of each other. Then, the strategy of clustering all
the b’s (and ¢’s) together between every pair of a’s is a good heuristic to increase
compressibility. For instance, abcebacbbe will be rewritten to (ab?c?)? to reduce
the size of the grammar-based representation. The corresponding optimization
problem is as follows. Let C'(o) represent the size of the smallest grammar for
a given string o. Then, given a string ¢ and an independence relation I, the
problem is to find 7 € [o]=, such that C(r) is the minimum of the set {C(o") |
o' € [o]=, }. From now on, we refer to this optimal value C(7) as Cr(o).

Projections and compression. In our second approach, we consider the com-
pression algorithms that project the input string onto a sequence of subsets
of X' such that the original string (up to equivalence) can be recovered from
these projections, and compress the projections separately. In the example with
Y = {a,b,c¢} with b and ¢ independent, we can represent o by two projec-
tions, one onto {a, b} and one onto {a, c}, and compress the two separately (e.g.,
abeccbacbbe will be replaced by the pair (abbabb, acccacc)).

The projection of a string o on a subalphabet X' C X is obtained by erasing
all symbols in o that are not in X', and is represented by o1 X’. Subalphabets
X, Yo, .., X € X cover an independence relation I, if there is a reconstruction
algorithm A such that, for all strings o, given the projections o1 X;, A outputs
some o' € [o]=,.

In this case, the compression methodology is as follows. We first project
the input string o on a set of covering subalphabets. Then we find grammars
for these projections using an approximation algorithm for string compression.
The compressed representation of the string (and the equivalence class) is the
collection of all these grammars. In order to uncompress, we regenerate the
projections from their grammars and use a reconstruction algorithm to generate
a string equivalent to . Formally, the optimization problem is as follows. Given
a o and an independence relation I, find a cover Xy, X, ..., X, for I such that
Yot Cr(o 1 X;) is minimized. Let us denote Y ", Cr(o T X;) for the optimal
cover by C¥(0).

Relabeling, projections, and compression. In our third approach, we allow
relabeling of symbols during projections as long as the original string can be
recovered up to equivalence. Going back to our example with independent b’s



and ¢’s, we can represent a string by a pair, where the first one is a projection
onto {a,b} and the second one is obtained by renaming b to ¢. For instance,
abcbecachbebb can be represented by (abbabbb, ac’ac®). In this example, it is clear
that the original string can be reconstructed up to equivalence, and relabeling
can be exploited to minimize grammar sizes.

A relabeling v is a function from ¥ to X', and we use y(o) to denote the string
obtained from ¢ by replacing each symbol s in ¢ by the corresponding symbol
~v(s). A sequence of subalphabets Xy,Xs,..., %, C X and a corresponding
sequence of relabelings 71,72, . . . Y, are said to cover an independence relation I
if there is a reconstruction algorithm A such that, for all strings o, given renamed
projections «;(c 1 X;), outputs some o' € [o]=,. The optimization problem is
defined as in the previous case. Given a string ¢ and an independence relation
I, find a set of subalphabets X7, X5, ..., X, together with relabeling functions
Y1,72,- - - Ym such that the two sequences cover I, and ZZ’;I Cr(vi(o 1t X)) is
minimized. Let us denote the optimal sum by C7" (o). Note that, by definition,

¥ (o) < CR(0) < Ci(0) < Clo).

3 Compression Algorithms

3.1 Locally greedy algorithm for finding good linearizations.

We first describe an algorithm that takes labeled partial orders as inputs, and
outputs grammars for certain “good” linearizations. Given a string ¢ and in-
dependence relation I, we can first construct the partial order P, ;. Algorithm
of Figure 1 is an online algorithm inspired by Sequitur [NW97] and traverses
the input partial order P from top to bottom. At each step, one of the minimal
nodes (nodes without any incoming edges from unprocessed nodes) is chosen
and removed from P. The choice is made greedily by giving preference to a node
that will create a digram that has already appeared. Its label a is appended to
a list L representing the part of the input already seen. Following Sequitur, we
enforce digram uniqueness on L; that is, if a digram zy occurs at two separate
locations on L, they are to be replaced by a nonterminal. If this digram has not
been seen in the input processed so far, we add a rule A — xy, for some new
nonterminal A, to the grammar.

In our implementation of this algorithm, we maintain a map from digrams
to positions in L. This map is maintained as a hashtable, so that we are able to
match rules in constant time. Changes to the list L — required when a digram
is replaced by a nonterminal — are implemented through low-level pointer op-
erations. At each step we contract one edge of the partial order; we terminate
when there are no edges left to explore. Since the edge relation is the covering
relation of the partial order, there are at most a linear number of edges. If n is
the length of the input string, and & is the width of the partial order P, ; (that
is, the maximum number of pair-wise unordered symbols), then the algorithm
runs in time O(k - n).



input : Labeled partial order P = (V, E, ).

output : Grammar G for some linearization of P.

begin

G :=0.

List of symbols L := [A(w)] for some minimal element w of P. Remove w
from P.

Hashtable of digrams D := §.

repeat

Min := Set of minimal elements of P.

p:= last element appended to L.

if there is v € Min and digram A — uA(v) in D then

Remove v from P. Append ¢ = A(v) to L

Replace the pair pq at the end of L by nonterminal A

If the rule A — pq is not already in G, then add it. In this case
there is a previous unreplaced occurrence of pg pointed to by d in
the hashtable. Replace that as well.

Update D with digrams generated by these changes. If the digram
uniqueness property is found to be violated, repeatedly replace the
violating digrams by nonterminals till there is no repetition.

else

Choose some arbitrary v € Min. Remove v from P.

Add a digram A — pA(v) to D for some new nonterminal A. Make
it “point” to the current last position in L.

Append A(v) to L.

end

until Min = 0.

G := GU{S — L}, where S is a new starting nonterminal.

Output G.

end

Algorithm 1: Top-to-bottom

Consider the labeled partial order P corresponding to the string cabebac with
a and b independent. Let us follow a run of this algorithm on P. The stages of
the algorithm are described in the table in Figure 1. The key step is step 5,
where a is preferred over b as it causes a repeating digram.

3.2 Replace most frequent pair.

Our next algorithm is a greedy offline algorithm that chooses the most frequently
occurring pair of dependent or independent symbols, and replaces this digram by
a nonterminal. Consider a labeled partial order P = (V, E, X). The frequency of
a pair of dependent symbols (p, ¢) is the maximum number of edges of the form
(u,v) with AM(u) = p and A(v) = ¢ such that no two edges share an end-point
(note that sharing of end-points can happen when p = ¢); while the frequency of
a pair of independent symbols (p, g) is the maximum number of pair-wise disjoint




Step|List L Comments

c Only one choice.

ca Symbol a chosen arbitrarily.
cab No other choice.
cabc No other choice.

cabca Choice made to repeat digram ca. Rule A — ca added.
AbAb |[Symbol b appended. Digram Ab repeated. Add rule B — Ab.
BBc End of partial order reached. Add rule S — BBc.

O U W N

Fig. 1. Sample run of the Top-to-bottom Algorithm

sets of nodes of the form {u, v} such that A(u) = p, A(v) = ¢, and neither uE*v
nor vE*u. The contraction of (u,v) € E by a node w is the following operation
on P: remove u,v from V; add w to V; replace (s,t) € E, where ¢t € {u,v} and
s # u, by (s,w); replace (s,t) € E, where s € {u,v} and t # v, by (w,t); and
remove (u,v). For a pair (u,v) of unrelated nodes, the contraction by a node
w is defined similarly: remove u,v from V', add w to V; replace (s,t) € E with
t € {u,v} by (s,w); and replace (s,t) € E with s € {u,v} by (w,t). Finally, we
will modify our definition of the labeling function A a bit so that a labeled partial
order can also have nodes labeled with arbitrary nonterminals. The definitions
of frequency and contraction apply to such nodes also. If such a new node w is
labeled with a new nonterminal A, then A is declared to be dependent on all the
symbols that are dependent on p as well as the symbols dependent on q.

At each step of this algorithm, we identify a pair of symbols (p,q) with the
maximum frequency. Then we add a rule A — pq, for some new nonterminal A,
and contract a disjoint collection of node pairs labeled (p, ¢) by a node labeled A.
Computing the frequency of dependent pairs is straightforward, we simply need
to scan all the edges and maintain a count for every pair of symbols. Computing
the frequency of independent symbols requires more care, we need to make sure
that if a node labeled p is unrelated to two nodes labeled ¢, then only one pair
gets counted to the frequency of (p, ¢). In this case, matching the p-labeled node
with the first possible ¢g-labeled node that is a potential match, is a safe strategy
to maximize the count of disjoint pairs. Note that the resulting grammar is not,
strictly speaking, a string grammar because we are also allowed to introduce
new nonterminals for pairs of independent symbols. Rather, it can be viewed
as a limited form of more general graph grammars ([Eng97]), and hence as a
generalization of the grammar-based string compression approach to a graph
grammar-based approach for compression of partial orders.

Consider again the labeled partial order P corresponding to the string cabcbac
with a and b independent. At the first step, we have to choose a set of disjoint
edges labeled by the same symbol-pairs. We arbitrarily choose the symbol-pair
(a,c) (we could also have chosen (b,c), (¢, a), (a,b) or (c,b), all have frequency
2), add the rule A — ac, and contract. The partial order now becomes the one
corresponding to the string chbAbA. At the next step, we contract the two edges



input : Projections o5, 1 <1i < m, with o; = 61 X;. The following condition
is satisfied: for all (a,b) ¢ I, there is an 4 such that a,b € X;.
output : A string o’ satisfying ¢’ =; 0.

begin

pi+— lforeach1<i<m

Proj, «— {i:a € ¥;} for each a € ¥

70

repeat
Select a € X such that for all ¢ € Proj,, we have p; < |o;| and 0;(pi) = a
pi :=p; + 1 for all ¢ € Proj,,
o'(j) i=a; ji=j +1

until no such a can be selected.

end

Algorithm 2: A reconstruction algorithm

labeled (b, A) and add a rule B — bA. The partial order now becomes a chain
cBB. There is no way to contract further.

3.3 Algorithms using projections

The first step in the algorithms that employ projection is to compute a cover
for the given independence relation. The next theorem identifies a key property
of the cover. (We have been informed that [CP85] contains this result. We pro-
vide a proof here for completeness and because our proof provides an efficient
reconstruction algorthm which we use.)

Theorem 1. ([CP85]) Subalphabets X1, X5, ..., Xy cover an independence re-
lation I iff for all (a,b) ¢ I, there is an i such that a,b € X;.

Proof: (=) Suppose there is a pair of symbols (a,b) ¢ I such that there is no
i with a,b € X;. Then, the projections of the non-equivalent strings ab and ba
will be identical, and hence, reconstruction is impossible.

(<) For this direction, we give a reconstruction algorithm for any set of
subalphabets satisfying the above condition. In Algorithm 2, o (i) represents the
i-th symbol of . The algorithm keeps a current pointer 1 < p; < |o;| for each
projection 1 < i < m. For each projection we advance this pointer from the
beginning to the end. The correctness proof is omitted due to lack of space. =

The reconstruction algorithm, with appropriate book-keeping, can be made
to run in time linear in the size of its input (that is, the sum of the sizes of the
projections). In the context of this theorem, a reasonable strategy is to project on
a set of maximal cliques covering all the edges in the graph for the complement D
of the independence relation. We present two special cases of this methodology.

— The algorithm edge-cover projects on the set of subalphabets {a,b} for
every pair (a,b) in the complement D of the independence relation I. This




algorithm can be optimized by considering only the pairs (a, b) such that the
dependency is realized within the input string o, that is, the partial order
P, 1 contains an edge whose endpoints are labeled with a and 0.

— An interesting special case is when the independence relation is a k-partite
graph: the alphabet X' is partitioned into sets X, ... X} such that two sym-
bols are independent iff they belong to separate partitions. In this case, this
partition makes a natural choice for the clique cover.

3.4 Algorithms with relabeling and projection

If the subalphabets X; and relabelings v; cover an independence relation I, then
for (a,b) ¢ I, there must be an index j such that a,b € X; and v;(a) # v;(b).
That is, a necessary condition for reconstruction is that every pair of dependent
symbols must belong to a projection whose relabeling does not collapse them.
Now, we present an alternative to the covering the dependency graph using
cliques. Given an independence relation I, for every symbol a € X, let X, =
{b€ X | (a,b) ¢ I} be the set of symbols dependent on a. Let # be a special
symbol that is dependent on every symbol, and let v, be the relabeling that
maps a to a and renames all other symbols to #. The strategy star-cover is to
project the input string onto X, and apply the relabeling 7, before applying
the standard string compression. Note that, like the edge-cover algorithm of the
previous section, this strategy also leads to a collection of 2-symbol strings, but
now, we are guaranteed that we have only |¥| projections, one per symbol in X.

Theorem 2. The subalphabets X, and relabelings ~,, for each a € X, cover the
independence relation I.

Proof: The reconstruction algorithm is similar to Algorithm 2. Let o, = v,(c 1
Y.)- As before, we maintain a pointer p, for each projection o,. At every step,
we try to select a symbol a € X such that o,(p,) = a and for each b € X, with
b # a, op(py) = #. If such a symbol a is found, the algorithm outputs a, and
increments all the pointers p, for b € X,. If there are two such symbols, then
they must be independent, and the choice does not matter. [

3.5 Experiments

In this section, we discuss preliminary experimental results for the top-to-bottom
and replace-most-frequent compression algorithms presented earlier. We experi-
mented with two distributed programs shipped as demos with the popular SPIN
verification toolkit [Hol97]. One of them (mobilel) is a model of a cellphone
hand-off strategy, the other (pftp) is a flow control protocol. These models con-
sist of a number of processes communicating through message channels. Now
consider the natural alphabet of send and receive events. There is a natural de-
pendence relation on this alphabet: any send is dependent on the corresponding
receive. Also, the local clock for every process defines a dependence between



MSC size|Sequitur (random linearization)| Top-to-bottom |Replace-most-frequent
20000 13800 5612 4203
40000 24945 9679 7123
60000 35490 13441 12226
80000 45617 16641 22157
100000 55228 19759 -

Fig. 2. Grammar representations constructed by different algorithms: mobilel

MSC size|Sequitur (random linearization)| Top-to-bottom |Replace-most-frequent
20000 7048 4474 3457
40000 12470 7571 5128
60000 17433 10700 12461
80000 22026 13453 15233
100000 27081 15456 -

Fig. 3. Grammar representations constructed by different algorithms: pftp

any two sends or receives that it participates in. Such an independence rela-
tion induces a special subclass of labeled partial orders called message sequence
charts. We made SPIN perform random simulations of pftp and mobilel and
produce message sequence charts (MSCs) of different lengths. These MSCs were
fed as inputs to implementations of algorithms Top-to-bottom and Replace-
most-frequent. We also fed random linearizations of these charts to the string
compression algorithm Sequitur. A performance comparison is described in Fig-
ures 2 and 3. The tables compare average sizes of grammar representations of
MSCs of given lengths. The quadratic-time algorithm Replace-most-frequent did
not terminate within a reasonable time for the longest input.

The above results suggest there is a practical advantage in choosing a lin-
earization judiciously (as opposed to randomly). We experimented with this sep-
aration more, by studying the performance of the Sequitur algorithm on different
linearizations of an MSC outputted by mobilel (Figure 4). These linearizations
are chosen with various “degrees” of arbitrariness. More precisely, while gener-
ating a linearization, we proceed along the lines of the Top-to-bottom algorithm,
but make random choices at some of the steps. Of course, we cannot hope to
generate the entire spectrum of linearizations of a large MSC this way; however,
we do seem to get linearizations nicely covering the space between random and
greedily chosen linearizations. Note that it is very possible that linearizations
with much smaller grammars exist; it is just not easy to find them.

4 Bounds on performance

In this section, we provide some theoretical bounds for the compression problem
and strategies mentioned in the previous section.



MSC size|Size of Sequitur output on different linearizations
20000 5612, 7381, 8909, 11584, 13800
40000 9679, 12303, 18911, 21526, 24945
60000 13441, 20121, 27212, 31443, 35490
80000 16641, 23117, 30235, 39318, 45617
100000 19759, 30257, 38221, 47116, 55228

Fig. 4. Impact of the choice of linearization on Sequitur

We first demonstrate an exponential separation between the optimals C7f
and CF. We encode the sequence (0,1,2,...,2% — 1) in binary as follows. Our
alphabet is ¥ = {#} U (Uj=1,. £{b?,b}}). The special symbol # will separate
two successive numbers in the sequence. The encoding of a number that has 0
or 1 as its j-th bit will have, respectively, b} or b} as its j-th bit. That is, we
consider the string

o = #9692 F#DIDY .. bp#LY b BOH ...

Our independence relation is I = {(b7,b]) : b # b{}. In other words, distinct
b¥-s are independent of each other and are all dependent on #. In any string that
is equivalent to o, the set of symbols between every pair of #’s encodes a distinct
number 0 < n < 2*. This makes such a string incompressible using grammar-
based algorithms; intuitively, every interval between successive #’s contributes
at least one symbol to the grammar. Formally, we show that the application of
the Lempel-Ziv compression algorithm [ZL77] to o compresses it at most by a
factor k. Then we will use a relation between C7(o) and this compressed form
proved by Charikar et al. [CLLT02] to show that Cr(o) is smaller than o by at
most a factor of k. Finally, we show that C¥ (o) is logarithmic in |o]|.

Lemma 1. If 7 =1 0, then LZ77-encoding of T is 2(2*).

Proof: The LZ77 algorithm describes a string w using a sequence s; 2 ...sq of
widgets. Each widget s; is either a symbol of the alphabet of w or of the form
s; = (j,r). Intuitively, the latter means “start at the position j of the string
encoded by s;...s;—1 and read the next r symbols.” More precisely, a widget
(4, r) represents the substring w(j)w(j +1)...w(j +r — 1), assuming the length
of the string represented by s;...s;—1 is at least j.

We show there is no way to encode any consistent ordering of o with fewer
than c2* widgets, for some c. Assume S = s ...5s4 is the LZ77 form for some
ordering 7 of . Then no widget of the form s; = (j,7) in S can encode a
substring containing two or more occurrences of symbol #. This is because the
set of b’s that occurs between each pair of #’s in 7 is unique, and thus there
is no part of s;...s; 1 that one can refer to obtain the same set, irrespective
of how b’s are ordered. Consequently, we can have at most two # in the string
denoted by (j,r), and thus r < 2k. Then the claim holds for ¢ = 1/2. ]



The result of [CLLT02] shows that if A is the length of the LZ77-encoding
of a string o, then A\ < C(0)log|o|. It follows that Cy(o) = §2(2*). Suppose
the edge-cover algorithm will project o onto subalphabets X; 4 = {b¢, #}, where
i€{l,...,k} and d € {0,1}. There are 2k such subalphabets. It can be shown
that each of these projections has a periodic nature and, as a result, a grammar
of size O(k). For instance, the projection on b)) and # is (#b,‘:#)2k_1. This
shows that C¥ (o) = O(k?). Note that the choice of k is arbitrary in the above.
Consequently, we conclude the following theorem:

Theorem 3. For each n, there is an alphabet X', an independence relation I
and a string o such that |o| > n and C;(c) = 2(217/CF(a)).

It is worth noting the exponential separation holds even when the independence
relation is empty, that is, even for compressing ordinary strings. Consider the
string in the above proof. Clearly, ¢ itself cannot be compressed. Now, all symbols
are pair-wise dependent, and there are O(k?) projections. It is easy to verify that
projections onto each pair {b?, b']l-} is periodic and has a grammar of size O(k).
Thus, C?(0) = O(k?).

Now we proceed to give an upper bound for the edge-cover algorithm which,
given a string o, projects it onto each edge (a,b) in the complement D of the
independence relation I. Let these projections be called 71,7, . .., 7. Let C§ (o)
be the sum of C(m;).

Theorem 4. For all strings o and independence relations I, C§(o) < |X|2C¥ (o).

Proof: Consider the projection 7 of the string o on a pair (a,b) of dependent
symbols. In the optimal projection based algorithm, one of the covering sub-
alphabets X; must include the pair (a,b). Let 7 be a string that is equivalent
to o 1 X;. Consider a grammar G for 7. Note that 71 {a, b} equals 7. We can
remove all other terminals from each rule of G to get a grammar for = without
increasing the size of G. Therefore, C(w) < C(7). Hence, C(n) < Cr(o 1 Xj),
and C(m) < C7(0). There are at most |X|? edges in D, and the result follows. m

To compress projections of ¢ onto single pairs of dependent symbols, we can
use any grammar based algorithm, in particular, the algorithm by Charikar et
al [CLL*02], thereby approximating C¥ (o) up to factor |X|?log (|o|/g*), where
g* is the size of the optimal grammar. The bound for the edge-cover strategy is
tight. Suppose X' = {ay,...ax} such that all symbols are dependent. Consider
the string ¢ = (ay - --ag)”. The grammar of ¢ is of size k + log n, while the
grammar for each o1{a;,a;} is of size log n, and thus, C§ (o) is k*log n.

An interesting special case for the clique-cover is when the alphabet is union
of disjoint alphabets X, ... Y} and two symbols are dependent iff they belong
to the same partition X;. In this case, a natural choice for cover is the parti-
tion Xy,... X%. Let C§{(o) denote the sum of C'(o 1 X;). This strategy can be
quite beneficial over compressing the original string. For example, if there are
two independent symbols a and b, then a random string o won’t compress well,
while the two projections onto individual symbols carry the minimal informa-
tion, namely, the number of a’s and number of b’s. As the next theorem shows,



projecting onto cliques can be worse than compressing the original string, or
even an equivalent linearization, by at most by a factor of the number of cliques.

Theorem 5. If the alphabet is a disjoint union of k cliques, then for any string
o, C§(o) < kCr(o).

Proof: The proof is similar to the proof of Theorem 4. Consider any clique X; in
D, let m; = 01X}, and let T be any string equivalent to o. Since all the terminals
in X; depend on each other, one can show that the size of the optimal grammar
for m; is bounded by the size of the optimal grammar for . ]

Again, this bound is tight. Suppose ¥ = {a1,...ax} such that all symbols
are independent (that is, there are k singleton cliques). Consider the string o =
(ay - - ag)"™. The grammar of o is of size k + log n, while the grammar for each
ot{a;} is of size log n, and thus, C{(o) is klog n.

Finally, for the star-cover algorithm that uses both projections and relabeling,
we can show that every relabeled projection v,(c 1 X,) has a grammar of size at
most that of the smallest grammar for any string equivalent to the original.

Theorem 6. For all strings o and independence relations I, for each a € X,

C(ra(ota)) < Ci(o).

5 Conclusions

In this paper, we have formulated and initiated the study of the compression
problem of partially ordered strings. It is worth noting that even for compres-
sion of ordinary strings, the use of projections and relabeling, and the resulting
succinctness of the representation, has not been studied earlier. While we have
shown that projection can lead to exponential succinctness for a class of strings,
it remains to be seen if projections, possibly augmented with relabeling, can be
engineered to lead to practical general compression techniques.

There are many directions for future research. The application to profiling
of executions of concurrent programs, and for visualization large MSCs gener-
ated by tools like SPIN in compact form, both seem promising. A recent paper
applies standard string compression techniques to parallel program executions
[GRMO03], and our techniques can potentially improve their results. Compres-
sion of partially ordered strings can be studied from an information theoretic
perspective. Based on the work we have initiated here, Savari has begun a
study of the graph entropy of such structures and of rewriting strings to normal
forms [Sav03a,Sav03b]. We would also like to sharpen the approximability of the
optimization measures introduced in this paper. In particular, approximability
bounds for the measure Cr, and improving the |¥|? bound for the measure C¥,
are open problems. Finally, it would be interesting to study compression of la-
beled partial orders based on more general classes of graph grammars ([Eng97])
than those implicit in Algorithm 1.

Acknowledgements: Thanks to Serap Savari for discussions and comments.
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