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Programmatic Reinforcement Learning is the study of learning algo-

rithms that can leverage partial symbolic knowledge provided in expressive

high-level domain specific languages. The aim of such algorithms is to learn

agents that are reliable, secure, and transparent. This means that such agents

can be expected to learn desirable behaviors with limited data, while provably

maintaining some essential correctness invariant, and providing insights into

their decision mechanisms which can be understood by humans. Contrasted

with the popular Deep Reinforcement Learning paradigm, where the learnt

policy is represented by a neural network, programmatic representations are

more easily interpreted and more amenable to verification by scalable sym-

bolic methods. The interpretability and verifiability of these policies provides

the opportunity to deploy reinforcement learning based solutions in safety

critical environments. In this dissertation, we formalize the concept of Pro-

grammatic Reinforcement Learning, and introduce algorithms that integrate
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policy learning with principled mechanisms that incorporate domain knowledge.

An analysis of the presented algorithms demonstrates that they posses robust

theoretical guarantees and are capable of impressive performance in challenging

reinforcement learning environments.
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Chapter 1

Introduction

Recent advances in machine learning have created the possibility of a

Software 2.0 revolution, wherein code is generated based on the optimization of

an evaluation criterion. However, a key requirement to real-world deployments

of such software is generating learnt models that can be trusted by society.

Current machine learning techniques rely heavily on Deep Neural Networks

based models, which have significant fundamental drawbacks that make reliable

learning difficult and learnt models susceptible to catastrophic failures. In some

real world deployments of such models, bad outcomes have led to death and

disability, thus eroding the public’s trust in Artificial Intelligence (AI). The

goal of my research is to generate trustworthy AI models, by integrating partial

domain knowledge and experience based neural learning.

One avenue for progress is to combine ideas from formal methods and

machine learning to efficiently build models that are reliable, transparent, and

secure. This means that such systems can be expected to learn desirable behav-

iors with limited data, while provably maintaining some essential correctness

invariant and generating models whose decisions can be understood by humans.

I believe that we can achieve these goals via Neurosymbolic learning, which
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establishes connections between the symbolic reasoning and inductive learning

paradigms of artificial intelligence.

Current machine learning models are dominated by Deep Neural Net-

works (Dnn), because they are capable of leveraging gradient-based algorithms

to optimize a specific objective. However, neural models are considered “black-

boxes” and are often considered untrustworthy due to the following drawbacks:

1. Hard to interpret: this makes these models hard to audit and debug.

2. Hard to formally verify: due to the lack of abstractions in neural models

they are often too large to verify for desirable behavior using automated

reasoning tools.

3. Unreliable: neural models have notoriously high levels of variability, to

the extent that the random initialization of the weights can determine

whether the learner finds a useful model.

4. Lack of domain awareness: neural models lack the ability to bias the

learner with commonsense knowledge about the task or environment.

While these issues are well acknowledged in the ML community, most

existing approaches tackle these problems individually and are unsuited for

creating models that address all four drawbacks simultaneously. For example,

existing interpretability tools do not provide a mechanism to make the network

more amenable to formal verification. Dnn verification techniques suffer scala-

bility issues that reduce their applicability. Known regularization techniques
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often introduce a bias whose effects are hard to interpret or verify. And finally,

domain awareness is sometimes implicitly encoded by pre-training on related

tasks, but this pre-training is computationally expensive and has relatively few

theoretical guarantees.

One promising avenue is to address these four drawbacks simultaneously

by automatically generating Neurosymbolic Models. These models combine

learnt neural models with partial symbolic knowledge expressed via programs

in a Domain Specific Language (Dsl). At a high level, the neural model

can perform learning via gradient-based methods and this information is then

distilled into a constrained programmatic model. The constraints act as a

mechanism to introduce symbolic domain knowledge into the learning process.

The two models can be combined in a variety of ways, which provide a technique

to balance the relative benefits and drawbacks of each. In this thesis, we present

work that establishes that neurosymbolic models can provide a principled

mechanism to combat all four of the above shortcomings of Dnn based models

in the reinforcement learning paradigm.

The intuition behind this work is that structured programs in a high

level Dsl have four key benefits. First, the Dsl can be designed to be

human-readable and is hence more interpretable than a Dnn. Second, due to

the availability of higher-level abstractions these models have parsimonious

representations and are hence more amenable to formal verification techniques

which can reason about the learned models and check consistency with desirable

properties. Third, the Dsl can be used to provide primitives that act as

3



regularizers during learning, hence creating a more reliable model. Finally,

the language can be used to encode commonsense knowledge thus providing a

mechanism to programmatically modify the learner’s inductive bias.

Concretely, we have developed these ideas in the setting of reinforcement

learning where we learned agent policies in high-level interpretable Domain

Specific Languages. These programmatic policies are easy to formally verify

and clear some significant performance bars, including out-performing the

state-of-the-art RL methods on a challenging car racing simulator. A thorough

theoretical analysis, of the neurosymbolic learning approach used to generate

these policies, shows that this approach is generally applicable to various RL

environments.

1.1 Reinforcement Learning

Artificial Intelligence (AI) can be broadly understood as the study of

algorithms that help machines mimic human behavior. Within AI, the sub-field

of Machine Learning (ML) is where machines learn without explicit instructions,

in other words they learn from some form of data without explicit instructions

that dictate their behavior. Reinforcement Learning is the branch of Machine

Learning where we want machines to learn from interactions with the world.

Specifically, in RL we try and communicate our intent in the form of

rewards from the environment and want the machine to learn how to achieve

these rewards. The learner or agent, observes the state of the environment, takes

an action, then observes how the action changed the state of the environment,
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Figure 1.1: Depiction of the RL interaction loop.

and occasionally receives a reward from the environment. This interaction is

depicted in Figure 1.1.

At a very high level, the aim of the entire field of reinforcement learning is

to create learning algorithms that generate optimal policies for RL environments,

as depicted in Figure 1.2. A policy is simply a function that maps states

to actions, and it is considered optimal if it maximizes some notion of an

accumulated reward. A popular choice for maximization is the expected

discounted aggregate reward, as shown in Figure 1.2.

Many techniques have been proposed for a wide variety of environments,

and reinforcement learning in general remains an active area of research. In

this thesis when discussing existing algorithms we will primarily focus on

policy gradient methods. In a nutshell, policy gradient methods optimize the

policy directly, by considering a parametric representation of the policy and
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Figure 1.2: Policy learning in a Markov environment.

then performing gradient ascent with respect to the optimization objective.

The calculation of the gradient is made tractable by the Policy Gradient

Theorem [90]. This theorem simplifies the gradient computation by removing

its dependence on the state distribution induced by the policy.

1.2 Deep Reinforcement Learning

Many recent advances in reinforcement learning have been through

techniques that rely on a Deep Neural Networks (Dnn). The key common

idea in many of these techniques is to represent the policy function via a Dnn,

and then train it end-to-end to optimize the reward objective, as depicted

in Figure 1.3. This has been a fruitful choice because neural networks are
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Figure 1.3: A Dnn used to learn a policy in a RL environment.

universal function approximators, and they are capable of leveraging gradient-

based algorithms to perform optimization efficiently. Recent advances in

GPU accelerated hardware, which can be used to efficiently train large neural

networks, have further improved the performance and applicability of such

approaches.

Deep neural network based policy gradient techniques have been used

very successfully for many applications, and particularly for continuous control

in simulations. These techniques use many innovative mechanisms to incor-

porate neural networks as approximators for various functions in the policy

search process. In this thesis we will not be delving into the details of these

algorithms, and will only use them as experimental baselines, or as modules in
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larger frameworks.

1.3 Programmatic Reinforcement Learning

1

If the car is aligned with 
the axis of the track

then accelerate, 
otherwise slow down

if (s[TrackPos] < 0.011 and s[TrackPos] > �0.011)
then PID�rpm,0.45,3.54,0.03,53.39�(s)
else PID�rpm,0.39,3.54,0.03,53.39�(s)

<latexit sha1_base64="Y0uhhwzDbweC90gW+7Gz6q14d/s="></latexit>

Figure 1.4: An interpretable program
for acceleration, automatically
discovered in our framework.

The Programmatic Reinforce-

ment Learning (Prl) framework aims

to simultaneously tackle the four pri-

mary drawbacks of black-box policies.

In summary, we place syntactic restric-

tions on the policy via a user specified

Dsl. Our goal is to automatically find

a program in this language, which max-

imizes the agent’s expected aggregate

reward in the environment. An example of this approach, is to synthesize

programs that control a car’s acceleration and steering to drive it around a

track. Figure 1.4 shows the kind of high-level program our method finds for

acceleration, when the Dsl provides Propotional-Integral-Derivative (PID)

controllers as primitives in the language. In general, the Dsl is designed to

provide high-level abstractions that are known to be useful for the underlying

domain. The automatically generated programs are hence parsimoniously

represented in a structured programming language, which is similar to how a

human expert would write such code.

A key challenge in Prl is that the space of programs is typically vast and

non-smooth making direct search intractable. Our approach to this question,
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an algorithm called Neurally Directed Program Search (Ndps), uses deep-RL

to compute an initial approximation of the desired program, then uses this

neural net as an “oracle” that guides program synthesis. This technique allows

us to leverage recent advancements in quantitative program synthesis and SMT

solvers.

Neurosymbolic Learning

As the NDPS algorithm requires a neural oracle, it can find performant

policies only when deep-RL techniques are able to find performant policies inde-

pendently. To address this shortcoming, we developed a novel meta-algorithm

called Imitation-Projected Programmatic Reinforcement Learning (Propel),

which is based on mirror descent, program synthesis, and imitation learn-

ing. The Propel framework leverages neurosymbolic learning to generate

programmatic policies, by creating a neurosymbolic policy class which mixes

neural and programmatic policy representations. This allows us to cast our

learning task as optimization in a constrained policy space, and solve this

problem using a “update-and-project” perspective that takes a gradient step

into the unconstrained neurosymbolic space and then projects back onto the

constrained programmatic space. Essentially, the Propel algorithm estab-

lishes a synergistic relationship between deep-RL and program synthesis, using

synthesized programs to regularize deep-RL and using the gradients available

to deep-RL to improve the quality of synthesized programs. This principled

mechanism to create a neurosymbolic learner integrates symbolic knowledge

9



with gradient-based optimization.

The domain knowledge embodied in the programming language acts as

a form of regularization. This allows us to prove that neurosymbolic models can

learn more reliably than traditional deep-RL methods. A thorough theoretical

analysis of Propel characterizes the impact of approximate gradients and

projections, providing promising expected regret bounds and finite-sample

guarantees with the minimal assumption that the projection error is bounded.

This analysis provides confidence that the Propel framework can be reliably

applied to a variety of RL environments.

Thesis Statement:

Programmatic reinforcement learning serves as a principled mechanism

to incorporate partial symbolic knowledge into learning algorithms providing

reliability, interpretability and verifiability.

The remaining document is organized as follows. Chapter 2 discusses

background and related work. Chapter 3 formalizes the programmatic rein-

forcement learning framework. Chapter 4 presents Propel, a mirror-descent

inspired meta-learning algorithm for programmatic reinforcement learning.

Chapter 5 discusses using program synthesis to perform the projection step

in the Propel framework. Chapter 6 presents a theoretical analysis of the

Propel framework and provides insights that can help inform implementation

design decisions. Chapter 7, provides a through empirical evaluation of the

previously presented algorithms. Finally, in Chapter 8 we summarize the

10



research presented in this thesis and highlight some potential future directions

leading to my long-term research goals beyond this dissertation.
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Chapter 2

Background

In this chapter, we review prior work relevant to programmatic rein-

forcement learning specifically. We also discuss some relevant literature from

the broader machine learning and formal methods communities.

2.1 Interpretable Machine Learning.

Many recent efforts in deep learning aim to make deep networks more

interpretable (e.g. [66], [62]). There are three key approaches explored for

interpreting DNNs: i) generate input prototypes in the input domain that are

representatives of the learned concept in the abstract domain of the top-level of

a DNN, ii) explaining DNN decisions by relevance propagation and computing

corresponding representative concepts in the input domain, and iii) Using

symbolic techniques to explain and interpret a DNN. See for example, [38],

[98], [81], [56]. Our work differs from these approaches in that we are replacing

the DRL model with human readable source code, that is programmatically

synthesized to mimic the policy found by the neural network. Working at this

level of abstraction provides a method to apply existing synthesis techniques

to the problem of making DRL models interpretable.
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2.2 Verifiable Machine Learning.

Many recent techniques attack the problem of verifying neural networks

directly, like [49, 43, 44, 50]. These have been used to verify several properties of

DNN-based systems, like airborne collision avoidance systems, autonomous car

controllers, etc. Unlike these techniques, our framework generates interpretable

program source code as output, where we can use traditional symbolic program

verification techniques [51] to prove program properties.

Constrained Policy Learning. Constrained policy learning has seen

increased interest in recent years, largely due to the desire to impose side

guarantees such as stability and safety on the policy’s behavior. Broadly,

there are two approaches to imposing constraints: specifying constraints as

an additional cost function [2, 58], and explicitly encoding constraints into

the policy class [3, 57, 25, 26, 15]. In some cases, these two approaches can

be viewed as dual of each other. For instance, recent work that uses control-

theoretic policies as a functional regularizer [57, 25] can be viewed from the

perspective of both regularization (additional cost) and an explicitly constrained

policy class (a specific mix of neural and control-theoretic policies). We build

upon this perspective to develop the gradient update step in our approach.

[97, 52]
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2.3 Reinforcement Learning Theory

The mirror descent framework has previously used to analyze and design

RL algorithms. For example, Thomas et al. [93] and Mahadevan and Liu [64]

use composite objective mirror descent, or Comid [32], which allows incorpo-

rating adaptive regularizers into gradient updates, thus offering connections

to either natural gradient RL [93] or sparsity inducing RL algorithms [64].

Unlike in our work, these prior approaches perform projection into the same

native, differentiable representation. Also, the analyses in these papers do

not consider errors introduced by hybrid representations and approximate

projection operators. However, one can potentially extend our approach with

versions of mirror descent, e.g., Comid, that were considered in these efforts.

RL using Imitation Learning. There are two ways to utilize imitation

learning subroutines within RL. First, one can leverage limited-access or sub-

optimal experts to speed up learning [73, 24, 20, 87, 97, 52]. Second, one can

learn over two policy classes (or one policy and one model class) to achieve

accelerated learning compared to using only one policy class [67, 23, 88, 22].

Our approach has some stylistic similarities to previous efforts [67, 88] that use

a richer policy space to search for improvements before re-training the primary

policy to imitate the richer policy. One key difference is that our primary policy

is programmatic and potentially non-differentiable. A second key difference is

that our theoretical framework takes a functional gradient descent perspective

— it would be interesting to carefully compare with previous analysis techniques

14



to find a unifying framework.
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Chapter 3

Programmatic Policy Learning

Deep reinforcement learning (Drl) has had a massive impact on the

field of machine learning and has led to remarkable successes in the solution of

many challenging tasks [65, 83, 84]. While neural networks have been shown

to be very effective in learning good policies, the expressivity of these models

makes them difficult to interpret or to be checked for consistency for some

desired properties, and casts a cloud over the use of such representations in

safety-critical applications.

3.1 Domain Specific Languages

Motivated to overcome this problem, we propose a learning framework,

called Programmatically Reinforcement Learning (Prl), that is based on the

idea of learning policies that are represented in a human-readable language.

The Prl framework is parameterized on a high-level Domain Specific Language

(Dsl) for policies. A problem instance in Prl is similar to a one in traditional

Rl, but also includes a syntactically defined set of programmatic policies in

this language. The objective is to find a program in this set with maximal

long-term reward.
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Figure 3.1: Programmatic policy representation for the reinforcement learning
problem.

Intuitively, the policy programming language characterizes what we

consider “interpretable”. In addition to interpretability, the language allows

for three key additional benefits. First, the language can be used to implicitly

encode the learner’s inductive bias that will be used for generalization. Second,

the language can allow effective pruning of undesired policies to make the

search for a good policy more efficient. Finally, learning a policy program

in the language allows us to use symbolic program verification techniques to

reason about the learnt policies and check consistency with certain desirable

properties.
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3.2 Programmatic Policy Representations

We model a reinforcement learning setting as a Partially Observable

Markov Decision Process (Pomdp) M = (S,A,O, T (·|s, a), Z(·|s), r, in, �).

Here, S is the set of (environment) states. A is the set of actions that the

learning agent can perform, and O is the set of observations about the current

state that the agent can make. An agent action a at the state s causes the

environment state to change probabilistically, and the destination state follows

the distribution T (·|s, a). The probability that the agent makes an observation

o at state s is Z(o|s). The reward that the agent receives on performing action

a in state s is given by r(s, a). in is the initial distribution over environment

states. Finally, 0 < � < 1 is a real constant that is used to define the agent’s

aggregate reward over time.

A history of M is a sequence h = o0, a0, . . . , ak�1, ok, where oi and ai

are, respectively, the agent’s observation and action at the i-th time step. Let

HM be the set of histories in M . A policy is a function ⇡ : HM ! A that maps

each history as above to an action ak. For each policy, we can define a set of

histories that are possible when the agent follows ⇡. We assume a mechanism

to simulate the POMDP and sample histories that are possible under a policy.

The policy also induces a distribution over possible values of the reward Ri

that the agent receives at the i-th time step. The agent’s expected aggregate

reward under ⇡ is given by R(⇡) = E[
P

1

i=0 �
iRi]. The goal in reinforcement

learning is to discover a policy ⇡⇤ that maximizes R(⇡).
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A Programming Language for Policies. The distinctive feature of Prl

is that policies here are expressed in an interpretable programming language.

Such a language can be defined in many ways. However, to facilitate search

through the space of programs expressible in the language, it is desirable for

the language to express computations as compactly and canonically as possible.

Because of this, we propose to express parameterized policies using a functional

programming language based on a small number of side-effect-free combinators.

It is known from prior work on program synthesis [34] that such languages offer

natural advantages in program synthesis.

We collectively refer to observations and actions, as well as auxiliary

integers and reals generated during computation, as atoms. Our language

considers two kinds of data: atoms and sequences of atoms (including histories).

We assume a finite set of basic operators over atoms that is rich enough to

capture all common operations on observations and actions.

Figure 3.2 shows the syntax of this language. The nonterminals E and

↵ represent expressions that evaluate to atoms and histories, respectively. We

sketch the semantics of the various language constructs below.

• c ranges over a universe of numerical constants, and Op is a basic operator

• [ ] is the empty sequence, hd returns the element in an input sequence

representing the most recent time point, and tl returns the prefix of the

sequence up to (and excluding) this element. “push e a” evaluates the
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E ::= c | x | Op(E1, . . . , Ek) | hd ↵ |
fold (�x1, x2. E1) ↵

↵ ::= x | [ ] | tl ↵1 | push E ↵1 | map (�x. E) ↵1 |
filter (�x. E) ↵1

Figure 3.2: Syntax of the policy language. Here, E and ↵ represent expressions
that evaluate to atoms and histories.

atom-valued expression e, then puts the result on top of the history to

which a evaluates;

• map, fold, filter are the standard higher-order combinators over se-

quences with the semantics:

map(f, [e1, . . . , ek]) = [f(e1), . . . , f(ek)]

fold(f, [e1, . . . , ek], e) = f(ek, f(ek�1, ...f(e1, e)))

filter(f, [e1, . . . , ek]) = [ef1 , . . . , efj ] where for all 1  i  j, f(efi) is true;

• x, x1, x2 are variables. As usual, unbound variables are assumed to be

inputs.

The language comes with a type system that distinguishes between different

types of atoms, and ensures that language constructs are used consistently.

The type system can catch common errors, such as applying hd to the empty

sequence. This type system identifies a set of expressions whose inputs are

histories and outputs are actions. These expressions are known as programmatic

policies, or simply programs.
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Sketches. Discovering an optimal programmatic policy from the vast

space of legitimate programs is typically impractical without some prior on the

shape of target policies. Prl allows the specification of such priors through

instance-specific syntactic models called sketches.

We define a sketch as a grammar of expressions over atoms and sequences

of atoms, obtained by restricting the grammar in Figure 3.2. Just as we defined

the set of programmatic policies permitted in Prl, we can define the set of

programs permitted by a sketch S. We denote this set by [[S]].

Prl. The Prl problem can now be stated as follows. Suppose we are

given a Pomdp M and a sketch S. Our goal is to find a program e⇤ 2 [[S]]

with optimal reward:

e⇤ = argmax
e2[[S]]

R(e). (3.1)

Example. Now we consider a concrete example of Prl, suppose our goal

is to make a (simulated) car complete laps on a track. We want to do so by

learning policies for tasks like steering and acceleration. Suppose we know that

we could get well-behaved policies by choosing between a set of Proportional

Integral Derivative (PID) controllers. However, we do not know the gains

for these controllers, and neither do we know the conditions under which we

switch from one controller to another. We can express this knowledge using
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the following sketch:

E ::= C | if B then E1 else E2

C ::= c1 + c2 ⇤ (✏� hd(xi)) + c3 ⇤ fold(+, xi) +

c4 ⇤ (hd(tl(xi))� hd(xi))

B ::= c0 + c1 ⇤ hd(x1) + · · · + ck ⇤ hd(xk) > 0 |

B1 or B2 | B1 and B2.

Here, E represents programs permitted by the sketch. The program’s

input is a history h. We assume that this sequence is split into a set of sequences

{h1, . . . , hk}, where hi is the sequence of observations from the i-th sensor. The

sensor’s most recent reading is given by hd(hi), and its second most recent

reading is hd(tl(hi)). The operators +, �, ⇤, >, and if-then-else are as usual.

The program (optionally) evaluates a set of boolean conditions (B) over the

current sensor readings, then chooses among a set of PID Controllers (C). In

the expression C for PID Controllers, ✏ is a known constant and represents the

target for the controller, and the operator fold is used to encode the integral

term. The symbols ci are real-valued parameters.

The program in Figure 3.3 shows the body of a policy for acceleration

that the Ndps algorithm finds given this sketch. The program has been

"decompiled", using standard PL techniques, into a program from a language

with higher readability. The program’s input consists of histories for 29 sensors;

however, only two of them, TrackPos and RPM, are actually used in the program.

While the sensor TrackPos (for the position of the car relative to the track
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axis) is used to decide which controller to use, only the RPM sensor is needed to

calculate the acceleration.

let P = hd(hRPM), I = fold(+, hRPM), D = (hd(tl(hRPM))� hd(hRPM))
in

if (0.001� hd(hTrackPos) > 0) and (0.001 + hd(hTrackPos) > 0)
then 1.96 + 4.92 ⇤ (0.44� P ) + 0.89 ⇤ I + 49.79 ⇤D
else 1.78 + 4.92 ⇤ (0.40� P ) + 0.89 ⇤ I + 49.79 ⇤D

Figure 3.3: A programmatic policy for acceleration, automatically discovered
by the Ndps algorithm.

3.3 Neurosymbolic Policy Representations

Finding programmatic policies is a challenging problem because the

policy space defined by a reasonably expressive Dsl is typically vast and non-

smooth. Finding good policies in such spaces typically requires combinatorial

optimization techniques that are more computationally expensive than the

gradient based techniques used by Drl. The success of deep neural networks

based policy learning techniques inspires us to leverage neurosymbolic policy

representations to learn better programmatic representations. We discuss such

techniques in later chapters, a schematic diagram of neurosymbolic policy

representations is depicted in Figure 3.4.

Suppose we have a programmatic policy, ⇡ : S ! A, and we want to

combine it with a neural policy, f✓, defined on the same state and action space.

23



Figure 3.4: Depiction of Neurosymbolic policy learning.

One possible mechanism to combine these policies is:

h(s) =
1

1 + �
f✓(s) +

�

1 + �
⇡(s) (3.2)

where we assume a continuous, convex action space. We refer to h(s) as the

neurosymbolic policy. For a fixed programmatic policy ⇡, the neurosymbolic

policy is equivalent to placing a functional regularizer on the neural policy,

f✓, with regularizer weight �. Intuitively, � should be large when the neural

controller is highly uncertain, and it should decrease as we become more

confident in the neural controller. Details about the effects of this regularization,

along with an algorithm to automatically tune �, and theoretical results on

the resulting bias-variance trade-off are presented in [25].
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Chapter 4

Imitation Projected Programmatic Policies

A growing body of work [95, 11, 99] investigates reinforcement learning

(RL) approaches that represent policies as programs in a symbolic language,

e.g., a domain-specific language for composing control modules such as PID

controllers [6]. Short programmatic policies offer many advantages over neural

policies discovered through deep RL, including greater interpretability, better

generalization to unseen environments, and greater amenability to formal

verification. These benefits motivate developing effective approaches for learning

such programmatic policies.

However, programmatic reinforcement learning (Prl) remains a chal-

lenging problem, owing to the highly structured nature of the policy space.

Recent state-of-the-art approaches employ program synthesis methods to imi-

tate or distill a pre-trained neural policy into short programs [95, 11]. However,

such a distillation process can yield a highly suboptimal programmatic pol-

icy — i.e., a large distillation gap — and the issue of direct policy search for

programmatic policies also remains open.

In this section, we present Propel (Imitation-Projected Programmatic

Reinforcement Learning), a new learning meta-algorithm for Prl, as a response
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Figure 4.1: Depicting the Propel framework.

to this challenge. The design of Propel is based on three insights that

enables integrating and building upon state-of-the-art approaches for policy

gradients and program synthesis. First, we view programmatic policy learning

as a constrained policy optimization problem, in which the desired policies

are constrained to be those that have a programmatic representation. This

insight motivates utilizing constrained mirror descent approaches, which take a

gradient step into the unconstrained policy space and then project back onto

the constrained space. Second, by allowing the unconstrained policy space

to have a mix of neural and programmatic representations, we can employ

well-developed deep policy gradient approaches [91, 60, 78, 79, 25] to compute

the unconstrained gradient step.

Third, we define the projection operator using program synthesis via

imitation learning [95, 11], in order to recover a programmatic policy from the

unconstrained policy space. Our contributions can be summarized as:
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• We present Propel, a novel meta-algorithm that is based on mirror

descent, program synthesis, and imitation learning, for Prl.

• On the theoretical side, we show how to cast Propel as a form of

constrained mirror descent. We provide a thorough theoretical analy-

sis characterizing the impact of approximate gradients and projections.

Further, we prove results that provide expected regret bounds and finite-

sample guarantees under reasonable assumptions.

• On the practical side, we provide a concrete instantiation of Propel and

evaluate it in the challenging car-racing domain Torcs [96]. The experi-

ments show significant improvements over state-of-the-art approaches for

learning programmatic policies.

4.1 Programmatic Representations as Constraints

The problem of programmatic reinforcement learning (Prl) consists

of a Markov Decision Process (Mdp) M and a programmatic policy class ⇧.

The definition of M = (S,A, P, c, p0, �) is standard [90], with S being the

state space, A the action space, P (s0|s, a) the probability density function of

transitioning from a state-action pair to a new state, c(s, a) the state-action cost

function, p0(s) a distribution over starting states, and � 2 (0, 1) the discount

factor. A policy ⇡ : S ! A (stochastically) maps states to actions. We focus

on continuous control problems, so S and A are assumed to be continuous
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spaces. The goal is to find a programmatic policy ⇡⇤ 2 ⇧ such that:

⇡⇤ = argmin
⇡2⇧

J(⇡), where: J(⇡) = E

"
1X

i=0

�ic(si, ai ⌘ ⇡(si))

#
, (4.1)

with the expectation taken over the initial state distribution s0 ⇠ p0, the policy

decisions, and the transition dynamics P . One can also use rewards, in which

case (4.1) becomes a maximization problem.

Programmatic Policy Class. A programmatic policy class ⇧ consists

of policies that can be represented parsimoniously by a (domain-specific)

programming language. Recent work [95, 11, 99, 92] indicates that such

policies can be easier to interpret and formally verify than neural policies, and

can also be more robust to changes in the environment.

In this section, we consider two concrete classes of programmatic policies.

The first, a simplification of the class considered in Verma et al. [95], is defined

by the modular, high-level language in Figure 4.2. This language assumes a

library of parameterized functions �✓ representing standard controllers, for

instance Proportional-Integral-Derivative (PID) [8] or bang-bang controllers

[14]. Programs in the language take states s as inputs and produce actions

a as output, and can invoke fully instantiated library controllers along with

predefined arithmetic, boolean and relational operators. The second, “lower-

level" class, from Bastani et al. [11], consists of decision trees that map states

to actions.

Example. Consider the problem of learning a programmatic policy,

in the language of Figure 4.2, that controls a car’s accelerator in the Torcs
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⇡(s) ::= a

| Op(⇡1(s), . . . , ⇡k(s))

| if b then ⇡1(s) else ⇡2(s)

| �✓(⇡1(s), . . . , ⇡k(s))

b ::= �(s)

| BOp(b1, . . . , bk)

Figure 4.2: A high-level syntax for programmatic policies, inspired by [95]. A
policy ⇡(s) takes a state s as input and produces an action a as output. b
represents boolean expressions; � is a boolean-valued operator on states; Op is
an operator that combines multiple policies into one policy; BOp is a standard
boolean operator; and �✓ is a “library function" parameterized by ✓.

if (s[TrackPos] < 0.011 and s[TrackPos] > �0.011)

then PIDhRPM,0.45,3.54,0.03,53.39i(s) else PIDhRPM,0.39,3.54,0.03,53.39i(s)

Figure 4.3: A programmatic policy for acceleration in Torcs [96], automatically
discovered by Propel. s[TrackPos] represents the most recent reading from
sensor TrackPos.
car-racing environment [96]. Figure 4.3 shows a program in our language

for this task. The program invokes PID controllers PIDhj,✓P ,✓I ,✓Di, where j

identifies the sensor (out of 29, in our experiments) that provides inputs to

the controller, and ✓P , ✓I , and ✓D are respectively the real-valued coefficients

of the proportional, integral, and derivative terms in the controller. We note

that the program only uses the sensors TrackPos and RPM. While TrackPos

(for the position of the car relative to the track axis) is used to decide which

controller to use, only the RPM sensor is needed to calculate the acceleration.

Learning Challenges. Learning programmatic policies in the contin-
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uous RL setting is challenging, as the best performing methods utilize policy

gradient approaches [91, 60, 78, 79, 25], but policy gradients are hard to com-

pute in programmatic representations. In many cases, ⇧ may not even be

differentiable. For our approach, we only assume access to program synthesis

methods that can select a programmatic policy ⇡ 2 ⇧ that minimizes imitation

disagreement with demonstrations provided by a teaching oracle. Because

imitation learning tends to be easier than general RL in long-horizon tasks [89],

the task of imitating a neural policy with a program is, intuitively, significantly

simpler than the full programmatic RL problem. This intuition is corroborated

by past work on programmatic RL [95], which shows that direct search over

programs often fails to meet basic performance objectives.

4.2 Neurosymbolic Policies via Mirror Descent

To develop our approach, we take the viewpoint of (4.1) being a con-

strained optimization problem, where ⇧ ⇢ H resides within a larger space

of policies H. In particular, we will represent H ⌘ ⇧ � F using a mixing of

programmatic policies ⇧ and neural polices F . Any mixed policy h ⌘ ⇡ + f

can be invoked as h(s) = ⇡(s) + f(s). In general, we assume that F is a good

approximation of ⇧ (i.e., for each ⇡ 2 ⇧ there is some f 2 F that approximates

it well), which we formalize in Section 6.3.

We can now frame our constrained learning problem as minimizing (4.1)

over ⇧ ⇢ H, that alternate between taking a gradient step in the general

space H and projecting back down onto ⇧. This “lift-and-project” perspec-
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Figure 4.4: Neurosymbolic policy learning via mirror descent in the Propel
framework.

tive motivates viewing our problem via the lens of mirror descent [69]. In

standard mirror descent, the unconstrained gradient step can be written as

h hprev � ⌘rHJ(hprev) for step size ⌘, and the projection can be written as

⇡  argmin
⇡02⇧ D(⇡0, h) for divergence measure D.

Our approach, Imitation-Projected Programmatic Reinforcement Learn-

ing (Propel), is outlined in Algorithm 1 (also see Figure 4.1). Propel is

a meta-algorithm that requires instantiating two subroutines, Update and

Project, which correspond to the standard update and projection steps,

respectively. Propel can be viewed as a form of functional mirror descent

with some notable deviations from vanilla mirror descent.

Neurosymbolic policy learning via this framework is depicted in Fig-
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Algorithm 1 Imitation-Projected Programmatic Reinforcement Learning
(Propel)

1: Input: Programmatic & Neural Policy Classes: ⇧ & F .
2: Input: Either initial ⇡0 or initial f0
3: Define joint policy class: H ⌘ ⇧� F //h ⌘ ⇡ + f defined as

h(s) = ⇡(s) + f(s)
4: if given initial f0 then
5: ⇡0  Project(f0) //program synthesis via imitation learning
6: end if
7: for t = 1, . . . , T do
8: ht  UpdateF(⇡t�1, ⌘) //policy gradient in neural policy space with

learning rate ⌘
9: ⇡t  Project⇧(ht) //program synthesis via imitation learning

10: end for
11: Return: Policy ⇡T

ure 4.4. Here we start with a neurosymbolic policy which consists of a randomly

initialized neural component and a programmatic component from the pro-

grammatic policy class. We first take gradient updates of the neural component

which improves the overall neurosymbolic policy. This improved policy is then

projected back to the programmatic class (via program synthesis), to find a

more performant programmatic component. These steps can be repeated until

convergence, or a fixed computational budget.

UpdateF . Since policy gradient methods are well-developed for neural

policy classes F (e.g., [60, 78, 79, 41, 31, 25]) and non-existent for programmatic

policy classes ⇧, Propel is designed to leverage policy gradients in F and avoid

policy gradients in ⇧. Algorithm 2 shows one instantiation of UpdateF . Note

that standard mirror descent takes unconstrained gradient steps in H rather

than F , and we discuss this discrepancy between UpdateH and UpdateF in
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Section 6.3.

Algorithm 2 UpdateF : neural policy gradient for mixed policies
1: Input: Neural Policy Class F .
2: Input: Reference programmatic policy: ⇡
3: Input: Step size: ⌘.
4: Input: Regularization parameter: �
5: Initialize neural policy: f0 //any standard randomized initialization
6: for j = 1, . . . ,m do
7: fj  fj�1 � ⌘�rFJ(⇡ + �fj�1) //using DDPG [60], TRPO [78], etc.,

holding ⇡ fixed
8: end for
9: Return: h ⌘ ⇡ + �fm

Project⇧. Projecting onto ⇧ can be implemented using program

synthesis via imitation learning, i.e., by synthesizing a ⇡ 2 ⇧ to best imitate

demonstrations provided by a teaching oracle h 2 H. Recent work [95, 11, 99]

has given practical heuristics for this task for various programmatic policy

classes. Algorithm 3 shows one instantiation of Project⇧ (based on DAgger

[75]). One complication that arises is that finite-sample runs of such imitation

learning approaches only return approximate solutions and so the projection is

not exact. We characterize the impact of approximate projections in Section

6.3.

4.3 Summary and Practical Considerations

The Propel approach is at the intersection of three strands of work:

(i) program synthesis, (ii) learning policies for sequential decision making,

and (iii) constrained learning using approaches such as mirror descent. We
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Algorithm 3 Project⇧: program synthesis via imitation learning
1: Input: Programmatic Policy Class: ⇧.
2: Input: Oracle policy: h
3: Roll-out h on environment, get trajectory: ⌧0 = (s0, h(s0), s1, h(s1), . . .)
4: Create supervised demonstration set: �0 = {(s, h(s))} from ⌧0
5: Derive ⇡0 from �0 via program synthesis //e.g., using methods in [95, 11]
6: for k = 1, . . . ,M do
7: Roll-out ⇡k�1, creating trajectory: ⌧k
8: Collect demonstration data: �0 = {(s, h(s))|s 2 ⌧k}
9: �k  �0 [ �k�1 //DAgger-style imitation learning [75]

10: Derive ⇡k from �k via program synthesis //e.g., using methods in [95, 11]
11: end for
12: Return: ⇡M

Figure 4.5: The main components of the Propel framework and their interac-
tions.
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have presented Propel, a meta-algorithm based on mirror descent, program

synthesis, and imitation learning, for programmatic reinforcement learning

(Prl). The interactions of these components is depicted in Figure 4.5. In

Section 6.3 we present theoretical convergence results for Propel, developing

novel analyses to characterize approximate projections and biased gradients

within the mirror descent framework. In Section 7.3 we validate Propel

empirically, and show that it can discover interpretable, verifiable, generalizable,

performant policies and significantly outperform the state of the art in Prl.

The central idea of Propel is the use of imitation learning and combi-

natorial methods in implementing a projection operation for mirror descent,

with the goal of optimization in a functional space that lacks gradients. While

we have developed Propel in an RL setting, this idea is not restricted to RL

or even sequential decision making.

In practice, we often employ multiple gradient steps before taking a

projection step (as also described in Algorithm 2), because the step size of

individual (stochastic) gradient updates can be quite small. Another issue that

arises in virtually all policy gradient approaches is that the gradient estimates

can have very high variance [91, 53, 41]. We utilize low-variance policy gradient

updates by using the reference ⇡ as a proximal regularizer in function space

[25].

For the projection step (Algorithm 3), in practice we often retain all

previous roll-outs ⌧ from all previous projection steps. It is straightforward to

query the current oracle h to provide demonstrations on the states s 2 ⌧ from
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previous roll-outs, which can lead to substantial savings in sample complexity

with regards to executing roll-outs on the environment, while not harming

convergence.
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Chapter 5

Projection via Program Synthesis

One of the key technical challenges of enabling Prl is based on the fact

that the space of policies permitted in an instance can be vast and nonsmooth,

making optimization extremely challenging. To address this, we propose a new

algorithm called Neurally Directed Program Synthesis (Ndps). The algorithm

first uses Drl to compute a neural policy network that has high performance,

but may not be expressible in the policy language. This network is then used

to direct a local search over programmatic policies. In each iteration of this

search, we maintain a set of “interesting” inputs, and update the program so as

to minimize the distance between its outputs and the outputs of the neural

policy (an “oracle”) on these inputs. The set of interesting inputs is updated

as the search progresses. This strategy, inspired by imitation learning [75, 77],

allows us to perform direct policy search in a highly nonsmooth policy space.

We evaluate our approach in the task of learning to drive a simulated car

in the Torcs car-racing environment [96]. Experiments demonstrate that Ndps

is able to find interpretable policies that, while not as performant as the policies

computed by Drl, pass some significant performance bars. Specifically, in

Torcs, our policy syntax allows an unbounded set of programs with branches
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guarded by unknown conditions, each branch representing a proportional-

integral-derivative (PID) controller [7] with unknown gains. The policy we

obtain is able to perform the challenging task of successfully completing a lap

of the race, and the use of the neural oracle is key to doing so. Our results

also suggest that a well-designed sketch can serve as a regularizer. Due to

constraints imposed by the sketch, the policies for Torcs that Ndps learns

lead to smoother trajectories than the corresponding neural policies, and can

tolerate greater noise. The policies are also more easily transferred to new

domains, in particular race tracks not seen during training. Finally, we show,

using several properties, that the programmatic policies that we discover are

amenable to verification using off-the-shelf symbolic techniques.

5.1 Program Synthesis Overview

Program synthesis is the problem of automatically searching for a

program within a language that fits a given specification [40]. Recent approaches

to the problem have leveraged symbolic knowledge about program structure [35],

satisfiability solvers [86, 45], and meta-learning techniques [68, 70, 28, 10] to

generate interesting programs in many domains [4, 71, 5]. In most prior work,

the specification is a logical constraint on the input/output behavior of the

target program. However, there is also a growing body of work that considers

program synthesis modulo optimality objectives [16, 21, 72], often motivated

by machine learning tasks [46, 42, 68, 94, 33, 30, 95, 11, 99]. Synthesis of

programs that imitates an oracle has been considered in both the logical [45]
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and the optimization [95, 11, 99] settings. The projection step in Propel

builds on this prior work. While our current implementation of this step is

entirely symbolic, in principle, the operation can also utilize contemporary

techniques for learning policies that guide the synthesis process [68, 10, 82, 59].

Neural Program Synthesis and Induction. Many recent efforts use

neural networks for learning programs. These efforts have two flavors. In neural

program induction, the goal is to learn a network that encodes the program

semantics using internal weights. These architectures typically augment neural

networks with differentiable computational substrates such as memory (Neural

Turing Machines [39]), modules (Neural RAM [55]) or data-structures such

as stacks [47], and formulate the program learning problem in an end-to-

end differentiable manner. In neural program synthesis, the architectures

generate programs directly as outputs using multi-task transfer learning (e.g.

RobustFill [29], DeepCoder [10], Bayou [68], Near [80]), where the

network weights are used to guide the program search in a Dsl. There have

also been some recent approaches to use reinforcement learning for learning

to search programs in DSLs [18, 1]. Our approach falls in the category of

program synthesis approaches where we synthesize policies in a policy language.

However, many of these techniques could also be used in the projection step of

the Propel framework.
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Figure 5.1: Schematic of programmatic policy learning via the Ndps algorithm.

5.2 Neurally Directed Program Search

The Ndps algorithm is a direct policy search that is guided by a

neural “oracle”. Searching over policies is a standard approach in reinforcement

learning. However, the non-smoothness of the space of programmatic policies

poses a fundamental challenge to the use of such an approach in Prl. For

example, a conceivable way of solving the search problem would be to define a

neighborhood relation over programs and perform local search. However, in

practice, the objective R(e) of such a search can vary irregularly, leading to

poor performance.

In contrast, Ndps starts by using Drl to compute a neural policy
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oracle eNN for the given environment. This policy is an approximation of the

programmatic policy that we seek to find. To a first approximation, Ndps is a

local search over programmatic policies that seeks to find a program e⇤ that

closely imitates the behavior of eNN . The main intuition here is that distance

from eNN is a simpler objective than the reward function R(e), which aggregates

rewards over a lengthy time horizon. This approach can be seen to be a form

of imitation learning [77]. Figure 5.1 shows a schematic representation of this

learning algorithm.

The distance between eNN and the estimate e of e⇤ in a search iteration

is defined as

d(eNN , e) =
X

h2H

ke(h)� eNN (h)k

where H is a set of “interesting” inputs (histories) and k·k is a suitable norm.

During the iteration, we search the neighborhood of e for a program e0 that

minimizes this distance. At the end of the iteration, e0 becomes the new

estimate for e⇤.

Input Augmentation. One challenge in the algorithm is that under the

policy e, the agent may encounter histories that are not possible under eNN ,

or any of the programs encountered in previous iterations of the search. For

example, while searching for a steering controller, we may arrive at a program

that, under certain conditions, steers the car into a wall, an illegal behavior

that the neural policy does not exhibit. Such histories would be irrelevant to

the distance between eNN and e if the set H were constructed ahead of time
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by simulating eNN , and never updated. This would be unfortunate as these

are precisely the inputs on which the programmatic policy needs guidance.

Our solution to this problem is input augmentation, or periodic updates

to the set H. More precisely, after a certain number of search steps for a fixed

set H, and after choosing the best available synthesized program for this set,

we sample a set of additional histories by simulating the current programmatic

policy, and add these samples to H.

Algorithm 4 Neurally Directed Program Search
Input: Neural policy eNN , POMDP M , sketch S
H create_histories(eNN ,M)
e initialize(eNN ,H,M,S)
R collect_reward(e,M)
repeat
(e0, R0) (e, R)
H update_histories(e, eNN ,M,H)
E  neighborhood_pool(e)
e argmin

e02E

P
h2H
ke0(h)� eNN (h)k

R collect_reward(e,M)
until R0 � R
Output: e0

We show pseudocode for Ndps in Algorithm 4. The inputs to the

algorithm are a Pomdp M , a neural policy eNN for M that serves as an oracle,

and a sketch S. The algorithm first samples a set of histories of eNN using

the procedure create_histories. Next it uses the routine initialize to

generate the program that is the starting point of the policy search. Then

the procedure collect_reward calculates the expected aggregate reward R(e)

(described in Section 3.2), by simulating the program in the Pomdp.
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From this point on, Ndps iteratively updates its estimate e of the

target program, as well as its estimate H of the set of interesting inputs

used for distance computation. To do the former, Ndps uses the procedure

neighborhood_pool to generate a space of programs that are structurally

similar to e, then finds the program in this space that minimizes distance

from eNN . The latter task is done by the routine update_histories, which

uses some heuristics to pick interesting inputs in the trajectory of the learned

program and then obtains the corresponding actions from the oracle for those

inputs. Intuitively, the distribution of the states in H is initially the oracle’s

state distribution, which subsequently gets augmented with the states visited

by the learned program e, but the action always comes from the oracle. This

process goes on until the iterative search fails to improve the estimated reward

R of e.

The subroutines used in the above description can be implemented

in many ways. Now we elaborate on our implementation of the important

subroutines of Ndps.

The optimization step. The search for a program e0 at minimal distance

from the neural oracle can be implemented in many ways. The approach we use

has two steps. First, we enumerate a set of program templates — numerically

parameterized programs — that are structurally similar to e and are permitted

by the sketch S, giving priority to shorter templates. Next, we find optimal

parameters for the enumerated templates using Bayesian optimization [85].
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The initialization step. The performance of Ndps turns out to be

quite sensitive to the choice of the program that is the starting point of the

search. Our implementation of the initialization routine initialize starts

by enumerating a pool of candidate program templates that are permitted by

S, giving priority to shorter templates. Next, the histories in H are used to

optimize the parameter choices (using Bayesian optimization) and to create a

list of the best candidate programs, based on how well the programs imitate

the actions of the oracle. Finally, initialize simulates the programs in the

POMDP and returns the program that achieves the highest reward.

The template generation. The initialize routine is given a sketch S,

in a context-free grammar (CFG) notation, from which it generates a candidate

program templates in two steps. First, syntactically correct ‘sentences’ are

randomly generated from the CFG. Next, the holes for the sensors (xi) are

filled by randomly sampling from the set of available sensors. This process is

repeated to create a pool of distinct program templates. There is an implicit

prior in the template generation that encourages the production of compact

programs ie. programs with a small number of parameters.

5.3 Distillation into Decision Trees

The Propel framework provides the user the flexibility to choose a

Dsl that finds the best balance of expressiveness vs program search efficiency.

More expressive languages create larger programmatic classes, thus making
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the projection step via program synthesis more computationally expensive. In

contrast, lower level representations, while easier to project into, provide less

interpretable policies, that generalize poorly, are harder to verify, and lack

mechanisms to include partial domain knowledge.

Among recent state-of-the-art approaches to learning programmatic

policies, Viper [11] learns decision tree-based policies. Both Ndps and Viper

rely on imitating a fixed (pre-trained) neural policy oracle, and can be viewed

as degenerate versions of Propel that only run Lines 4-6 in Algorithm 1. In

our experimental evaluations we consider a version of the Propel framework

where the programmatic class is the space of all regression trees, similar to

Viper but in continuous control environments. Comparisons of this class

with policies generated in the CFG described above demonstrate the trade-offs

between choosing a more expressive policy class vs a comparatively low-level

representation.

Lower-level representations like regression trees can be viewed as degen-

erate versions of the Dsl described in Figure 4.2 because they lack the ability

to include used defined “library functions” in the learnt programs, and are

restricted to ’if-then-else’ statements and output actions. However, this defines

a more restricted program search space and it is therefore less computationally

expensive to apply the projection operation. For the empirical evaluations we

use the CART [17] algorithm to learn regression trees that mimic a neural

oracle, with input augmentation performed as in the Ndps algorithm. The

theoretical analysis of Propel is not strictly dependent on the structure of
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the programmatic policy class, as long as the the assumptions detailed in

Section 6.3 are valid.
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Chapter 6

Theoretical Analysis

In this chapter we present a theoretical analysis of the Propel frame-

work. We start by viewing Propel through the lens of online learning in

function space, independent of the specific parametric representation. This start

point yields a convergence analysis of Algorithm 1 under generic approximation

errors. We then analyze the issues of policy class representation in Sections

6.2.2 and 6.2.3, and connect Algorithms 2 & 3 with the overall performance,

under some simplifying assumptions. In particular, Section 6.2.3 characterizes

the update error in a possibly non-differentiable setting.

6.1 Motivation

In this section we discuss some of the key terms used in the theoretical

analysis presented in this chapter, and their connections to the practical

implementations discussed in Chapter 7. As we will see later, it is sometimes

hard to verify if all the assumptions made for the theoretical analysis hold for

a given domain and programmatic class. However, despite this gap between

theory and practice, the analysis presented in this chapter can provide important

insights and help inform design choices when applying the Propel framework
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to novel environments and applications.

The theoretical analysis in this chapter is devoted to two key properties

of the Propel framework. The first provides an expected regret bound for the

programmatic policies returned by Algorithm 1, and the second studies the end-

to-end learning performance from finite samples. The expected regret bound

provides an upper bound of the expected loss of the learnt policies from the loss

of the optimal programmatic policy, in terms of the projection error and bias-

variance of the gradient estimates. The finite sample analysis provides insight in

the relative trade-offs of spending effort in obtaining more accurate projections

versus more reliable gradient estimates, the two main computationally expensive

components of the Propel framework. Taken together, these results provide

insights into the convergence behavior of Algorithm 1.

The theoretical analysis is made under some simplifying assumptions

about the policy spaces H,⇧,and F and the behavior of the loss function J .

Here ⇧ is the space of programmatic policies, F is the space of neural policies,

and H is the space of all policies that can be formed by combining a neural

and a programmatic policy. All these policy spaces can be embedded into an

ambient policy space, which is the vector space of all functions from the set

of States (S) to the set of Actions (A). Since we are primarily interested in

applications to continuous control, we can view this as the function space from

Rn to Rm, for some n and m.

To analyze the behavior of the proposed algorithms, we consider func-

tionals over the policies (which are functions from S to A). A functional is
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a rule that associates a number with a function, in our case this means it is

a mapping from policies to the reals. A generalization of the concept of the

derivative (for functions) is required to study the properties of the functionals.

A standard choice for this generalization is the Fréchet functional gradient.

This generalization (defined in Section 6.2) maps many of the properties of

standard gradients to functional gradients, and provides the required framework

to systematically study the variations of the underlying policy functions.

One of the key assumptions required for the theoretical analysis is that

J is convex and Fréchet differentiable on H. For an arbitrary environment

and programmatic class, it may not be possible to verify this assumption.

Furthermore, in the absence of this assumption, examples can be constructed

that violate the theoretical guarantees presented in this chapter. For reasonably

expressive programmatic classes, and the type of loss functions that are required

for most environments, we believe that this assumption is usually true. Even in

cases where the assumption cannot be verified, the insights from the theoretical

results can be used to guide design choices in the implementation.

The assumptions that J is also differentiable on the restricted subspace

F and that F is dense in H, is somewhat easier to justify, since neural networks

are universal function approximators. However, for any specific implementation

of the Propel framework, we will usually need to set an upper bound on

the depth and width of the neural networks. This means that in practice

this assumption may be violated if our neural policy class is not sufficiently

large. Once again, while the specific theoretical guarantees might not hold
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for a particular implementation, the design decisions could benefit from the

insights provided by the theorems.

6.2 Background and Results

We consider ⇧ and F to be subspaces of an ambient policy space

U , which is a vector space equipped with inner product h·, ·i, induced norm

kuk =
p
hu, ui, dual norm kvk

⇤
= sup{hv, ui| kuk  1}, and standard scaling

& addition: (au + bv)(s) = au(s) + bv(s) for a, b 2 R and u, v 2 U . The

cost functional of a policy u is J(u) =
R
S
c(s, u(s))dµu(s), where µu is the

distribution of states induced by u. The joint policy class is H = ⇧� F , by

H = {⇡ + f |8⇡ 2 ⇧, f 2 F}.1 Note that H is a subspace of U , and inherits

its vector space properties. Without affecting the analysis, we simply equate

U ⌘ H for the remainder of the Chapter.

We assume that J is convex in H, which implies that subgradient @J(h)

exists (with respect to H) [12]. Where J is differentiable, we utilize the notion of

a Fréchet gradient. Recall that a bounded linear operator r : H 7! H is called

a Fréchet functional gradient of J at h 2 H if lim
kgk!0

J(h+g)�J(h)�hrJ(h),gi
kgk

= 0.

By default, r (or rH for emphasis) denotes the gradient with respect to H,

whereas rF defines the gradient in the restricted subspace F .

1
The operator � is not a direct sum, since ⇧ and F are not orthogonal.
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6.2.1 Propel as (Approximate) Functional Mirror Descent

For our analysis, Propel can be viewed as approximating mirror descent

in (infinite-dimensional) function space over a convex set ⇧ ⇢ H.2 Similar to

the finite-dimensional setting [69], we choose a strongly convex and smooth

functional regularizer R to be the mirror map. From the approximate mirror

descent perspective, for each iteration t:

1. Obtain a noisy gradient estimate: brt�1 ⇡ rJ(⇡t�1)

2. UpdateH(⇡) in H space: rR(ht) = rR(⇡t�1)� ⌘ brt�1

(Note UpdateH 6= UpdateF)

3. Obtain approximate projection:

⇡t = ProjectR

⇧(ht) ⇡ argmin
⇡2⇧ DR(⇡, ht)

DR(u, v) = R(u) � R(v) � hrR(u), u � vi is a Bregman divergence. Tak-

ing R(h) = 1
2 khk

2 will recover projected functional gradient descent in L2-

space. Here Update becomes ht = ⇡t�1 � ⌘ brJ(⇡t�1), and Project solves

for argmin
⇡2⇧ k⇡ � htk2. While we mainly focus on this choice of R in our

experiments, note that other selections of R lead to different Update and

Project operators (e.g., minimizing KL divergence if R is negative entropy).

The functional mirror descent scheme above may encounter two addi-

tional sources of error compared to standard mirror descent [69]. First, in the

stochastic setting (also called bandit feedback [36]), the gradient estimate brt

2⇧ can be convexified by considering randomized policies, as stochastic combinations of

⇡ 2 ⇧ (cf. [58]).
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may be biased, in addition to having high variance. One potential source of

bias is the gap between UpdateH and UpdateF . Second, the Project step

may be inexact. We start by analyzing the behavior of Propel under generic

bias, variance, and projection errors, before discussing the implications of

approximating UpdateH and Project⇧ by Algs. 2 & 3, respectively. Let the

bias be bounded by �, i.e.,
���E[brt|⇡t]�rJ(⇡t)

���
⇤

 � almost surely. Similarly

let the variance of the gradient estimate be bounded by �2, and the projection

error norm k⇡t � ⇡⇤

t
k  ✏. We state the expected regret bound below; more

details and a proof appear in Section 6.3.

Theorem 6.2.1 (Expected regret bound under gradient estimation and pro-

jection errors). Let ⇡1, . . . , ⇡T be a sequence of programmatic policies returned

by Algorithm 1, and ⇡⇤ be the optimal programmatic policy. Choosing learning

rate ⌘ =
q

1
�2 (

1
T
+ ✏), we have the expected regret over T iterations:

E
"
1

T

TX

t=1

J(⇡t)

#
� J(⇡⇤) = O

 
�

r
1

T
+ ✏+ �

!
. (6.1)

The result shows that error ✏ from Project and the bias � do not

accumulate and simply contribute an additive term on the expected regret.3

The effect of variance of gradient estimate decreases at a
p

1/T rate. Note that

this regret bound is agnostic to the specific Update and Project operations,

and can be applied more generically beyond the specific algorithmic choices

used in this thesis.

3
Other mirror descent-style analyses, such as in [88], lead to accumulation of errors over

the rounds of learning T . One key difference is that we are leveraging the assumption of

convexity of J in the (infinite-dimensional) function space representation.

52



6.2.2 Finite-Sample Analysis under Vanilla Policy Gradient Up-
date and DAgger Projection

Next, we show how certain instantiations of Update and Project

affect the magnitude of errors and influence end-to-end learning performance

from finite samples, under some simplifying assumptions on the Update step.

For this analysis, we simplify Alg. 2 into the case UpdateF ⌘ UpdateH. In

particular, we assume programmatic policies in ⇧ to be parameterized by a

vector ✓ 2 Rk, and ⇡ is differentiable in ✓ (e.g., we can view ⇧ ⇢ F where F is

parameterized in Rk). We further assume the trajectory roll-out is performed

in an exploratory manner, where action is taken uniformly random over finite

set of A actions, thus enabling the bound on the bias of gradient estimates via

Bernstein’s inequality. The Project step is consistent with Alg. 3, i.e., using

DAgger [74] under convex imitation loss, such as `2 loss. We have the following

high-probability guarantee:

Theorem 6.2.2 (Finite-sample guarantee). At each iteration, we perform

vanilla policy gradient estimate of ⇡ (over H) using m trajectories and, use

DAgger algorithm to collect M roll-outs for the imitation learning projection.

Setting the learning rate ⌘ =

r
1
�2

�
1
T
+ H

M
+
q

log(T/�)
M

�
, after T rounds of the

algorithm, we have that:
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1

T

TX

t=1

J(⇡t)� J(⇡⇤)  O

0

@�

s
1

T
+

H

M
+

r
log(T/�)

M

1

A

+O

 
�

r
log(Tk/�)

m
+

AH log(Tk/�)

m

!

holds with probability at least 1 � �, with H being the task horizon, A the

cardinality of action space, �2 the variance of policy gradient estimates, and k

the dimension ⇧’s parameterization.

The expanded result and proof are included in Section 6.3. The proof

leverages previous analysis from DAgger [75] and the finite sample analysis of

vanilla policy gradient algorithm [48]. The finite-sample regret bound scales

linearly with the standard deviation � of the gradient estimate, while the

bias, which is the very last component of the RHS, scales linearly with the

task horizon H. Note that the standard deviation � can be exponential in

task horizon H in the worst case [48], and so it is important to have practical

implementation strategies to reduce the variance of the Update operation.

While conducted in a stylized setting, this analysis provides insight in the

relative trade-offs of spending effort in obtaining more accurate projections

versus more reliable gradient estimates.

6.2.3 Closing the gap between the gradient estimates

Our functional mirror descent analysis rests on taking gradients in H:

UpdateH(⇡) involves estimating rHJ(⇡) in the H space. On the other hand,
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Algorithm 2 performs UpdateF(⇡) only in the neural policy space F . In

either case, although J(⇡) may be differentiable in the non-parametric ambient

policy space, it may not be possible to obtain a differentiable parametric

programmatic representation in ⇧. In this section, we discuss theoretical

motivations to addressing a practical issue: How do we define and approximate

the gradient rHJ(⇡) under a parametric representation? To our knowledge, we

are the first to consider such a theoretical question for reinforcement learning.

Defining a consistent approximation of rHJ(⇡). The idea in

UpdateF(⇡) (Line 8 of Alg. 1) is to approximate rHJ(⇡) by rFJ(f), which

has a differentiable representation, at some f close to ⇡ (under the norm).

Under appropriate conditions on F , we show that this approximation is valid.

Proposition 6.2.3. Assume that (i) J is Fréchet differentiable on H, (ii) J

is also differentiable on the restricted subspace F , and (iii) F is dense in H

(i.e., the closure F = H). Then for any fixed policy ⇡ 2 ⇧, define a sequence

of policies fk 2 F , k = 1, 2, . . .), that converges to ⇡: limk!1 kfk � ⇡k = 0.

We then have limk!1 krFJ(fk)�rHJ(⇡)k⇤ = 0.

Since the Fréchet gradient is unique in the ambient space H, 8k we have

rHJ(fk) = rFJ(fk) ! rHJ(⇡) as k ! 1 (by Proposition 6.2.3). We thus

have an asymptotically unbiased approximation of rHJ(⇡) via differentiable

space F as: rFJ(⇡) , rHJ(⇡) , limk!1rFJ(fk).4 Connecting to the result

4
We do not assume J(⇡) to be differentiable when restricting to the policy subspace ⇧,

i.e., r⇧J(⇡) may not exist under policy parameterization of ⇧.
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from Theorem 6.2.1, let �2 be an upper bound on the policy gradient estimates

in the neural policy class F , under an asymptotically unbiased approximation

of rHJ(⇡), the expected regret bound becomes E
h
1
T

P
T

t=1 J(⇡t)
i
� J(⇡⇤) =

O
⇣
�
q

1
T
+ ✏
⌘
.

Bias-variance considerations of UpdateF(⇡) To further theoreti-

cally motivate a practical strategy for UpdateF(⇡) in Algorithm 2, we utilize

an equivalent proximal perspective of mirror descent [13], where UpdateH(⇡)

is equivalent to solving for h0 = argmin
h2H

⌘hrHJ(⇡), hi+DR(h, ⇡).

Proposition 6.2.4 (Minimizing a relaxed objective). For a fixed programmatic

policy ⇡, with sufficiently small constant � 2 (0, 1), we have that

min
h2H

⌘hrHJ(⇡), h)i+DR(h, ⇡)  min
f2F

J
�
⇡ + �f

�
� J(⇡) + hrJ(⇡), ⇡i (6.2)

Thus, a relaxed UpdateH step is obtained by minimizing the RHS

of (6.2), i.e., minimizing J(⇡ + �f) over f 2 F . Each gradient descent

update step is now f 0 = f � ⌘�rFJ(⇡t + �f), corresponding to Line 5 of

Algorithm 2. For fixed ⇡ and small �, this relaxed optimization problem

becomes regularized policy optimization over F , which is significantly easier.

Functional regularization in policy space around a fixed prior controller ⇡ has

demonstrated significant reduction in the variance of gradient estimate [25], at

the expense of some bias. The below expected regret bound summarizes the

impact of this increased bias and reduced variance, with details included in

Section 6.3.
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Proposition 6.2.5 (Bias-variance characterization of UpdateF). Assuming

J(h) is L-strongly smooth over H, i.e., rHJ(h) is L-Lipschitz continuous,

approximating UpdateH by UpdateF per Alg. 2 leads to the expected regret

bound: E
h
1
T

P
T

t=1 J(⇡t)
i
� J(⇡⇤) = O

⇣
��
q

1
T
+ ✏+ �2L2

⌘
.

Compared to the idealized unbiased approximation in Proposition 6.2.3,

the introduced bias here is related to the inherent smoothness property of cost

functional J(h) over the joint policy class H, i.e., how close J(⇡ + �f) is to its

linear under-approximation J(⇡) + hrHJ(⇡),�fi around ⇡.

6.3 Details and Proofs

We formally define an ambient control policy space U to be a vector

space equipped with inner product h·, ·i : U ⇥ U 7! R, which induces a norm

kuk =
p
hu, ui, and its dual norm defined as kvk

⇤
= sup{hv, ui| kuk  1}.

While multiple ways to define the inner product exist, for concreteness we

can think of the example of square-integrable stationary policies with hu, vi =
R
S
u(s)v(s)ds. The addition operator + between two policies u, v 2 U is defined

as (u + v)(s) = u(s) + v(s) for all state s 2 S. Scaling �u + v is defined

similarly for scalar �,.

The cost functional of a control policy u is defined as

J(u) =

Z
1

0

c(s(⌧), u(⌧))d⌧, or J(u) =

Z

S

c(s, u(s))dµu(s),

where µu is the distribution of states induced by policy u. This latter example

is equivalent to the standard notion of value function in reinforcement learning.
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Separate from the parametric representation issues, both programmatic

policy class ⇧ and neural policy class F , and by extension - the joint policy

class H, are considered to live in the ambient vector space U . We thus have

a common and well-defined notion of distance between policies from different

classes.

We make an important distinction between differentiability of J(h) in

the ambient policy space (non-parametric), versus differentiability in param-

eterization (parametric). For example, if ⇧ is a class of decision-tree based

policy, policies in ⇧ may not be differentiable under representation. However,

policies ⇡ 2 ⇧ might still be differentiable when considered as points in the

ambient vector space U .

We will use the following standard notion of gradient and differentiability

from functional analysis:

Definition 6.3.1 (Subgradients). The subgradient of J at h, denoted @J(h),

is the non-empty set {g 2 H|8j 2 H : hj � h, gi+ J(h)  J(j)}

Definition 6.3.2 (Fréchet gradient). A bounded linear operator r : H 7! H is

called Fréchet functional gradient of J at h 2 H if lim
kgk!0

J(h+g)�J(h)�hrJ(h),gi
kgk

= 0

The notions of convexity, smoothness and Bregman divergence are

analogous to finite-dimensional setting:

Definition 6.3.3 (Strong convexity). A differentiable function R is ↵�strongly

convex w.r.t norm k·k if R(y) � R(x) + hrR(x), y � xi+ ↵

2 ky � xk2
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Definition 6.3.4 (Lipschitz continuous gradient smoothness). A differentiable

function R is LR�strongly smooth w.r.t norm k·k if

krR(x)�rR(y)k
⇤
 LR kx� yk .

Definition 6.3.5 (Bregman Divergence). For a strongly convex regularizer R,

DR(x, y) = R(x)�R(y)� hrR(y), x� yi is the Bregman divergence between

x and y (not necessarily symmetric).

The following standard result for Bregman divergence will be useful:

Lemma 6.3.1. [13] For all x, y, z we have the identity

hrR(x)�rR(y), x� zi = DR(x, y) +DR(z, x)�DR(z, y).

Since Bregman divergence is non-negative, a consequence of this identity is that

DR(z, x)�DR(z, y)  hrR(x)�rR(y), z � xi.

6.3.1 Expected Regret Bound under Noisy Policy Gradient Esti-
mates and Projection Errors

In this section, we show regret bound for the performance of the sequence

of returned programs ⇡1, . . . , ⇡T of the algorithm. The analysis here is agnostic

to the particular implementation of algorithm 2 and algorithm 3.

Let R be a ↵�strongly convex and LR�smooth functional with respect

to norm k·k on H. The steps from algorithm 1 can be described as follows.

• Initialize ⇡0 2 ⇧. For each iteration t:
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1. Obtain a noisy estimate of the gradient brJ(⇡t�1) ⇡ rJ(⇡t�1)

2. Update in the H space: rR(ht) = rR(⇡t�1)� ⌘ brJ(⇡t�1)

3. Obtain approximate projection ⇡t :

⇡t = ProjectR

⇡
(ht) ⇡ argmin

⇡2⇧
DR(⇡, ht).

This procedure is an approximate functional mirror descent scheme under

bandit feedback. We will develop the following result.

In the statement below, D is the diameter on ⇧ with respect to defined

norm k·k (i.e., D = sup k⇡ � ⇡0k). LJ is the Lipschitz constant of the functional

J on H. �, �2 are the bound on the bias and variance of the gradient estimate

at each iteration, respectively. ↵ and LR are the strongly convex and smooth

coefficients of the functional regularizer R. Finally, ✏ is the bound on the

projection error with respect to the same norm k·k.

Theorem 6.3.2 (Regret bound of returned policies). Let ⇡1, . . . , ⇡T be a

sequence of programmatic policies returned by algorithm 1 and ⇡⇤ be the optimal

programmatic policy. We have the expected regret bound:

E
"
1

T

TX

t=1

J(⇡t)

#
� J(⇡⇤)  LRD2

⌘T
+

✏LRD

⌘
+

⌘(�2 + L2
J
)

↵
+ �D

In particular, choosing the learning rate ⌘ =
q

1
T +✏

�2 , the expected regret is

simplified into:

(6.3)

E
"
1

T

TX

t=1

J(⇡t)

#
� J(⇡⇤) = O

 
�

r
1

T
+ ✏+ �

!
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Proof. At each round t, let rt = E[brt|⇡t] be the conditional expectation of the

gradient estimate. We will use the shorthand notation rt = rJ(⇡t). Denote

the upper-bound on the bias of the estimate by �t, i.e.,
��rt �rt

��
⇤
 �t

almost surely. Denote the noise of the gradient estimate by ⇠t = rt � brt, and

�2
t
= E

⇥ ���brt �rt

���
2

⇤

⇤
is the variance of gradient estimate brt.

The projection operator is ✏�approximate in the sense that

��⇡t � ProjectR

⇧(ft)
�� =

��� \Project
R

⇧(ht)� ProjectR

⇧(ht)
���  ✏

with some constant ✏, which reflects the statistical error of the imitation

learning procedure. This projection error in general is independent of the

choice of function classes ⇧ and F . We will use the shorthand notation

⇡⇤

t
= ProjectR

⇧(ft) for the true Bregman projection of ht onto ⇧.

Due to convexity of J over the space H (which includes ⇧), we have for

all ⇡ 2 ⇧:

J(⇡t)� J(⇡)  hrt, ⇡t � ⇡i

We proceed to bound the RHS, starting with bounding the inner product where
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the actual gradient is replaced by the estimated gradient.

hbrt, ⇡t � ⇡i = 1

⌘t
hrR(⇡t)�rR(ht+1), ⇡t � ⇡i (6.4)

=
1

⌘t

�
DR(⇡, ⇡t)�DR(⇡, ht+1) +DR(⇡t, ht+1)

�
(6.5)

 1

⌘t

�
DR(⇡, ⇡t)�DR(⇡, ⇡

⇤

t+1)�DR(⇡
⇤

t+1, ht+1) +DR(⇡t, ht+1)
�

(6.6)

=
1

⌘t

�
DR(⇡, ⇡t)�DR(⇡, ⇡t+1)| {z }

telescoping

+DR(⇡, ⇡t+1)�DR(⇡, ⇡
⇤

t+1)| {z }
projection error

(6.7)

�DR(⇡
⇤

t+1, ht+1) +DR(⇡t, ht+1)| {z }
relative improvement

�
(6.8)

Equation (6.4) is due to the gradient update rule in F space. Equation (6.5) is

derived from definition of Bregman divergence. Equation (6.6) is due to the

generalized Pythagorean theorem of Bregman projection

DR(x, y) � DR(x,ProjectR

⇧(x)) +DR(ProjectR

⇧(x), y).

The RHS of equation (6.6) are decomposed into three components that will be

bounded separately.

Bounding projection error. By lemma (6.3.1) we have

DR(⇡, ⇡t+1)�DR(⇡, ⇡
⇤

t+1)  hrR(⇡t+1)�rR(⇡⇤

t+1), ⇡ � ⇡t+1i (6.9)


��rR(⇡t+1)�rR(⇡⇤

t+1)
�� k⇡ � ⇡t+1k⇤ (6.10)

 LR

��⇡t+1 � ⇡⇤

t+1

��D  ✏LRD (6.11)

Equation (6.10) is due to Cauchy–Schwarz. Equation (6.11) is due to Lipschitz

smoothness of rR and definition of ✏�approximate projection.
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Bounding relative improvement. This follows standard argument from

analysis of mirror descent algorithm.

DR(⇡t, ht+1)�DR(⇡
⇤

t+1, ht+1) = R(⇡t)�R(⇡⇤

t+1) + hrR(ht+1), ⇡
⇤

t+1 � ⇡ti
(6.12)

 hrR(⇡t), ⇡t � ⇡⇤

t+1i �
↵

2

��⇡⇤

t+1 � ⇡t

��2
⇤
+ hrR(ht+1), ⇡

⇤

t+1 � ⇡ti (6.13)

= �⌘thbrt, ⇡
⇤

t+1 � ⇡ti �
↵

2

��⇡⇤

t+1 � ⇡t

��2 (6.14)

 ⌘2
t

2↵

���brt

���
2

⇤

 ⌘2
t

↵
(�2

t
+ L2

J
) (6.15)

Equation (6.13) is from the ↵�strong convexity property of regularizer R.

Equation (6.14) is by definition of the gradient update. Combining the bounds

on the three components and taking expectation, we thus have

E
h
hbrt, ⇡t � ⇡i

i
 1

⌘t

✓
DR(⇡, ⇡t)�DR(⇡, ⇡t+1) + ✏LRD +

⌘2
t

↵
(�2

t
+ L2

J
)

◆

(6.16)

Next, the difference between estimated gradient brt and actual gradient rt

factors into the bound via Cauchy-Schwarz:

E
h
hrt � brt, ⇡t � ⇡i

i

���rt � E[brt]

���
⇤

k⇡t � ⇡k  �tD (6.17)

The results can be deduced from equations (6.16) and (6.17).

Unbiased gradient estimates. For the case when the gradient es-

timate is unbiased, assume the variance of the noise of gradient estimates is

bounded by �2, we have the expected regret bound for all ⇡ 2 ⇧

E
"
1

T

TX

t=1

J(⇡t)

#
� J(⇡)  LRD2

⌘T
+

✏LRD

⌘
+

⌘(�2 + L2
J
)

↵
(6.18)

63



here to clarify, LR is the smoothness coefficient of regularizer R (i.e., the gradient

of R is LR-Lipschitz, LJ is Lipschitz constant of J , D is the diameter of ⇧

under norm k·k, �2 is the upper-bound on the variance of gradient estimates,

and ✏ is the error from the projection procedure (i.e., imitation learning loss).

We can set learning rate ⌘ =
q

1
T +✏

�2 to observe that the expected regret

is bounded by O(�
q

1
T
+ ✏).

Biased gradient estimates. Assume that the bias of gradient estimate

at each round is upper-bounded by �t  �. Similar to before, combining

inequalities from (6.16) and (6.17), we have

E
"
1

T

TX

t=1

J(⇡t)

#
� J(⇡)  LRD2

⌘T
+

✏LRD

⌘
+

⌘(�2 + L2
J
)

↵
+ �D (6.19)

Similar to before, we can set learning rate ⌘ =
q

1
T +✏

�2 to observe that on the

expected regret is bounded by O(�
q

1
T
+ ✏+ �). Compared to the bound on

(6.18), in the biased case, the extra regret incurred per bound is simply a

constant, and does not depend on T .

6.3.2 Finite-Sample Analysis

In this section, we provide overall finite-sample analysis for Propel

under some simplifying assumptions. We first consider the case where exact

gradient estimate is available, before extending the result to the general case of

noisy policy gradient update. Combining the two steps will give us the proof

for the following statement:
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Theorem 6.3.3 (Finite-sample guarantee). At each iteration, we perform

vanilla policy gradient estimate of ⇡ (over H) using m trajectories and use

DAgger algorithm to collect M roll-outs. Setting the learning rate

⌘ =

s
1

�2

� 1
T

+
H

M
+

r
log(T/�)

M

�
,

after T rounds of the algorithm, we have that

1

T

TX

t=1

J(⇡t)� J(⇡⇤)  O

0

@�

s
1

T
+

H

M
+

r
log(T/�)

M

1

A

+O

 
�

r
log(Tk/�)

m
+

AH log(Tk/�)

m

!

holds with probability at least 1��, with H the task horizon, A the cardinality of

action space, �2 the variance of policy gradient estimates, and k the dimension

⇧’s parameterization.

Exact gradient estimate case. Assuming that the policy gradients

can be calculated exactly, it is straight-forward to provide high-probability

guarantee for the effect of the projection error. We start with the following

result, adapted from [74] for the case of projection error bound. In this version

of DAgger, we assume that we only collect a single (state, expert action) pair

from each trajectory roll-out. Result is similar, with tighter bound, when

multiple data points are collected along the trajectory.

Lemma 6.3.4 (Projection error bound from imitation learning procedure).

Using DAgger as the imitation learning sub-routine for our Project operator
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in algorithm 3, let M be the number of trajectories rolled-out for learning, and

H be the horizon of the task. With probability at least 1� �, we have

DR(⇡, ⇡
⇤)  eO(1/M) +

2`max(1 +H)

M
+

r
2`max log(1/�))

M

where ⇡ is the result of Project, ⇡⇤ is the true Bregman projection of h

onto ⇧, and `max is the maximum value of the imitation learning loss function

DR(·, ·)

The bound in lemma 6.3.4 is simpler than previous imitation learning

results with cost information ([73, 74]. The reason is that the goal of the

Project operator is more modest. Since we only care about the distance

between the empirical projection ⇡ and the true projection ⇡⇤, the loss objective

in imitation learning is simplified (i.e., this is only a regret bound), and we

can disregard how well policies in ⇧ can imitate the expert h, as well as the

performance of J(⇡) relative to the true cost from the environment J(h).

A consequence of this lemma is that for the number of trajectories at

each round of imitation learning M = O( log 1/�
✏2

)+O(H
✏
), we have DR(⇡t, ⇡⇤

t
)  ✏

with probability at least 1 � �. Applying union bound across T rounds of

learning, we obtain the following guarantee (under no gradient estimation error)

Proposition 6.3.5 (Finite-sample Projection Error Bound). To simplify the

presentation of the result, we consider LR, D, L,↵ to be known constants. Using

DAgger algorithm to collect M = O
⇣

log T/�
✏2

⌘
+O

�
H

✏

�
roll-outs at each iteration,
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we have the following regret guarantee after T rounds of our main algorithm:

1
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J(⇡t)� J(⇡⇤)  O

✓
1

⌘T
+

✏

⌘
+ ⌘

◆

with probability at least 1� �. Consequently, setting

⌘ =

s
1

T
+

H

M
+

r
log(T/�)

M
,

we have that

1

T

TX

t=1

J(⇡t)� J(⇡⇤)  O

0

@

s
1

T
+

H

M
+

r
log(T/�)

M

1

A

with probability at least 1� �

Note that the dependence on the time horizon of the task is sub-linear.

This is different from standard imitation learning regret bounds, which are

often at least linear in the task horizon. The main reason is that our comparison

benchmark ⇡⇤ does live in the space ⇧, whereas for DAgger, the expert policy

may not reside in the same space.

Noisy gradient estimate case. We now turn to the issue of estimating

the gradient of rJ(⇡). We make the following simplifying assumption about

the gradient estimation:

• The ⇡ is parameterized by vector ✓ 2 Rk (such as a neural network). The

parameterization is differentiable with respect to ✓ (Alternatively, we can

view ⇧ as a differentiable subspace of F , in which case we have H = F)
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• At each Update loop, the policy is rolled out m times to collect the

data, each trajectory has horizon length H

• For each visited state s ⇠ dh, the policy takes a uniformly random action

a. The action space is finite with cardinality A.

• The gradient rh✓ is bounded by B

The gradient estimate is performed consistent with a generic policy gradient

scheme, i.e.,

brJ(✓) = A

m

HX

i=1

mX

j=1

r⇡✓(a
j

i
|sj

i
, ✓) bQj

i

where bQj

i
is the estimated cost-to-go [91].

Taking uniform random exploratory actions ensures that the samples

are i.i.d. We can thus apply Bernstein’s inequality to obtain the bound between

estimated gradient and the true gradient. Indeed, with probability at least

1� �, we have that the following bound on the bias component-wise:
���brJ(✓)�rJ(✓)

���
1

 � when m �
(2�2 + 2AHB �

3 ) log
k

�

�2

which leads to similar bound with respect to k·k
⇤

(here we leverage the equiva-

lence of norms in finite dimensional setting):

���rt � brt

���
⇤

 � when m = O

 
(�2 + AHB�) log k

�

�2

!

Applying union bound of this result over T rounds of learning, and combining

with the result from proposition (6.3.5), we have the following finite-sample

guarantee in the simplifying policy gradient update.
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Proposition 6.3.6 (Finite-sample Guarantee under Noisy Gradient Updates

and Projection Error). At each iteration, we perform policy gradient estimate

using m = O
⇣

(�2+AHB�) log Tk
�

�2

⌘
trajectories and use DAgger algorithm to collect

M = O
⇣

log T/�
✏2

⌘
+O

�
H

✏

�
roll-outs. Setting the learning rate

⌘ =

s
1

�2

� 1
T

+
H

M
+

r
log(T/�)

M

�
,

after T rounds of the algorithm, we have that

1

T

TX

t=1

J(⇡t)� J(⇡⇤)  O

0

@�

s
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T
+

H

M
+

r
log(T/�)

M

1

A+ �

with probability at least 1� �.

Consequently, we also have the following regret bound:

1

T

TX

t=1

J(⇡t)� J(⇡⇤)  O

0

@�

s
1

T
+

H

M
+

r
log(T/�)

M

1

A

+O

 
�

r
log(Tk/�)

m
+

AH log(Tk/�)

m

!

holds with probability at least 1� �, where again H is the task horizon, A is

the cardinality of action space, and k is the dimension of function class ⇧’s

parameterization.

Proof. (For both proposition (6.3.6) and (6.3.5)). The results follow by taking

the inequality from equation (6.19), and by solving for ✏ and � explicitly in

terms of relevant quantities. Based on the specification of M and m, we
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obtain the necessary precision for each round of learning in terms of number of

trajectories:

� = O

✓
�
log(k/�)

m
+

AHB log(k/�)

m

◆

✏ = O

 
H

M
+

r
log(1/�)

M

!

Setting the learning rate ⌘ =
q

1
�2

�
1
T
+ ✏
�

and rearranging the inequalities lead

to the desired bounds.

The regret bound depends on the variance �2 of the policy gradient

estimates. It is well-known that vanilla policy gradient updates suffer from

high variance. We instead use functional regularization technique, based on

CORE-RL, in the practical implementation of our algorithm. The CORE-RL

subroutine has been demonstrated to reduce the variance in policy gradient

updates [25].

6.3.3 Defining a consistent approximation of the gradient

We are using the notion of Fréchet derivative to define gradient of

differentiable functional. Note that while Gateaux derivative can also be

utilized, Fréchet derivative ensures continuity of the gradient operator that

would be useful for our analysis.

Definition 6.3.6 (Fréchet gradient). A bounded linear operator r : H 7! H

is called Fréchet functional gradient of J at h 2 H if

lim
kgk!0

J(h+ g)� J(h)� hrJ(h), gi
kgk = 0.
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We make the following assumption about H and F . One interpretation

of this assumption is that the space of policies ⇧ and F that we consider have

the property that a programmatic policy ⇡ 2 ⇧ can be well-approximated by a

large space of neural policies f 2 F .

Assumption 6.3.7. J is Fréchet differentiable on H. J is also differentiable

on the restricted subspace F . And F is dense in H (i.e., the closure F = H)

It is then clear that 8 f 2 F the Fréchet gradient rFJ(f), restricted

to the subspace F is equal to the gradient of f in the ambient space H (since

Fréchet gradient is unique). In general, given ⇡ 2 ⇧ and f 2 F , ⇡ + f is not

necessarily in F . However, the restricted gradient on subspace F of J(⇡ + f)

can be defined asymptotically.

Proposition 6.3.8. Fixing a policy ⇡ 2 ⇧, define a sequence of policies

fk 2 F , k = 1, 2, . . . that converges to ⇡: limk!1 kfk � gk = 0, we then have

limk!1 krFJ(fk)�rHJ(⇡)k⇤ = 0

Proof. Since Fréchet derivative is a continuous linear operator, we have

limk!1 krHJ(fk)�rHJ(⇡)k⇤ = 0. By the reasoning above, for f 2 F ,

the gradient rFJ(f) defined via restriction to the space F does not change

compared to rHJ(f), the gradient defined over the ambient space H. Thus

we also have limk!1 krFJ(fk)�rHJ(⇡)k⇤ = 0. By the same argument, we

also have that for any given ⇡ 2 ⇧ and f 2 F , even if ⇡ + f 62 F , the gradient

rFJ(⇡ + f) with respect to the F can be approximated similarly.
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Note that we are not assuming J(⇡) to be differentiable when restricting

to the policy subspace ⇧.

We now consider the case where ⇧ is not differentiable by parameteriza-

tion. Note that this does not preclude J(⇡) for ⇡ 2 ⇧ to be differentiable in

the non-parametric function space. Two complications arise compared to our

previous approximate mirror descent procedure. First, for each ⇡ 2 ⇧, estimat-

ing the gradient rJ(⇡) (which may not exist under certain parameterization)

can become much more difficult. Second, the update rule rR(⇡) �rFJ(⇡)

may not be in the dual space of F , as in the simple case where ⇧ ⇢ F , thus

making direct gradient update in the F space inappropriate.

Assumption 6.3.9. J is convex in H.

By convexity of J in H, sub-gradients @J(h) exists for all h 2 H. In

particular, @J(⇡) exists for all ⇡ 2 ⇧. Note that @J(⇡) reflects sub-gradient of

⇡ with respect to the ambient policy space H.

We will make use of the following equivalent perspective to mirror

descent[13], which consists of two-step process for each iteration t

1. Solve for ht+1 = argmin
h2H

⌘h@J(⇡t), hi+DR(h, ⇡t)

2. Solve for ⇡t+1 = argmin
⇡2⇧ DR(⇡, ht+1)

We will show how this version of the algorithm motivates our main algorithm.

Consider step 1 of the main loop of Propel, where given a fixed ⇡ 2 ⇧, the
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optimization problem within H is

(OBJECTIVE_1) = min
h2H

⌘h@J(⇡), hi+DR(h, ⇡) (6.20)

Due to convexity of H and the objective, problem (OBJECTIVE_1) is equiva-

lent to:

(OBJECTIVE_1) =minh@J(⇡), hi (6.21)

s.t. DR(h, ⇡)  ⌧ (6.22)

where ⌧ depends on ⌘. Since ⇡ is fixed, this optimization problem can be

relaxed by choosing � 2 [0, 1], and a set of candidate policies h = ⇡ + �f ,

for all f 2 F , such that DR(h, ⇡)  ⌧ is satisfied (Selection of � is possible

with bounded spaces). Since this constraint set is potentially a restricted set

compared to the space of policies satisfying inequality (6.22), the optimization

problem (6.20) is relaxed into:

(OBJECTIVE_1)  (OBJECTIVE_2) = min
f2F

h@J(⇡), ⇡ + �fi (6.23)

Due to convexity property of J , we have

h@J(⇡),�fi = h@J(⇡), ⇡ + �f � ⇡)i  J(⇡ + �f)� J(⇡) (6.24)

The original problem OBJECTIVE_1 is thus upper bounded by:

min
h2H

⌘h@J(⇡), h)i+DR(h, ⇡)  min
f2F

J
�
⇡ + �f

�
� J(⇡) + h@J(⇡), ⇡i

Thus, a relaxed version of original optimization problem OBJECTIVE_1 can

be obtained by miniziming J(⇡ + �f) over f 2 F (note that ⇡ is fixed). This
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naturally motivates using functional regularization technique, such as CORE-

RL algorithm [25], to update the parameters of differentiable function f via

policy gradient descent update:

f 0 = f � ⌘�rF�J(⇡ + �f)

where the gradient of J is taken with respect to the parameters of f (neural

networks). This is exactly the update step in algorithm 2 (also similar to

iterative updte of CORE-RL algorithm), where the neural network policy is

regularized by a prior controller ⇡.

Proposition 6.3.10 (Regret bound for the relaxed optimization objective).

Assuming J(h) is L-strongly smooth over H, i.e., rHJ(h) is L-Lipschitz

continuous, approximating UpdateH by UpdateF per Alg. 2 leads to the

expected regret bound: E
h
1
T

P
T

t=1 J(⇡t)
i
� J(⇡⇤) = O

⇣
��
q

1
T
+ ✏+ �2L2

⌘

Proof. Instead of focusing on the bias of the gradient estimate rHJ(⇡), we

will shift our focus on the alternative proximal formulation of mirror descent,

under optimization and projection errors. In particular, at each iteration t, let

h⇤

t+1 = argmin
h2H

⌘hrJ(⇡t), hi+DR(h, ⇡t) and let the optimization error be

defined as �t where rR(ht+1) = rR(h⇤

t+1) + �t. Note here that this is different

from (but related to) the notion of bias from gradient estimate of rJ(⇡) used in

theorem 6.2.1 and theorem 6.2.1. The projection error from imitation learning

procedure is defined similarly to theorem 6.2.1: ⇡⇤

t+1 = argmin
⇡2⇧ DR(⇡, ht+1)

is the true projection, and
��⇡t+1 � ⇡⇤

t+1

��  ✏.
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We start with similar bounding steps to the proof of theorem 6.2.1:

hrJ(⇡t), ⇡t � ⇡i = 1

⌘
hrR(h⇤

t+1)�rR(⇡t), ⇡t � ⇡i

=
1

⌘
(hrR(ht+1)�rR(⇡t), ⇡t � ⇡i � h�t, ⇡t � ⇡i)

=
1

⌘
(DR(⇡, ⇡t)�DR(⇡, ht+1) +DR(⇡t, ht+1))

| {z }
component_1

+
1

⌘
h�t, ⇡t � ⇡i
| {z }

component_2

(6.25)

As seen from the proof of theorem 6.2.1, component_1 can be upperbounded

by:
1
⌘

�
DR(⇡, ⇡t)�DR(⇡, ⇡t+1)| {z }

telescoping
+DR(⇡, ⇡t+1)�DR(⇡, ⇡

⇤

t+1)| {z }
projection error

�DR(⇡
⇤

t+1, ht+1) +DR(⇡t, ht+1)| {z }
relative improvement

�

The bound on projection error is identical to theorem 6.2.1:

DR(⇡, ⇡t)�DR(⇡, ⇡
⇤

t+1)  ✏LRD (6.26)
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The bound on relative improvement is slightly different:

DR(⇡t, ht+1)�DR(⇡
⇤

t+1, ht+1) = R(⇡t)�R(⇡⇤

t+1) + hrR(ht+1), ⇡
⇤

t+1 � ⇡ti

= R(⇡t)�R(⇡⇤

t+1 + hrR(h⇤

t+1), ⇡
⇤

t+1 � ⇡ti) + h�t, ⇡
⇤

t+1 � ⇡ti

 hrR(⇡t), ⇡t � ⇡⇤

t+1i �
↵

2

��⇡⇤

t+1 � ⇡t

��2

+ hrR(h⇤

t+1), ⇡
⇤

t+1 � ⇡ti+ h�t, ⇡
⇤

t+1 � ⇡ti

= �⌘hrJH(⇡t), ⇡
⇤

t+1 � ⇡ti �
↵

2

��⇡⇤

t+1 � ⇡t

��2 + h�t, ⇡
⇤

t+1 � ⇡ti (6.27)

 ⌘2

2↵
krHJ(⇡t)k2⇤ + h�t, ⇡

⇤

t+1 � ⇡ti

 ⌘2

2↵
L2
J
+ h�t, ⇡

⇤

t+1 � ⇡ti (6.28)

Note here that the gradient rHJ(⇡t) is not the result of estimation. Combining

equations (6.25), (6.26), (6.27), (6.28), we have:

hrJ(⇡t), ⇡t�⇡i  1

⌘

�
DR(⇡, ⇡t)�DR(⇡, ⇡t+1)+ ✏LRD+

⌘2

2↵
L2
J
+ h�t, ⇡

⇤

t+1�⇡i
�

(6.29)

Next, we want to bound �t. Choose regularizer R to be 1
2 k·k

2 (consistent with

the pseudocode in algorithm 2). We have that:

h⇤

t+1 = argmin
h2H

⌘hrJ(⇡t), hi+
1

2
kh� ⇡tk2

which is equivalent to:

h⇤

t+1 = ⇡t + argmin
f2F

⌘hrJ(⇡t), fi+
1

2
kfk2

Let f ⇤

t+1 = argmin
f2F

⌘hrJ(⇡t), fi + 1
2 kfk

2. Taking the gradient over f , we

can see that f ⇤

t+1 = �⌘rJ(⇡t). Let ft+1 be the minimizer of minf2F J(⇡t+�f).
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We then have h⇤

t+1 = ⇡t + f ⇤

t+1 and ht+1 = ⇡ + �ft+1. Thus �t = ht+1 � h⇤

t+1 =

ft+1 � f ⇤

t+1.

On one hand, we have

J(⇡t + �ft+1)  J(⇡t + !f ⇤

t+1)  J(⇡t) + hrJ(⇡t),!f
⇤

t+1i+
L

2

��!f ⇤

t+1

��2

due to optimality of ft+1 and strong smoothness property of J . On the other

hand, since J is convex, we also have the first-order condition:

J(⇡t + �ft+1) � J(⇡t) + hrJ(⇡t),�ft+1i

Combine with the inequality above, and subtract J(⇡t) from both sides, and

using the relationship f ⇤

t+1 = �⌘rJ(⇡t), we have that:

h�1

⌘
f ⇤

t+1,�ft+1i  h�
1

⌘
f ⇤

t+1,!f
⇤

t+1i+
L!2

2

��f ⇤

t+1

��2

Since this is true 8!, rearrange and choose ! such that !

⌘
� L!

2

2 = � �

2⌘ , namely

! = 1�
p
1��⌘L

L⌘
, and complete the square, we can establish the bound that:

��ft+1 � f ⇤

t+1

��  ⌘(�L)2B (6.30)

for B the upperbound on kft+1k. We thus have k�tk = O(⌘(�L)2). Plugging

the result from equation 6.30 into RHS of equation 6.29, we have:

hrJ(⇡t), ⇡t � ⇡i  1

⌘

�
DR(⇡, ⇡t)�DR(⇡, ⇡t+1) + ✏LRD +

⌘2

2↵
L2
J

�
+
�
⌘(�L)2B

�

(6.31)

Since J is convex in H, we have J(⇡t)� J(⇡)  hrJ(⇡t), ⇡t � ⇡i. Similar to

theorem 6.2.1, setting ⌘ =
q

1
�2�2 (

1
T
+ ✏) and taking expectation on both sides,
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we have:

E
"
1

T

TX

t=1

J(⇡t)

#
� J(⇡⇤) = O

�
��

r
1

T
+ ✏+ �2L2

�
(6.32)

Note that unlike regret bound from theorem 6.2.1 under general bias, variance

of gradient estimate and projection error, �2 here explicitly refers to the bound

on neural-network based policy gradient variance. The variance reduction of

��, at the expense of some bias, was also similarly noted in a recent functional

regularization technique for policy gradient [25].
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Chapter 7

Experiments and Implementation Details

In this chapter we validate the proposed algorithms empirically, and

show that they can discover interpretable, verifiable, generalizable, and perfor-

mant policies within the Prl framework. The focus of these experiments are

on continuous control in simulations. Detailed results are presented of program-

matic projections using the Ndps algorithm and of the Propel framework

with two programmatic classes.

7.1 Environments for Experiments

We generate controllers for cars in The Open Racing Car Simulator

(Torcs) [96]. Torcs has been used extensively in AI research, for example in

[76], [54], and [63] among others. [61] has shown that a Deep Deterministic Pol-

icy Gradient (DDPG) network can be used in Rl environments with continuous

action spaces. The Drl agents for Torcs in this thesis are implementations

of the DDPG algorithm, trained on some tracks in the Practice Mode of the

game.

In its full generality Torcs provides a rich environment with input

from up to 89 sensors, and optionally the 3D graphic from a chosen camera
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Figure 7.1: Screenshot of a car racing in Torcs. The learning agent has access
to the environment state through sensors that provide information about the
car and track.

angle in the race. The controllers have to decide the values of 5 parameters

during game play, which correspond to the acceleration, brake, clutch, gear

and steering of the car. Apart from the immediate challenge of driving the

car on the track, controllers also have to make race-level strategy decisions,

like making pit-stops for fuel. A lower level of complexity is provided in the

Practice Mode setting of TORCS. In this mode all race-level strategies are

removed. Currently, so far as we know, the state of the art Drl models are

capable of racing only in Practice Mode, and this is also the environment that

we use. Here we consider the input from 29 sensors, and decide values for the

acceleration and steering actions.

Due to the sparsity of the lap-time signal, we use a pseudo-reward

function during training that provides a heuristic estimate of the agent’s

performance at each time step. The pseudo-reward used during training is
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given by:

rt = V cos(✓)� V sin(✓)� V |trackPos| (7.1)

Here V is the velocity of the car, ✓ is the angle the car makes with the track

axis, and trackPos provides the position on the track relative to the track’s

center. This reward captures the aim of maximizing the longitudinal velocity,

minimizing the transverse velocity, and penalizing the agent if it deviates

significantly from the center of the track. All the learning algorithms are

given access to the same set of sensor readings and rewards from the same

pseudo-reward function.

We chose a suite of tracks that provide varying levels of difficulty for

the learning algorithms. In particular, for the tracks Ruudskogen and Alpine-2,

the Ddpg agent is unable to reliably learn a policy that would complete a

lap. To evaluate Propel we perform the experiments with twenty-five random

seeds and report the median lap time over these twenty-five trials. However we

note that the Torcs simulator is not deterministic even for a fixed random

seed. Since we model the environment as a Markov Decision Process, this

non-determinism is consistent with our problem statement.

The sketches used in our experiments provide the basic structure of

a proportional-integral-derivative (PID) program, with appropriate holes for

parameter and observation values. They have the overall form:

Kp(✏� oi) +Ki

iX

j=i�N

(✏� oj) +Kd(oi�1 � oi) (7.2)
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Where oi is the most recent observation provided by the simulator for a chosen

sensor, and N is a predetermined constant. We have one controller for each of

the actions, acceleration, steering and braking.

These controllers use finite differencing for the derivative term, and the

fold construct to emulate the integral. To obtain a practical implementation,

we constrain the fold calculation to the five latest observations of the history.

This constraint corresponds to the standard strategy of automatic (integral)

error reset in discretized PID controllers [9].

Each track in Torcs can we viewed as a distinct Pomdp. In our

implementation of Ndps for Torcs we choose one track and synthesize a

program for it. Whenever the algorithm needs to interact with the Pomdp,

we use the program or Drl agent to race on the track. For example, in the

procedure collect_reward we use the synthesized program to race one lap,

and the reward is a function of the speed, angle and position of the car at each

time step.

For the create_histories procedure we use the Drl agent to complete

one lap of the track. At each time step during the lap, we store the sensor

values provided by Torcs along with the action generated by the Drl agent

for those values. The update_histories procedure uses a two step process.

First, the synthesized program is used to race one lap and we store the sensor

values provided by Torcs during this lap. Then, we use the Drl agent to

generate corresponding actions for the stored sensor values. These pairs, of

sensor values and Drl agent actions, are then added to the set of histories.
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7.2 Experimental Analysis of Ndps

Now we present an empirical evaluation of the effectiveness of the Ndps

algorithm in solving the Prl problem. We synthesize programs for two Torcs

tracks, CG-Speedway-1 and Aalborg. These tracks provide varying levels of

difficulty, with Aalborg being the more difficult track of the two.

7.2.1 Evaluating Performance

A controller’s performance is measured according to two metrics, lap

time and reward. To calculate the lap time, the programs are allowed to

complete a three lap race, and we report the average time taken to complete a

lap during this race. The reward function is calculated using the car’s velocity,

angle with the track axis, and distance from the track axis. The same function

is used to train the DRL agent initially. In the experiments we compare the

average reward per time step, obtained by the various programs.

We compare among the following Rl agents:

A1: DRL. An agent which uses Drl to find a policy represented as a deep

neural network. The specific Drl algorithm we use is Deep Deterministic

Policy Gradients [60], which has previously been used on Torcs.

A2: Naive. Program synthesized without access to a policy oracle.

A3: NoAug. Program synthesized without input augmentation.
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A4: NoSketch. Program synthesized in our policy language without sketch

guidance.

A5: NoIF. Programs with single PID controllers, without any conditional

branching.

A6: Ndps. The Program generated by the Ndps algorithm.

In Table 7.1 we present the performance results of the above list. The

lap times in that table are given in minutes and seconds. The Timeout

entries indicate that the synthesis process did not return a program that could

complete the race, within the specified timeout of twelve hours.

These results justify the various choices that we made in our Ndps

algorithm architecture, as discussed in Section 4.2. In many cases those choices

were necessary to be able to synthesize a program that could successfully

complete a race. As a consequence of these results, we only consider the DRL

agent and the Ndps program for subsequent comparisons.

The NoAug and NoSketch agents are unable to generate programs that

complete a single lap on either track. In the case of NoSketch this is because

the syntax of the policy language (Figure 3.2), defines a very large program

space. If we randomly sample from this space without any constraints (like

those provided by the sketch), then the probability of getting a good program

is extremely low and hence we are unable to reliably generate a program that

can complete a lap. The NoAug agent performs poorly because without input

84



Table 7.1: Performance results in Torcs. Lap time is given in Minutes:Seconds.
Timeout indicates that the synthesizer did not return a program that completed
the race within the specified timeout.

Model CG-Speedway-1 Aalborg
Lap Time Reward Lap Time Reward

Drl 54.27 118.39 1:49.66 71.23
Naive 2:07.09 58.72 Timeout �
NoAug Timeout � Timeout �
NoSketch Timeout � Timeout �
NoIF 1:01.60 115.25 2:45.13 52.81
Ndps 1:01.56 115.32 2:38.87 54.91

augmentation, the synthesizer is unable to learn the correct behavior once the

program deviates even slightly from the oracle’s trajectory.

7.2.2 Qualitative Analysis of the Programmatic Policy

We provide qualitative analysis of the inferred programmatic policy

through the lens of interpretability, and its behavior in acting in the environ-

ment.

Interpretability. Interpretability is a qualitative metric, and cannot be

easily demonstrated via experiments. Our agents are interpretable by design,

since they are implemented in a human readable policy language. The DRL

agents are considered uninterpretable because their policies are encoded in black

box neural networks. We can see evidence of this in the compact representation

of an acceleration policy found by Ndps, presented in Figure 3.3. The neural

policy does not lend itself to such representations.
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Table 7.2: Smoothness measure of agents in Torcs, given by the standard
deviation of the steering actions during a complete race. Lower values indicate
smoother steering.

Model CG-Speedway-1 Aalborg

Drl 0.5981 0.9008
Ndps 0.1312 0.2483

Behavior of Policy. Our experimental validation showed that the pro-

grammatic policy was less aggressive in terms of its use of actions and resulting

in smoother steering actions. Numerically, we measure smoothness in Table 7.2

by comparing the population standard deviation of the set of steering actions

taken by the program during the entire race. In Figure 7.2 we present a scatter

plot of the steering actions taken by the Drl agent and the Ndps program

during a slice of the CG-Speedway-1 race. As we can see, the Ndps program

takes much more conservative actions.

Robustness to Missing/Noisy Features To evaluate the robustness of

the agents with respect to defective sensors we introduce a Partial Observability

variant of Torcs. In this variant, a random sample of k sensors are declared

defective. During the race, one or more of these defective sensors are blocked

with some fixed probability. Hence, during gameplay, the sensor either returns

the correct reading or a null reading. For sufficiently high block probabilities,

both agents will fail to complete the race. In Table 7.3 we show the distances

raced for two values of the block probability, and in Figure 7.3 we plot the

distance raced as we increase the block probability on the Aalborg track. In both
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Figure 7.2: Slice of steering actions taken by the DRL and Ndps agents, during
the CG-Speedway-1 race. This figure demonstrates that the Ndps agent drives
more smoothly.

these experiments, the set of defective sensors was taken to be {RPM, TrackPos}

because we know that the synthesized programs crucially depend on these

sensors.

Evaluating Generalization to New Instances To compare the ability

of the agents to perform on unseen tracks, we executed the learned policies

on tracks of comparable difficulty. For agents trained on the CG-Speedway-1
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Table 7.3: Partial observability results in Torcs after blocking sensors
{RPM, TrackPos} . For each track and block probability we give the distance,
in meters, raced by the program before crashing.

Model CG-Speedway-1 Aalborg
50% 90% 50% 90%

Drl 21 17 71 20
Ndps 1976 200 1477 287
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Figure 7.3: Distance raced by the agents as the block probability increases for
a particular sensor(s) on Aalborg. The Ndps agent is more robust to blocked
sensors.
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Table 7.4: Transfer results with training on CG-Speedway-1. ‘Cr’ indicates
that the agent crashed after racing the specified distance.

Model CG track 2 E-Road
Lap Time Reward Lap Time Reward

DRL Cr 1608m � Cr 1902m �
Ndps 1:40.57 110.18 1:51.59 98.21

Table 7.5: Transfer results with training on Aalborg. ‘Cr’ denotes the agent
crashed, after racing the specified distance.

Model Alpine 2 Ruudskogen
Lap Time Reward Lap Time Reward

DRL Cr 1688m � Cr 3232m �
Ndps 3:16.68 67.49 3:19.77 57.69

track, we chose CG track 2 and E-Road as the transfer tracks, and for Aalborg

trained tracks we chose Alpine 2 and Ruudskogen. As can be seen in Tables

7.4 and 7.5, the Ndps programmatically synthesized program far outperforms

the DRL agent on unseen tracks. The DRL agent is unable to complete the

race on any of these transfer tracks. This demonstrates the transferability of

the policies Ndps finds.

Verifiability of Policies Now we use established symbolic verification

techniques to automatically prove two properties of policies generated by Ndps.

So far as we know, the current state of the art neural network verifiers cannot

verify the DRL network we are using in a reasonable amount of time, due to the

size and complexity of the network used to implement the DDPG algorithm.
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For example, the Reluplex [49] algorithm was tested on networks at most 300

nodes wide, whereas our network has three layers with 600 nodes each, and

other smaller layers.

Smoothness Property For the program given in Figure 3.3 we prove:

8 k,
kX

i=k�5

kRPMi+1 � RPMik < 0.006

=) kAccelerationk+1 � Accelerationkk < 0.49

Intuitively, this means that if the sum of the consecutive differences of

the last six RPM sensor values is less than 0.006, then the acceleration actions

calculated at the last and penultimate step will not differ by more than 0.49.

Similarly, for a steering policy, we prove:

8k
kX

i=k�5

kTrackPosi+1 � TrackPosik < 0.006

=)
��Steering

k+1 � Steering
k

�� < 0.11

This proof gives us a guarantee of the type of smooth steering behavior that

we empirically examined earlier in this section.

Universal Bounds We can prove that the program in Figure 3.3

satisfies the property:

8i (0  RPMi  1 ^ �1  TrackPosi  1)

=) (kSteering
i
k < 101.08 ^ �54.53 < Acceleration i < 53.03).

Intuitively, this means that we have proved global bounds for the action values

in this environment, assuming reasonable bounds on some of the input values.
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In the Torcs environment these bounds are not very useful, since the simulator

clips these actions to certain pre-specified ranges. However, this experiment

demonstrates that our framework allows us to prove universal bounds on the

actions, and this could be a critical property for other environments.

7.2.3 Parameter Optimization

Now we elaborate on the optimization techniques we used in the distance

computation step argmin
e0
P

h2H
ke0(h)� eNN (h)k, to find a program similar

to a given program e, in Algorithm 4. We start by enumerating a list of

program templates, or programs with numerical-valued parameters ✓. This is

done by first replacing the numerical constants in e by parameters, eliding

some subexpressions from the resulting parameterized program, and then

regenerating the subexpressions using the rules of S (without instantiating

the parameters), giving priority to shorter expressions. The resulting program

template e✓ follows the sketch S and is also structurally close to e. Now we

search for values for parameters ✓ that optimally imitate the neural oracle.

Bayesian optimization. We use Bayesian optimization as our primary

tool when searching for such optimal parameter values. This method applies to

problems in which actions (program outputs) can be represented as vectors of

real numbers. All problems considered in our experiments fall in this category.

The distance of individual pairs of outputs of the synthesized program and the

policy oracle is then simply the Euclidean distance between them. The sum of
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these distances is used to define the aggregate cost across all inputs in H. We

then use Bayesian optimization to find parameters that minimize this cost.

SMT-based Optimization. We also use a second parameter search

technique based on SMT (Satisfiability Modulo Theories) solving. Here, we

generate a constraint that stipulates that for each h 2 H, the output e✓(h)

must match eNN (h) up to a constant error. Here, eNN (h) is a constant value

obtained by executing eNN . The output e✓(h) depends on unknown parameters

✓; however, constraints over e✓(h) can be represented as constraints over ✓ using

techniques for symbolic execution of programs [19]. Because the oracle is only

an approximation to the optimal policy in our setting, we do not insist that the

generated constraint is satisfied entirely. Instead, we set up a Max-Sat problem

which assigns a weight to the constraint for each input h, and then solve this

problem with a Max-Sat solver. Unfortunately, SMT-based optimization does

not scale well in environments with continuous actions. Consequently, we

exclusively use Bayesian optimization for all Torcs based experiments.

The program in Figure 7.4 shows the body of a policy for steering, which

together with the acceleration policy given in Figure 3.3, was found by the

Ndps algorithm by training on the Aalborg track. Figures 7.5 & 7.6 likewise

show the policies for acceleration and steering respectively, when trained on

the CG-Speedway-1 track.
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0.97 ⇤ peek((0.0� hTrackPos),�1)
+ 0.05 ⇤ fold(+, (0.0� hTrackPos))

+ 49.98 ⇤ (peek(hTrackPos,�2)� peek(hTrackPos,�1))

Figure 7.4: A programmatic policy for steering, automatically discovered by
the Ndps algorithm with training on Aalborg.

if (0.0001� peek(hTrackPos,�1) > 0)

and (0.0001 + peek(hTrackPos,�1) > 0)

then 0.95 ⇤ peek((0.64� hRPM),�1)
+ 5.02 ⇤ fold(+, (0.64� hRPM))

+ 43.89 ⇤ (peek(hRPM,�2)� peek(hRPM,�1))
else 0.95 ⇤ peek((0.60� hRPM),�1)

+ 5.02 ⇤ fold(+, (0.60� hRPM))

+ 43.89 ⇤ (peek(hRPM,�2)� peek(hRPM,�1))

Figure 7.5: A programmatic policy for acceleration, automatically discovered
by the Ndps algorithm with training on CG-Speedway-1.

0.86 ⇤ peek((0.0� hTrackPos),�1)
+ 0.09 ⇤ fold(+, (0.0� hTrackPos))

+ 46.51 ⇤ (peek(hTrackPos,�2)� peek(hTrackPos,�1))

Figure 7.6: A programmatic policy for steering, automatically discovered by
the Ndps algorithm with training on CG-Speedway-1.
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7.3 Experimental Analysis of Propel

We demonstrate the effectiveness of Propel in synthesizing program-

matic controllers for Torcs. We evaluate over five distinct tracks in the Torcs

simulator. The difficulty of a track can be characterized by three properties;

track length, track width, and number of turns. Our suite of tracks provides

environments with varying levels of difficulty for the learning algorithm. The

performance of a policy in the Torcs simulator is measured by the lap time

achieved on the track. To calculate the lap time, the policies are allowed to

complete a three-lap race, and we record the best lap time during this race. We

perform the experiments with twenty-five random seeds and report the median

lap time over these twenty-five trials. Some of the policies crash the car before

completing a lap on certain tracks, even after training for 600 episodes. Such

crashes are recorded as a lap time of infinity while calculating the median. If

the policy crashes for more than half the seeds, this is reported as Cr in Tables

7.1 & 7.8. We choose to report the median because taking the crash timing as

infinity, or an arbitrarily large constant, heavily skews other common measures

such as the mean.

7.3.1 Evaluating Performance

Baselines. Among recent state-of-the-art approaches to learning pro-

grammatic policies are Ndps [95] for high-level language policies, and Viper

[11] for learning tree-based policies. Both Ndps and Viper rely on imitating

a fixed (pre-trained) neural policy oracle, and can be viewed as degenerate
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pelProg over 25 random seeds.
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Prog over 25 random seeds.
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Table 7.6: Performance results in Torcs over 25 random seeds. Each entry
reports median lap time in seconds over all the seeds (lower is better). A lap
time of Cr indicates the agent crashed and could not complete a lap for more
than half the seeds.

G-Track E-Road Aalborg Ruudskogen Alpine-2
Length 3186m 3260m 2588m 3274m 3774m

Prior 312.92 322.59 244.19 340.29 402.89
Ddpg 78.82 89.71 101.06 Cr Cr
Ndps 108.25 126.80 163.25 Cr Cr
Viper 83.60 87.53 110.57 Cr Cr
PropelProg 93.67 119.17 147.28 124.58 256.59
PropelTree 78.33 79.39 109.83 118.80 236.01

versions of Propel that only run Lines 4-6 in Algorithm 1. We present two

Propel analogues to Ndps and Viper: (i) PropelProg: Propel using

the high-level language of Figure 3.2 as the class of programmatic policies,

similar to Ndps. (ii) PropelTree: Propel using regression trees, similar

to Viper. We also report results for Prior, which is a (sub-optimal) PID

controller that is also used as the initial policy in Propel. In addition, to

study generalization ability as well as safety behavior during training, we also

include Ddpg, a neural policy learned using the Deep Deterministic Policy

Gradients [60] algorithm, with 600 episodes of training for each track. In

principle, Propel and its analysis can accommodate different policy gradient

subroutines. However, in the Torcs domain, other policy gradient algorithms

such as PPO and TRPO failed to learn policies that are able to complete

the considered tracks. We thus focus on Ddpg as our main policy gradient

component.

96



Table 7.7: Performance results in Torcs over 25 random seeds. Each entry
reports the ratio of seeds that result in crashes (lower is better).

G-Track E-Road Aalborg Ruudskogen Alpine-2
Length 3186m 3260m 2588m 3274m 3774m

Prior 0.0 0.0 0.0 0.0 0.0
Ddpg 0.24 0.28 0.40 0.68 0.92
Ndps 0.24 0.28 0.40 0.68 0.92
Viper 0.24 0.28 0.40 0.68 0.92
PropelProg 0.04 0.04 0.12 0.16 0.16
PropelTree 0.04 0.04 0.16 0.24 0.36

Tables 7.6& 7.7 show the performance on the considered Torcs tracks.

We see that PropelProg and PropelTree consistently outperform the

Ndps [95] and Viper [11] baselines, respectively. While Ddpg outperforms

Propel on some tracks, its volatility causes it to be unable to learn in some

environments, and hence to crash the majority of the time. Figure 7.7 shows

the consistent improvements made over the prior by PropelProg, over the

iterations of the Propel algorithm. Figure 7.8 shows that, compared to Ddpg,

our approach suffers far fewer crashes while training in Torcs.

7.3.2 Variance Reduction

We study the benefits of neurosymbolic policies with respect to variance

reduction in detail in [25]. In this section we mention some of those results, and

provide a comparison with Target Policy Smoothing Regularization (Tpsr)

[37]. Many state-of-the-art deep reinforcement learning algorithms use Tpsr

for variance reduction to achieve reliable learning. In Figure 7.9 we show that
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Figure 7.9: Reward variance in Torcs over 25 random seeds for Ddpg,
Propel, and Tpsr. The variance is calculated over the performance of all
the learning agents for a particular algorithm (each initialized with a different
random seed) after each training episode.

neurosymbolic policies learnt via the Propel framework have significantly less

reward variance than policies learnt via Ddpg or Tpsr.

In Figure 7.10, we plot laptime improvement over the fixed programmatic

policy, so that values above zero denote improved performance. The laps are

timed out at 150s, and the objective is to minimize lap-time by completing

a lap as fast as possible. Figure 7.10a shows that regularized neurosymbolic

controllers perform better on average than the baseline DDPG algorithm, and

that we improve upon the programmatic policy with proper regularization.

Figure 7.10b shows that intermediate values of � exhibit good performance,

but using the adaptive strategy for setting � in the Torcs setting gives us the

highest-performance policy that significantly beats both the fixed programmatic

policy and the DDPG baseline. Also, the variance with the adaptive strategy
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Figure 7.10: Learning results for neurosymbolic policies. (a) Reward improve-
ment over fixed programmatic policy with different set values for � or an
adaptive �. The right plot is a zoomed-in version of the left plot without
variance bars for clarity. (b) Performance and variance in the reward as a
function of the regularization �, across different runs of the algorithm using
random initializations/seeds. Dashed lines show the performance (i.e. reward)
and variance using the adaptive weighting strategy.

is significantly lower than for the DDPG baseline, which again shows that the

learning process reliably learns a good controller.

7.3.3 Qualitative Analysis

Evaluating Generalization. To compare the ability of the controllers

to perform on tracks not seen during training, we executed the learned policies

on all the other tracks (Table 7.8). We observe that Ddpg crashes significantly

more often than PropelProg. This demonstrates the generalizability of the

policies returned by Propel. Generalization results for the PropelTree

policy are given in Table 7.9. In general, PropelTree policies are more

generalizable than Ddpg but less than PropelProg. On an absolute level,

the generalization ability of Propel still leaves much room for improvement,

which is an interesting direction for future work.
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Table 7.8: Generalization results in Torcs, where rows are training and
columns are testing tracks. Each entry is formatted as PropelProg / DDPG,
and the number reported is the median lap time in seconds over all the seeds
(lower is better). Cr indicates the agent crashed and could not complete a lap
for more than half the seeds.

G-Track E-Road Aalborg Ruudskogen Alpine-2

G-Track - 124 / Cr Cr / Cr Cr / Cr Cr / Cr
E-Road 102 / 92 - Cr / Cr Cr / Cr Cr / Cr
Aalborg 201 / 91 228 / Cr - 217 / Cr Cr / Cr
Ruudskogen 131 / Cr 135 / Cr Cr / Cr - Cr / Cr
Alpine-2 222 / Cr 231 / Cr 184 / Cr Cr / Cr -

Table 7.9: Generalization results in Torcs for PropelTree, where rows are
training and columns are testing tracks. The number reported is the median
lap time in seconds over all the seeds (lower is better). Cr indicates the agent
crashed and could not complete a lap for more than half the seeds.

G-Track E-Road Aalborg Ruudskogen Alpine-2

G-Track - 95 Cr Cr Cr
E-Road 84 - Cr Cr Cr
Aalborg 111 Cr - Cr Cr
Ruudskogen 154 Cr Cr - Cr
Alpine-2 Cr 276 Cr Cr -

In Table 7.9 we show generalization results for the PropelTree agent.

The generalization results for PropelTree are in between those of Ddpg

and PropelProg.

Verifiability of Policies. As shown in prior work [11, 95], parsimo-

nious programmatic policies are more amenable to formal verification than

neural policies. Unsurprisingly, the policies generated by PropelTree and

PropelProg are easier to verify than Ddpg policies. As a concrete example,
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we verified a smoothness property of the PropelProg policy using the Z3

SMT-solver [27]. The verification terminated in 0.49 seconds.

For the program given in Figure 3.3 we proved using symbolic verification

techniques, that:

8k,
k+5X

i=k

kpeek(s[RPM], i+ 1)� peek(s[RPM], i)k < 0.003

=) kpeek(a[Accel], k + 1)� peek(a[Accel], k)k < 0.63

Here the function peek(., i) takes in a history/sequence of sensor or action

values and returns the value at position i, . Intuitively, the above logical

implication means that if the sum of the consecutive differences of the last six

RPM sensor values is less than 0.003, then the acceleration actions calculated at

the last and penultimate step will not differ by more than 0.63.

Initialization. In principle, Propel can be initialized with a random

program, or a random policy trained using Ddpg. In practice, the performance

of Propel depends to a certain degree on the stability of the policy gradient

procedure, which is Ddpg in our experiments. Unfortunately, Ddpg often

exhibits high variance across trials and fares poorly in challenging RL domains.

Specifically, in our Torcs experiments, Ddpg fails on a number of tracks

(similar phenomena have been reported in previous work that experiments on

similar continuous control domains [41, 25, 95]). Agents obtained by initializing

Propel with neural policies obtained via Ddpg also fail on multiple tracks.

In contrast, Propel can often finish the challenging tracks when initialized

with a very simple hand-crafted programmatic prior.
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Table 7.10: Performance results in Torcs of Propel agents initialized with
neural policies obtained via Ddpg, over 25 random seeds. Each entry reports
the median lap time in seconds over all the seeds (lower is better). A lap time
of Cr indicates the agent crashed and could not complete a lap for more than
half the seeds.

G-Track E-Road Aalborg Ruudskogen Alpine-2
Length 3186m 3260m 2588m 3274m 3774m

PropelProg 97.76 108.06 140.48 Cr Cr
PropelTree 78.47 85.46 Cr Cr Cr

Table 7.11: Performance results in Torcs of Propel agents initialized with
neural policies obtained via Ddpg, over 25 random seeds. Each entry reports
the ratio of seeds that result in crashes (lower is better).

G-Track E-Road Aalborg Ruudskogen Alpine-2
Length 3186m 3260m 2588m 3274m 3774m

PropelProg 0.12 0.08 0.48 0.68 0.92
PropelTree 0.16 0.04 0.56 0.68 0.92

In Tables 7.10 & 7.11 we show the lap time performance and crash

ratios of Propel agents initialized with neural policies obtained via Ddpg.

As discussed earlier, Ddpg often exhibits high variance across trials and

this adversely affects the performance of the Propel agents when they are

initialized via Ddpg.
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Chapter 8

Conclusion and Future Work

In this thesis we studied Programmatic Reinforcement Learning (Prl) a

framework to leverage partial symbolic knowledge while reliably generating ver-

ifiable and performant policies in the Reinforcement Learning (RL) paradigm.

Contrasted with the popular Deep Reinforcement Learning (Drl) paradigm,

where the policy is represented by a neural network, the aim of these tech-

niques is to generate policies that can be represented in expressive high-level

programming languages. Such programmatic policies have several benefits,

including being more easily interpreted than neural networks, being amenable

to verification by scalable symbolic methods, and having lower variance during

learning. The generation methods for programmatic policies also provide a

mechanism for systematically using domain knowledge for guiding the search

for performant policies. The interpretability and verifiability of these policies

provides the opportunity to deploy reinforcement learning based solutions in

safety critical environments. This thesis draws on work from both the ma-

chine learning and programming languages literature, to create neurosymbolic

algorithms that reliably generate performant programmatic policies.
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8.1 Neurosymbolic Learning

The two facets of neurosymbolic learning are analogous to the two

modes of thought in humans, as detailed by Kahneman’s “Thinking, Fast and

Slow”. Here the neural component is akin to the fast and instinctive “System 1”,

and symbolic programs embody the more logical and deliberative “System 2”.

This thesis presents work that establishes that neurosymbolic models provide a

principled mechanism to combat the shortcomings of Dnn based models, and

hence create a promising path towards trustworthy intelligent systems.

In this thesis we formalized the Programmatic Reinforcement Learning

(Prl) paradigm, and presented a framework to reliably generate verifiable

and performant programmatic policies. By generating complex programs for

reinforcement learning environments we have also made advances that are

of interest to the programming languages community. The empirical and

theoretical analysis of the proposed techniques shows that neurosymbolic

learning is a promising research direction and can be used to deploy RL based

solutions in challenging environments.

There has been tremendous interest in developing and applying neu-

rosymbolic learning techniques to a variety of domains in recent years. However,

it is clear that research in this area has only scratched the surface of the various

possibilities, and there remains significant room for research in both effective

integration of symbolic techniques in neural architectures, and a systematic

exploration of application domains.
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8.2 Applications

One avenue of future work is guided by the goal of building neurosym-

bolic pipelines that can be easily applied to a variety of domains and learning

paradigms. Concretely, such pipelines require two distinct components to be

user friendly: creating domain specific primitives that have proven efficacy

for certain tasks, and algorithmic innovations that are effective at overcom-

ing the challenges of non-differentiable program learning in varied settings.

This naturally decomposes the daunting task of creating this neurosymbolic

infrastructure, into independent individual task-centric deployments that are

promising research topics by themselves. There are a multitude of deployment

domains that can be explored with these techniques, and we discuss three

broad categories below.

Learning for Control

Significant advances have been made in approaches that perform data-

driven control, combining perspectives from machine learning and control

theory. By providing a principled mechanism to guide the learner with partial

symbolic domain knowledge, this work creates a promising bridge between

traditional model-based design and controllers learnt via experience. Control

has been the underlying objective in the game simulator we have explored so

far. Which has demonstrated the benefits of the provable safety guarantees of

programmatic controllers. Deployments of neurosymbolic controllers on cyber-

physical systems is also a promising avenue of exploration. Especially since the
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robustness introduced by control primitives in the Dsl can significantly reduce

the performance degradation caused by the Sim2Real gap.

Scientific Discovery

The availability of large amounts of data in almost every scientific

field has led to machine learning playing an increasingly important role in

scientific discovery. However, their role in devising hypotheses consistent

with the data or imagining new experiments is significantly limited by the

expressiveness of the models. Neurosymbolic models are capable of overcoming

this deficiency. In a recently accepted paper [80], we generate interpretable

models for annotating animal behavior datasets. Apart from greatly reducing

the burden of manual annotations, these expressive models can be used to

guide further experimentation by focusing on factors that are identified by the

model as most relevant for desirable behaviors.

Regulated Domains

As AI based systems are included in more user facing applications,

regulators are increasingly demanding clearer accountability for decision making

processes. Notable examples of such regulatory requirements include the “right

to explanation” clause in the European Union’s General Data Protection

Regulation (GDPR), and “plan of treatment” accountability under medical

liability legislation in the US. Consequently,researchers in healthcare and finance

need techniques that generate interpretable and certifiable models for use in
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consumer facing applications. Concretely, in healthcare Sepsis researchers are

working to develop algorithms that generate interpretable adaptive therapies

determined by a patient’s statistics and their ongoing response to treatment.

A key benefit of such a system is that it acts as a recommendation engine

for attendant physicians and hence faces fewer regulatory requirements for

deployment.

8.3 Theoretical Foundations

Understanding current machine learning approaches from a program-

ming languages perspective is a growing area of research. This area provides a

more theoretically grounded approach that uses categories to provide a com-

positional perspective of learning algorithms. Recent work has shown that

gradient descent and backpropagation give a functor from the category of

parametrized functions to the category of learning algorithms, and that the

category of supervised learning algorithms can be embedded into a certain

category of symmetric lenses. This link is particularly interesting since there

is substantial literature on the category of symmetric lenses and performing

program synthesis for lenses. A rigorous study of these embeddings would help

lay the foundations for a more principled understanding of current machine

learning techniques, and guide the search for novel neurosymbolic architec-

tures. A close examination of these approaches may also uncover fundamental

connections between machine learning and programming languages research.

Creating connections between Machine Learning and other branches of
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computer science will help fuel cross-disciplinary collaborations, and generate

more reliable real world deployments of intelligent systems. A principled

mechanism to integrate symbolic knowledge with gradient based learning

provides a promising path to Trustworthy Artificial Intelligence.
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