
AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri∗, Martin Vechev
Department of Computer Science

ETH Zurich, Switzerland

Abstract—We present AI2, the first sound and scalable an-
alyzer for deep neural networks. Based on overapproximation,
AI2 can automatically prove safety properties (e.g., robustness)
of realistic neural networks (e.g., convolutional neural networks).

The key insight behind AI2 is to phrase reasoning about safety
and robustness of neural networks in terms of classic abstract
interpretation, enabling us to leverage decades of advances in
that area. Concretely, we introduce abstract transformers that
capture the behavior of fully connected and convolutional neural
network layers with rectified linear unit activations (ReLU), as
well as max pooling layers. This allows us to handle real-world
neural networks, which are often built out of those types of layers.

We present a complete implementation of AI2 together with
an extensive evaluation on 20 neural networks. Our results
demonstrate that: (i) AI2 is precise enough to prove useful
specifications (e.g., robustness), (ii) AI2 can be used to certify
the effectiveness of state-of-the-art defenses for neural networks,
(iii) AI2 is significantly faster than existing analyzers based on
symbolic analysis, which often take hours to verify simple fully
connected networks, and (iv) AI2 can handle deep convolutional
networks, which are beyond the reach of existing methods.

Index Terms—Reliable Machine Learning, Robustness, Neural
Networks, Abstract Interpretation

I. INTRODUCTION

Recent years have shown a wide adoption of deep neural
networks in safety-critical applications, including self-driving
cars [2], malware detection [44], and aircraft collision avoid-
ance detection [21]. This adoption can be attributed to the
near-human accuracy obtained by these models [21], [23].

Despite their success, a fundamental challenge remains:
to ensure that machine learning systems, and deep neural
networks in particular, behave as intended. This challenge has
become critical in light of recent research [40] showing that
even highly accurate neural networks are vulnerable to adver-
sarial examples. Adversarial examples are typically obtained
by slightly perturbing an input that is correctly classified by
the network, such that the network misclassifies the perturbed
input. Various kinds of perturbations have been shown to suc-
cessfully generate adversarial examples (e.g., [3], [12], [14],
[15], [17], [18], [29], [30], [32], [38], [41]). Fig. 1 illustrates
two attacks, FGSM and brightening, against a digit classifier.
For each attack, Fig. 1 shows an input in the Original column,
the perturbed input in the Perturbed column, and the pixels
that were changed in the Diff column. Brightened pixels are
marked in yellow and darkened pixels are marked in purple.

∗Rice University, work done while at ETH Zurich.

Attack Original Perturbed Diff

FGSM [12], ε = 0.3

Brightening, δ = 0.085

Fig. 1: Attacks applied to MNIST images [25].

The FGSM [12] attack perturbs an image by adding to it a
particular noise vector multiplied by a small number ε (in
Fig. 1, ε = 0.3). The brightening attack (e.g., [32]) perturbs
an image by changing all pixels above the threshold 1− δ to
the brightest possible value (in Fig. 1, δ = 0.085).

Adversarial examples can be especially problematic when
safety-critical systems rely on neural networks. For instance,
it has been shown that attacks can be executed physically
(e.g., [9], [24]) and against neural networks accessible only as
a black box (e.g., [12], [40], [43]). To mitigate these issues,
recent research has focused on reasoning about neural network
robustness, and in particular on local robustness. Local robust-
ness (or robustness, for short) requires that all samples in the
neighborhood of a given input are classified with the same
label [31]. Many works have focused on designing defenses
that increase robustness by using modified procedures for
training the network (e.g., [12], [15], [27], [31], [42]). Others
have developed approaches that can show non-robustness by
underapproximating neural network behaviors [1] or methods
that decide robustness of small fully connected feedforward
networks [21]. However, no existing sound analyzer handles
convolutional networks, one of the most popular architectures.

Key Challenge: Scalability and Precision. The main chal-
lenge facing sound analysis of neural networks is scaling to
large classifiers while maintaining a precision that suffices
to prove useful properties. The analyzer must consider all
possible outputs of the network over a prohibitively large set
of inputs, processed by a vast number of intermediate neurons.
For instance, consider the image of the digit 8 in Fig. 1 and
suppose we would like to prove that no matter how we brighten
the value of pixels with intensity above 1−0.085, the network
will still classify the image as 8 (in this example we have
84 such pixels, shown in yellow). Assuming 64-bit floating
point numbers are used to express pixel intensity, we obtain

B
ri

gh
te

n(
0
.0

8
5
,

) A1

C
on

vo
lu

tio
na

l#

A2

M
ax

Po
ol

in
g#

A3

Fu
lly

C
on

ne
ct

ed
#

A4

Fig. 2: A high-level illustration of how AI2 checks that all
perturbed inputs are classified the same way. AI2 first creates
an abstract element A1 capturing all perturbed images. (Here,
we use a 2-bounded set of zonotopes.) It then propagates A1

through the abstract transformer of each layer, obtaining new
shapes. Finally, it verifies that all points in A4 correspond to
outputs with the same classification.

more than 101154 possible perturbed images. Thus, proving
the property by running a network exhaustively on all possible
input images and checking if all of them are classified as 8 is
infeasible. To avoid this state space explosion, current methods
(e.g., [18], [21], [34]) symbolically encode the network as
a logical formula and then check robustness properties with
a constraint solver. However, such solutions do not scale to
larger (e.g., convolutional) networks, which usually involve
many intermediate computations.

Key Concept: Abstract Interpretation for AI. The key
insight of our work is to address the above challenge by lever-
aging the classic framework of abstract interpretation (e.g., [6],
[7]), a theory which dictates how to obtain sound, computable,
and precise finite approximations of potentially infinite sets of
behaviors. Concretely, we leverage numerical abstract domains
– a particularly good match, as AI systems tend to heavily
manipulate numerical quantities. By showing how to apply
abstract interpretation to reason about AI safety, we enable one
to leverage decades of research and any future advancements
in that area (e.g., in numerical domains [39]). With abstract
interpretation, a neural network computation is overapproxi-
mated using an abstract domain. An abstract domain consists
of logical formulas that capture certain shapes (e.g., zonotopes,
a restricted form of polyhedra). For example, in Fig. 2, the
green zonotope A1 overapproximates the set of blue points
(each point represents an image). Of course, sometimes, due
to abstraction, a shape may also contain points that will not
occur in any concrete execution (e.g., the red points in A2).

The AI2 Analyzer. Based on this insight, we developed
a system called AI2 (Abstract Interpretation for Artificial
Intelligence)1. AI2 is the first scalable analyzer that han-
dles common network layer types, including fully connected
and convolutional layers with rectified linear unit activations
(ReLU) and max pooling layers.

To illustrate the operation of AI2, consider the example in
Fig. 2, where we have a neural network, an image of the

1AI2 is available at: http://ai2.ethz.ch

digit 8 and a set of perturbations: brightening with parameter
0.085. Our goal is to prove that the neural network classifies
all perturbed images as 8. AI2 takes the image of the digit
8 and the perturbation type and creates an abstract element
A1 that captures all perturbed images. In particular, we can
capture the entire set of brightening perturbations exactly with
a single zonotope. However, in general, this step may result in
an abstract element that contains additional inputs (that is, red
points). In the second step, A1 is automatically propagated
through the layers of the network. Since layers work on
concrete values and not abstract elements, this propagation
requires us to define abstract layers (marked with #) that
compute the effects of the layers on abstract elements. The
abstract layers are commonly called the abstract transformers
of the layers. Defining sound and precise, yet scalable abstract
transformers is key to the success of an analysis based on
abstract interpretation. We define abstract transformers for all
three layer types shown in Fig. 2.

At the end of the analysis, the abstract output A4 is
an overapproximation of all possible concrete outputs. This
enables AI2 to verify safety properties such as robustness
(e.g., are all images classified as 8?) directly on A4. In fact,
with a single abstract run, AI2 was able to prove that a
convolutional neural network classifies all of the considered
perturbed images as 8.

We evaluated AI2 on important tasks such as verifying
robustness and comparing neural networks defenses. For ex-
ample, for the perturbed image of the digit 0 in Fig. 1, we
showed that while a non-defended neural network classified
the FGSM perturbation with ε = 0.3 as 9, this attack is
provably eliminated when using a neural network trained with
the defense of [27]. In fact, AI2 proved that the FGSM attack
is unable to generate adversarial examples from this image for
any ε between 0 and 0.3.

Main Contributions. Our main contributions are:

• A sound and scalable method for analysis of deep neural
networks based on abstract interpretation (Section IV).

• AI2, an end-to-end analyzer, extensively evaluated on
feed-forward and convolutional networks (computing
with 53 000 neurons), far exceeding capabilities of current
systems (Section VI).

• An application of AI2 to evaluate provable robustness of
neural network defenses (Section VII).

II. REPRESENTING NEURAL NETWORKS AS
CONDITIONAL AFFINE TRANSFORMATIONS

In this section, we provide background on feedforward and
convolutional neural networks and show how to transform
them into a representation amenable to abstract interpretation.
This representation helps us simplify the construction and
description of our analyzer, which we discuss in later sections.
We use the following notation: for a vector x ∈ Rn, xi denotes
its ith entry, and for a matrix W ∈ Rn×m, Wi denotes its ith

row and Wi,j denotes the entry in its ith row and jth column.

f (x) ::= W · x+ b

| case E1 : f1(x), . . . , case Ek : fk(x)

| f(f ′(x))

E ::= E ∧ E | xi ≥ xj | xi ≥ 0 | xi < 0

Fig. 3: Definition of CAT functions.

CAT Functions. We express the neural network as a com-
position of conditional affine transformations (CAT), which
are affine transformations guarded by logical constraints. The
class of CAT functions, shown in Fig. 3, consists of functions
f : Rm → Rn for m,n ∈ N and is defined recursively. Any
affine transformation f(x) = W · x + b is a CAT function,
for a matrix W and a vector b. Given sequences of conditions
E1, . . . , Ek and CAT functions f1, . . . , fk, we write:

f(x) = case E1 : f1(x), . . . , case Ek : fk(x).

This is also a CAT function, which returnsx fi(x) for the
first Ei satisfied by x. The conditions are conjunctions of
constraints of the form xi ≥ xj , xi ≥ 0 and xi < 0. Finally,
any composition of CAT functions is a CAT function. We often
write f ′′ ◦ f ′ to denote the CAT function f(x) = f ′′(f ′(x)).

Layers. Neural networks are often organized as a sequence
of layers, such that the output of one layer is the input of the
next layer. Layers consist of neurons, performing the same
function but with different parameters. The output of a layer
is formed by stacking the outputs of the neurons into a vector
or three-dimensional array. We will define the functionality in
terms of entire layers instead of in terms of individual neurons.

Reshaping of Inputs. Layers often take three-dimensional
inputs (e.g., colored images). Such inputs are transformed into
vectors by reshaping. A three-dimensional array x ∈ Rm×n×r
can be reshaped to xv ∈ Rm·n·r in a canonical way, first by
depth, then by column, finally by row. That is, given x:

xv = (x1,1,1 . . . x1,1,r x1,2,1 . . . x1,2,r . . . xm,n,1 . . . xm,n,r)
T .

Activation Function. Typically, layers in a neural network
perform a linear transformation followed by a non-linear
activation function. We focus on the commonly used rectified
linear unit (ReLU) activation function, which for x ∈ R is
defined as ReLU(x) = max(0, x), and for a vector x ∈ Rm
as ReLU(x)=(ReLU(x1), . . . ,ReLU(xm)).

ReLU to CAT. We can express the ReLU activation function
as ReLU = ReLUn ◦ . . . ◦ReLU1 where ReLUi processes the
ith entry of the input x and is given by:

ReLUi(x) = case (xi ≥ 0) : x,
case (xi < 0) : Ii←0 · x.

Ii←0 is the identity matrix with the ith row replaced by zeros.

Fully Connected (FC) Layer. An FC layer takes a vector
of size m (the m outputs of the previous layer), and passes

it to n neurons, each computing a function based on the
neuron’s weights and bias, one weight for each component
of the input. Formally, an FC layer with n neurons is a
function FCW,b : Rm → Rn parameterized by a weight matrix
W ∈ Rn×m and a bias b ∈ Rn. For x ∈ Rm, we have:

FCW,b(x) = ReLU(W · x+ b).

Fig. 4a shows an FC layer computation for x = (2, 3, 1).

Convolutional Layer. A convolutional layer is defined by
a series of t filters F p,q = (F p,q1 , .., F p,qt), parameterized by
the same p and q, where p ≤ m and q ≤ n. A filter F p,qi
is a function parameterized by a three-dimensional array of
weights W ∈ Rp×q×r and a bias b ∈ R. A filter takes a
three-dimensional array and returns a two-dimensional array:

F p,qi : Rm×n×r → R(m−p+1)×(n−q+1).

The entries of the output y for a given input x are given by:

yi,j = ReLU(
p∑

i′=1

q∑
j′=1

r∑
k′=1

Wi′,j′,k′ ·x(i+i′−1),(j+j′−1),k′+b).

Intuitively, this matrix is computed by sliding the filter along
the height and width of the input three-dimensional array, each
time reading a slice of size p×q×r, computing its dot product
with W (resulting in a real number), adding b, and applying
ReLU. The function ConvF , corresponding to a convolutional
layer with t filters, has the following type:

ConvF : Rm×n×r → R(m−p+1)×(n−q+1)×t.

As expected, the function ConvF returns a three-dimensional
array of depth t, which stacks the outputs produced by each
filter. Fig. 4b illustrates a computation of a convolutional layer
with a single filter. For example:

y1,1,1 = ReLU((1 · 0 + 0 · 4 + (−1) · (−1) + 2 · 0) + 1) = 2.

Here, the input is a three-dimensional array in R4×4×1. As
the input depth is 1, the depth of the filter’s weights is also 1.
The output depth is 1 because the layer has one filter.

Convolutional Layer to CAT. For a convolutional layer
ConvF , we define a matrix WF whose entries are those of the
weight matrices for each filter (replicated to simulate sliding),
and a bias b

F
consisting of copies of the filters’ biases. We

then treat the convolutional layer ConvF like the equivalent
FC

WF ,b
F . We provide formal definitions of WF and b

F
in

Appendix A. Here, we provide an intuitive illustration of the
translation on the example in Fig. 4b. Consider the first entry
y1,1 = 2 of y in Fig. 4b:

y1,1=ReLU(W1,1·x1,1+W1,2·x1,2+W2,1·x2,1+W2,2·x2,2+b).

When x is reshaped to a vector xv , the four entries
x1,1, x1,2, x2,1 and x2,2 will be found in xv1, x

v
2, x

v
5 and xv6 ,

respectively. Similarly, when y is reshaped to yv , the entry
y1,1 will be found in yv1 . Thus, to obtain yv1 = y1,1, we define
the first row in WF such that its 1st, 2nd, 5th, and 6th entries
are W1,1, W1,2, W2,1 and W2,2. The other entries are zeros.

2
3
1

1
1

0
-1

2
0

-1
0

3
0

x
W b y

ReLU

ReLU(1 0 2 ·
2
3
1

+ -1) = 3

ReLU(1 -1 0 ·
2
3
1

+ 0) = 0

(a) Fully connected layer FCW,b

0 4 2 1
-1 0 1 -2
3 1 2 0
0 1 4 1

1 0
-1 2

1
2 7 0
0 4 0
6 9 1

x

W
b

y

ReLU

ReLU(1 0 -1 2 ·

0
4
-1
0

+ 1) = 2

ReLU(1 0 -1 2 ·

2
0
4
1

+ 1) = 1

(b) Convolutional layer Conv(W,b) (one filter)

0 1 3 -2
2 -4 0 1
2 -3 0 1
-1 5 2 3

2 3
5 3

x
y

max(0 1 2 -4) = 2

max(3 -2 0 1) = 3

max(2 -3 -1 5) = 5

max(0 1 2 3) = 3

(c) Max pooling layer MaxPool2,2

Fig. 4: One example computation for each of the three layer types supported by AI2.

We also define the first entry of the bias to be b. For similar
reasons, to obtain yv2 = y1,2, we define the second row in WF

such that its 2nd, 3rd, 6th, and 7th entries are W1,1, W1,2, W2,1

and W2,2 (also b2 = b). By following this transformation, we
obtain the matrix WF ∈ R9 × R16 and the bias b

F ∈ R9:

WF = b
F

=
1 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 2 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 2 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 2 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 2 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 −1 2 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 −1 2 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 2

1
1
1
1
1
1
1
1
1

To aid understanding, we show the entries from W that appear
in the resulting matrix WF in bold.

Max Pooling (MP) Layer. An MP layer takes a three-
dimensional array x ∈ Rm×n×r and reduces the height m of
x by a factor of p and the width n of x by a factor of q (for p
and q dividing m and n). Depth is kept as-is. Neurons take as
input disjoint subrectangles of x of size p× q and return the
maximal value in their subrectangle. Formally, the MP layer
is a function MaxPoolp,q : Rm×n×r → R

m
p ×

n
q×r that for an

input x returns the three-dimensional array y given by:

yi,j,k = max({xi′,j′,k | p · (i− 1) < i′ ≤ p · i
q · (j − 1) < j′ ≤ q · j}).

Fig. 4c illustrates the max pooling computation for p = 2,
q = 2 and r = 1. For example, here we have:

y1,1,1 = max({x1,1,1, x1,2,1, x2,1,1, x2,2,1}) = 2.

Max Pooling to CAT. Let MaxPool′p,q : Rm·n·r → R
m
p ·

n
q ·r

be the function that is obtained from MaxPoolp,q by reshaping
its input and output: MaxPool′p,q(x

v) = MaxPoolp,q(x)v . To
represent max pooling as a CAT function, we define a series
of CAT functions whose composition is MaxPool′p,q:

MaxPool′p,q = fm
p ·

n
q ·r ◦ . . . ◦ f1 ◦ f

MP.

0
xv

1
3
-2
2
-4
0
...

fMP

0
xMP

1
2
-4
3
-2
0
...

f1

2
3
-2
0
1
2
-3
...

f2

2
3
2
-3
-1
5
0
...

f3

2
3
5
0
1
2
3

f4
2

yv

3
5
3

Fig. 5: The operation of the transformed max pooling layer.

The first function is fMP(xv) = WMP · xv , which reorders
its input vector xv to a vector xMP in which the values
of each max pooling subrectangle of x are adjacent. The
remaining functions execute standard max pooling. Concretely,
the function fi ∈ {f1, . . . , fm

p ·
n
q ·r} executes max pooling

on the ith subrectangle by selecting the maximal value and
removing the other values. We provide formal definitions of
the CAT functions fMP and fi in Appendix A. Here, we
illustrate them on the example from Fig. 4c, where r = 1.
The CAT computation for this example is shown in Fig. 5.
The computation begins from the input vector xv , which is
the reshaping of x from Fig. 4c. The values of the first 2× 2
subrectangle in x (namely, 0, 1, 2 and −4) are separated in
xv by values from another subrectangle (3 and −2). To make
them contiguous, we reorder xv using a permutation matrix
WMP, yielding xMP. In our example, WMP is:

WMP=

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

One entry in each row of WMP is 1, all other entries are zeros.

If row i has entry j set to 1, then the jth value of xv is moved
to the ith entry of xMP. For example, we placed a one in the
fifth column of the third row of WMP to move the value xv5
to entry 3 of the output vector.

Next, for each i ∈ {1, . . . , mp ·
n
q }, the function fi takes

as input a vector whose values at the indices between i and
i+ p · q − 1 are those of the ith subrectangle of x̄ in Fig. 4c.
It then replaces those p · q values by their maximum:

fi(x) = (x1, . . ., xi−1, xk, xi+p·q, . . . , xm·n−(p·q−1)·(i−1)),

where the index k ∈ {i, . . . , i + p · q − 1} is such that
xk is maximal. For k given, fi can be written as a CAT
function: fi(x) = W (i,k) · x, where the rows of the matrix
W (i,k) ∈ R(m·n−(p·q−1)·i)×(m·n−(p·q−1)·(i−1)) are given by
the following sequence of standard basis vectors:

e1, . . . , ei−1, ek, ei+p·q, . . . , em·n−(p·q−1)·(i−1).

For example, in Fig. 5, f1(xMP) = W (1,3) · xMP deletes 0, 1
and −4. Then it moves the value 2 to the first component,
and the values at indices 5, . . . , 16 to components 2, . . . , 13.
Overall, W (1,3) is given by:

W (1,3)=

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

As, in general, k is not known in advance, we need to write

fi as a CAT function with a different case for each possible
index k of the maximal value in x. For example, in Fig. 5:

f1(x) =

case (x1 ≥ x2) ∧ (x1 ≥ x3) ∧ (x1 ≥ x4) : W (1,1) · x,
case (x2 ≥ x1) ∧ (x2 ≥ x3) ∧ (x2 ≥ x4) : W (1,2) · x,
case (x3 ≥ x1) ∧ (x3 ≥ x2) ∧ (x3 ≥ x4) : W (1,3) · x,
case (x4 ≥ x1) ∧ (x4 ≥ x2) ∧ (x4 ≥ x3) : W (1,4) · x.

In our example, the vector xMP in Fig. 5 satisfies the third
condition, and therefore f1(xMP) = W (1,3) · xMP. Taking into
account all four subrectangles, we obtain:

MaxPool′2,2 = f4 ◦ f3 ◦ f2 ◦ f1 ◦ fMP.

In summary, each function fi replaces p·q components of their
input by the maximum value among them, suitably moving
other values. For xv in Fig. 5:

MaxPool′2,2(xv) = W (4,7) ·W (3,6) ·W (2,2) ·W (1,3) ·WMP ·xv.

Network Architectures. Two popular architectures of neural
networks are fully connected feedforward (FNN) and convo-
lutional (CNN). An FNN is a sequence of fully connected
layers, while a CNN [19] consists of all previously described
layer types: convolutional, max pooling, and fully connected.

−1 1 2 3

1

2

3

4

x1

x2

(a)

−3 −2 −1 1 2 3

1

2

3

4

y1

y2

(b)

(
2 −1
0 1

)(
x1
x2

)
=

(
y1
y2

)

Fig. 6: (a) Abstracting four points with a polyhedron (gray),
zonotope (green), and box (blue). (b) The points and abstrac-
tions resulting from the affine transformer.

III. BACKGROUND: ABSTRACT INTERPRETATION

We now provide a short introduction to Abstract Interpre-
tation (AI). AI enables one to prove program properties on a
set of inputs without actually running the program. Formally,
given a function f : Rm → Rn, a set of inputs X ⊆ Rm,
and a property C ⊆ Rn, the goal is to determine whether the
property holds, that is, whether ∀x ∈ X. f(x) ∈ C.

Fig. 6 shows a CAT function f : R2 → R2 that is defined
as f(x) =

(
2 −1
0 1

)
·x and four input points for the function f ,

given as X = {(0, 1), (1, 1), (1, 3), (2, 2)}. Let the property be
C = {(y1, y2) ∈ R2 | y1 ≥ −2}, which holds in this example.
To reason about all inputs simultaneously, we lift the definition
of f to be over a set of inputs X rather than a single input:

Tf : P(Rm)→ P(Rn), Tf (X) = {f(x) | x ∈ X}.

The function Tf is called the concrete transformer of f .
With Tf , our goal is to determine whether Tf (X) ⊆ C for
a given input set X . Because the set X can be very large
(or infinite), we cannot enumerate all points in X to com-
pute Tf (X). Instead, AI overapproximates sets with abstract
elements (drawn from some abstract domain A) and then
defines a function, called an abstract transformer of f , which
works with these abstract elements and overapproximates the
effect of Tf . Then, the property C can be checked on the
resulting abstract element returned by the abstract transformer.
Naturally, because AI employs overapproximation, it is sound,
but may be imprecise (i.e., may fail to prove the property when
it holds). Next, we explain the ingredients of AI in more detail.

Abstract Domains. Abstract domains consist of shapes
expressible as a set of logical constraints. A few popular
numerical abstract domains are: Box (i.e., Interval), Zonotope,
and Polyhedra. These domains provide different precision
versus scalability trade-offs (e.g., Box’s abstract transformers
are significantly faster than Polyhedra’s abstract transformers,
but polyhedra are significantly more precise than boxes). The
Box domain consists of boxes, captured by a set of constraints
of the form a ≤ xi ≤ b, for a, b ∈ R∪{−∞,+∞} and a ≤ b.
A box B contains all points which satisfy all constraints in B.
In our example, X can be abstracted by the following box:

B = {0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}.

Note that B is not very precise since it includes 9 integer
points (along with other points), whereas X has only 4 points.

The Zonotope domain [10] consists of zonotopes. A zono-
tope is a center-symmetric convex closed polyhedron Z ⊆ Rn
that can be represented as an affine function:

z : [a1, b1]× [a2, b2]× · · · × [am, bm]→ Rn.

In other words, z has the form z(ε) = M · ε+ b where ε is a
vector of error terms satisfying interval constraints εi ∈ [ai, bi]
for 1 ≤ i ≤ m. The bias vector b captures the center of the
zonotope, while the matrix M captures the boundaries of the
zonotope around b. A zonotope z represents all vectors in the
image of z (i.e., z[[a1,1] × · · · × [am, bm]]). In our example,
X can be abstracted by the zonotope z : [−1, 1]3 → R2:

z(ε1, ε2, ε3) = (1 + 0.5 · ε1 + 0.5 · ε2, 2 + 0.5 · ε1 + 0.5 · ε3).

Zonotope is a more precise domain than Box: for our example,
z includes only 7 integer points.

The Polyhedra [8] domain consists of convex closed poly-
hedra, where a polyhedron is captured by a set of linear
constraints of the form A · x ≤ b, for some matrix A and
a vector b. A polyhedron C contains all points which satisfy
the constraints in C. In our example, X can be abstracted by
the following polyhedron:

C = {x2 ≤ 2 · x1 + 1, x2 ≤ 4− x1, x2 ≥ 1, x2 ≥ x1}.

Polyhedra is a more precise domain than Zonotope: for our
example, C includes only 5 integer points.

To conclude, abstract elements (from an abstract domain)
represent large, potentially infinite sets. There are various
abstract domains, providing different levels of precision and
scalability.

Abstract Transformers. To compute the effect of a func-
tion on an abstract element, AI uses the concept of an
abstract transformer. Given the (lifted) concrete transformer
Tf : P(Rm)→ P(Rn) of a function f : Rm → Rn, an abstract
transformer of Tf is a function over abstract domains, denoted
by T#

f : Am → An. The superscripts denote the number of
components of the represented vectors. For example, elements
in Am represent sets of vectors of dimension m. This also
determines which variables can appear in the constraints
associated with an abstract element. For example, elements
in Am constrain the values of the variables x1, . . . , xm.

Abstract transformers have to be sound. To define sound-
ness, we introduce two functions: the abstraction function α
and the concretization function γ. An abstraction function
αm : P(Rm) → Am maps a set of vectors to an abstract
element in Am that overapproximates it. For example, in the
Box domain:

α2({(0, 1), (1, 1), (1, 3), (2, 2)}) = {0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}.

A concretization function γm : Am → P(Rm) does the
opposite: it maps an abstract element to the set of concrete
vectors that it represents. For example, for Box:

γ2({0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}) = {(0, 1), (0, 2), (0, 3),
(1, 1), (1, 2), (1, 3),
(2, 1), (2, 2), (2, 3), . . .}.

This only shows the 9 vectors with integer components. We
can now define soundness. An abstract transformer T#

f is
sound if for all a ∈ Am, we have Tf (γm(a)) ⊆ γn(T#

f (a)),
where Tf is the concrete transformer. That is, an abstract
transformer has to overapproximate the effect of a concrete
transformer. For example, the transformers illustrated in Fig. 6
are sound. For instance, if we apply the Box transformer on the
box in Fig. 6a, it will produce the box in Fig. 6b. The box in
Fig. 6b includes all points that f could compute in principle
when given any point included in the concretization of the
box in Fig. 6a. Analogous properties hold for the Zonotope
and Polyhedra transformers. It is also important that abstract
transformers are precise. That is, the abstract output should
include as few points as possible. For example, as we can
see in Fig. 6b, the output produced by the Box transformer
is less precise (it is larger) than the output produced by the
Zonotope transformer, which in turn is less precise than the
output produced by the Polyhedra transformer.

Property Verification. After obtaining the (abstract) output,
we can check various properties of interest on the result. In
general, an abstract output a = T#

f (X) proves a property
Tf (X) ⊆ C if γn(a) ⊆ C. If the abstract output proves a
property, we know that the property holds for all possible
concrete values. However, the property may hold even if it
cannot be proven with a given abstract domain. For example, in
Fig. 6b, for all concrete points, the property C = {(y1, y2) ∈
R2 | y1 ≥ −2} holds. However, with the Box domain, the
abstract output violates C, which means that the Box domain
is not precise enough to prove the property. In contrast, the
Zonotope and Polyhedra domains are precise enough to prove
the property.

In summary, to apply AI successfully, we need to: (a) find a
suitable abstract domain, and (b) define abstract transformers
that are sound and as precise as possible. In the next section,
we introduce abstract transformers for neural networks that
are parameterized by the numerical abstract domain. This
means that we can explore the precision-scalability trade-off
by plugging in different abstract domains.

IV. AI2: AI FOR NEURAL NETWORKS

In this section we present AI2, an abstract interpretation
framework for sound analysis of neural networks. We begin by
defining abstract transformers for the different kinds of neural
network layers. Using these transformers, we then show how
to prove robustness properties of neural networks.

A. Abstract Interpretation for CAT Functions

In this section, we show how to overapproximate CAT
functions with AI. We illustrate the method on the example in

ReLU1

−1 1 2 3

1

2

3

z0

x1

x2

−2 −1 1 2

1

2

3

z1

x1

x2(
2 −1
0 1

)
−2 −1 1 2

1

2

3

z2

x1

x2

z2 =
z1u(x1≥0)

−2 −1 1 2

1

2

3

z3

x1

x2

z3 =
z1u(x1<0)

−2 −1 1 2

1

2

3

z4

x1

x2(
1 0
0 1

)

−2 −1 1 2

1

2

3

z5

x1

x2(
0 0
0 1

)
−2 −1 1 2

1

2

3

z6

x1

x2

t

−2 −1 1 2

1

2

3

z7

y1

y2

ReLU2

Fig. 7: Illustration of how AI2 overapproximates neural network states. Blue circles show the concrete values, while green
zonotopes show the abstract elements. The gray box shows the steps in one application of the ReLU transformer (ReLU1).

Fig. 7, which shows a simple network that manipulates two-
dimensional vectors using a single fully connected layer of the
form f(x) = ReLU2

(
ReLU1

((
2 −1
0 1

)
· x
))

. Recall that

ReLUi(x) = case (xi ≥ 0) : x,
case (xi < 0) : Ii←0 · x,

where Ii←0 is the identity matrix with the ith row replaced
by the zero vector. We overapproximate the network behavior
on an abstract input. The input can be obtained directly (see
Sec. IV-B) or by abstracting a set of concrete inputs to an
abstract element (using the abstraction function α). For our
example, we use the concrete inputs (the blue points) from
Fig 6. Those concrete inputs are abstracted to the green
zonotope z0 : [−1, 1]3 → R2, given as:

z0(ε1, ε2, ε3) = (1 + 0.5 · ε1 + 0.5 · ε2, 2 + 0.5 · ε1 + 0.5 · ε3).

Due to abstraction, more (spurious) points may be added. In
this example, except the blue points, the entire area of the
zonotope is spurious. We then apply abstract transformers
to the abstract input. Note that, if a function f can be
written as f = f ′′ ◦ f ′, the concrete transformer for f is
Tf = Tf ′′ ◦ Tf ′ . Similarly, given abstract transformers T#

f ′

and T#
f ′′ , an abstract transformer for f is T#

f ′′ ◦ T
#
f ′ . When

a neural network N = f ′` ◦ · · · ◦ f ′1 is a composition of
multiple CAT functions f ′i of the shape f ′i(x) = W · x+ b or
fi(x) = case E1 : f1(x), . . . , case Ek : fk(x), we only have
to define abstract transformers for these two kinds of functions.
We then obtain the abstract transformer T#

N = T#
f ′`
◦ · · · ◦T#

f ′1
.

Abstracting Affine Functions. To abstract functions of the
form f(x) = W · x + b, we assume that the underlying ab-
stract domain supports the operator Aff that overapproximates
such functions. We note that for Zonotope and Polyhedra,
this operation is supported and exact. Fig. 7 demonstrates
Aff as the first step taken for overapproximating the effect
of the fully connected layer. Here, the resulting zonotope
z1 : [−1, 1]3 → R2 is:

z1(ε1, ε2, ε3) =
(2 · (1 + 0.5 · ε1 + 0.5 · ε2)− (2 + 0.5 · ε1 + 0.5 · ε3),

2 + 0.5 · ε1 + 0.5 · ε3) =
(0.5 · ε1 + ε2 − 0.5 · ε3, 2 + 0.5 · ε1 + 0.5 · ε3).

Abstracting Case Functions. To abstract functions of the
form f(x) = case E1 : f1(x), . . . , case Ek : fk(x), we first
split the abstract element a into the different cases (each
defined by one of the expressions Ei), resulting in k abstract
elements a1, . . . , ak. We then compute the result of T#

fi
(ai)

for each ai. Finally, we unify the results to a single abstract
element. To split and unify, we assume two standard operators
for abstract domains: (1) meet with a conjunction of linear
constraints and (2) join. The meet (u) operator is an abstract
transformer for set intersection: for an inequality expression
E from Fig. 3, γn(a) ∩ {x ∈ Rn | x |= E} ⊆ γn(a u E).
The join (t) operator is an abstract transformer for set union:
γn(a1) ∪ γn(a2) ⊆ γn(a1 t a2). We further assume that
the abstract domain contains an element ⊥, which satisfies
γn(⊥) = {}, ⊥ u E = ⊥ and a t ⊥ = a for a ∈ A.

For our example in Fig. 7, abstract interpretation continues
on z1 using the meet and join operators. To compute the effect
of ReLU1, z1 is split into two zonotopes z2 = z1 u (x1 ≥ 0)
and z3 = z1u (x1 < 0). One way to compute a meet between
a zonotope and a linear constraint is to modify the intervals
of the error terms (see [11]). In our example, the resulting
zonotopes are z2 : [−1, 1] × [0, 1] × [−1, 1] → R2 such that
z2(ε) = z1(ε) and z3 : [−1, 1]× [−1, 0]× [−1, 1]→ R2 such
that z3(ε) = z1(ε) for ε̄ common to their respective domains.
Note that both z2 and z3 contain small spurious areas, because
the intersections of the respective linear constraints with z1 are
not zonotopes. Therefore, they cannot be captured exactly by
the domain. Here, the meet operator u overapproximates set
intersection ∩ to get a sound, but not perfectly precise, result.

Then, the two cases of ReLU1 are processed separately. We
apply the abstract transformer of f1(x) = x to z2 and we
apply the abstract transformer of f2(x) = I0←0 · x to z3. The
resulting zonotopes are z4 = z2 and z5 : [−1, 1]2 → R2 such
that z5(ε1, ε3) = (0, 2+0.5·ε1+0.5·ε3). These are then joined
to obtain a single zonotope z6. Since z5 is contained in z4,
we get z6 = z4 (of course, this need not always be the case).
Then, z6 is passed to ReLU2. Because z6u(x1 < 0) = ⊥, this
results in z7 = z6. Finally, γ2(z7) is our overapproximation of
the network outputs for our initial set of points. The abstract
element z7 is a finite representation of this infinite set.

For f(x) = W · x+ b, T#
f (a) = Aff(a,W, b).

For f(x) = case E1 : f1(x), . . . , case Ek : fk(y),

T#
f (a) =

⊔
1≤i≤k

fi
#(a u Ei).

For f(x) = f2(f1(x)), T#
f (a) = T#

f2
(T#
f1

(a)).

Fig. 8: Abstract transformers for CAT functions.

In summary, we define abstract transformers for every kind
of CAT function (summarized in Fig. 8). These definitions
are general and are compatible with any abstract domain A
which has a minimum element ⊥ and supports (1) a meet
operator between an abstract element and a conjunction of
linear constraints, (2) a join operator between two abstract
elements, and (3) an affine transformer. We assume that
the operations are sound. We note that these operations are
standard or definable with standard operations. By definition
of the abstract transformers, we get soundness:

Theorem 1. For any CAT function f with transformer
Tf : P(Rm)→ P(Rn) and any abstract input a ∈ Am,

Tf (γm(a)) ⊆ γn(T#
f (a)).

Theorem 1 is the key to sound neural network analysis with
our abstract transformers, as we explain in the next section.

B. Neural Network Analysis with AI

In this section, we explain how to leverage AI with our ab-
stract transformers to prove properties of neural networks. We
focus on robustness properties below, however, the framework
can be applied to reason about any safety property.

For robustness, we aim to determine if for a (possibly un-
bounded) set of inputs, the outputs of a neural network satisfy
a given condition. A robustness property for a neural network
N : Rm → Rn is a pair (X,C) ∈ P(Rm)×P(Rn) consisting
of a robustness region X and a robustness condition C. We
say that the neural network N satisfies a robustness property
(X,C) if N(x) ∈ C for all x ∈ X .

Local Robustness. This is a property (X,CL) where X is
a robustness region and CL contains the outputs that describe
the same label L:

CL =

{
y ∈ Rn

∣∣∣∣∣ arg max
i∈{1,...,n}

(yi) = L

}
.

For example, Fig. 7 shows a neural network and a robustness
property (X,C2) for X = {(0, 1), (1, 1), (1, 3), (2, 2)} and
C2 = {y | arg max(y1, y2) = 2}. In this example, (X,C2)
holds. Typically, we will want to check that there is some
label L for which (X,CL) holds.

We now explain how our abstract transformers can be used
to prove a given robustness property (X,C).

Robustness Proofs using AI. Assume we are given a neural
network N : Rm → Rn, a robustness property (X,C) and
an abstract domain A (supporting t, u with a conjunction of

linear constraints, Aff, and ⊥) with an abstraction function α
and a concretization function γ. Further assume that N can
be written as a CAT function. Denote by T#

N the abstract
transformer of N , as defined in Fig. 8. Then, the following
condition is sufficient to prove that N satisfies (X,C):

γn(T#
N (αm(X))) ⊆ C.

This follows from Theorem 1 and the properties of α and γ.
Note that there may be abstract domains A that are not precise
enough to prove that N satisfies (X,C), even if N in fact
satisfies (X,C). On the other hand, if we are able to show
that some abstract domain A proves that N satisfies (X,C),
we know that it holds.

Proving Containment. To prove the property (X,C) given
the result a = T#

N (αm(X)) of abstract interpretation, we
need to be able to show γn(a) ⊆ C. There is a general
method if C is given by a CNF formula

∧
i

∨
j li,j where

all literals li,j are linear constraints: we show that the negated
formula

∨
i

∧
j ¬li,j is inconsistent with the abstract element

a by checking that a u
(∧

j ¬li,j
)

= ⊥ for all i.
For our example in Fig. 7, the goal is to check that all inputs

are classified as 2. We can represent C using the formula
y2 ≥ y1. Its negation is y2 < y1, and it suffices to show that
no point in the concretization of the abstract output satisfies
this negated constraint. As indeed z7 u (y2 < y1) = ⊥, the
property is successfully verified. However, note that we would
not be able to prove some other true properties, such as y1 ≥ 0.
This property holds for all concrete outputs, but some points
in the concretization of the output z7 do not satisfy it.

V. IMPLEMENTATION OF AI2

The AI2 framework is implemented in the D programming
language and supports any neural network composed of fully
connected, convolutional, and max pooling layers.

Properties. AI2 supports properties (X,C) where X is speci-
fied by a zonotope and C by a conjunction of linear constraints
over the output vector’s components. In our experiments, we
illustrate the specification of local robustness properties where
the region X is defined by a box or a line, both of which are
precisely captured by a zonotope.

Abstract Domains. The AI2 system is fully integrated with
all abstract domains supported by Apron [20], a popular
library for numerical abstract domains, including: Box [7],
Zonotope [10], and Polyhedra [8].

Bounded Powerset. We also implemented bounded powerset
domains (disjunctive abstractions [33], [36]), which can be
instantiated with any of the above abstract domains. An ab-
stract element in the powerset domain P(A) of an underlying
abstract domain A is a set of abstract elements from A, con-
cretizing to the union of the concretizations of the individual
elements (i.e., γ(A) =

⋃
a∈A γ(a) for A ∈ P(A)).

The powerset domain can implement a precise join oper-
ator using standard set union (potentially pruning redundant

elements). However, since the increased precision can become
prohibitively costly if many join operations are performed,
the bounded powerset domain limits the number of abstract
elements in a set to N (for some constant N).

We implemented bounded powerset domains on top of stan-
dard powerset domains using a greedy heuristic that repeatedly
replaces two abstract elements in a set by their join, until the
number of abstract elements in the set is below the bound N .
For joining, AI2 heuristically selects two abstract elements that
minimize the distance between the centers of their bounding
boxes. In our experiments, we denote by ZonotopeN or
ZN the bounded powerset domain with bound N ≥ 2 and
underlying abstract domain Zonotope.

VI. EVALUATION OF AI2

In this section, we present our empirical evaluation of AI2.
Before discussing the results in detail, we summarize our three
most important findings:
• AI2 can prove useful robustness properties for convo-

lutional networks with 53 000 neurons and large fully
connected feedforward networks with 1 800 neurons.

• AI2 benefits from more precise abstract domains: Zono-
tope enables AI2 to prove substantially more properties
over Box. Further, ZonotopeN , with N ≥ 2, can prove
stronger robustness properties than Zonotope alone.

• AI2 scales better than the SMT-based Reluplex [21]: AI2

is able to verify robustness properties on large networks
with ≥ 1200 neurons within few minutes, while Reluplex
takes hours to verify the same properties.

In the following, we first describe our experimental setup.
Then, we present and discuss our results.

A. Experimental Setup

We now describe the datasets, neural networks, and robust-
ness properties used in our experiments.

Datasets. We used two popular datasets: MNIST [25] and
CIFAR-10 [22] (referred to as CIFAR from now on). MNIST
consists of 60 000 grayscale images of handwritten digits,
whose resolution is 28 × 28 pixels. The images show white
digits on a black background.

CIFAR consists of 60 000 colored photographs with 3 color
channels, whose resolution is 32× 32 pixels. The images are
partitioned into 10 different classes (e.g., airplane or bird).
Each photograph has a different background (unlike MNIST).

Neural Networks. We trained convolutional and fully con-
nected feedforward networks on both datasets. All networks
were trained using accelerated gradient descent with at least
50 epochs of batch size 128. The training completed when
each network had a test set accuracy of at least 0.9.

For the convolutional networks, we used the LeNet ar-
chitecture [26], which consists of the following sequence
of layers: 2 convolutional, 1 max pooling, 2 convolutional,
1 max pooling, and 3 fully connected layers. We write
np×q to denote a convolutional layer with n filters of size
p × q, and m to denote a fully connected layer with m

neurons. The hidden layers of the MNIST network are
83×3, 83×3, 143×3, 143×3, 50, 50, 10, and those of the CI-
FAR network are 243×3, 243×3, 323×3, 323×3, 100, 100, 10.
The max pooling layers of both networks have a size of 2×2.
We trained our networks using an open-source implementa-
tion [37].

We used 7 different architectures of fully connected feed-
forward networks (FNNs). We write l× n to denote the FNN
architecture with l layers, each consisting of n neurons. Note
that this determines the network’s size; e.g., a 4× 50 network
has 200 neurons. For each dataset, MNIST and CIFAR, we
trained FNNs with the following architectures: 3×20, 6×20,
3× 50, 3× 100, 6× 100, 6× 200, and 9× 200.

Robustness Properties. In our experiments, we consider
local robustness properties (X,CL) where the region X cap-
tures changes to lighting conditions. This type of property is
inspired by the work of [32], where adversarial examples were
found by brightening the pixels of an image.

Formally, we consider robustness regions Sx,δ that are
parameterized by an input x ∈ Rm and a robustness bound
δ ∈ [0, 1]. The robustness region is defined as:

Sx,δ = {x′ ∈ Rm | ∀i ∈ [1,m]. 1−δ ≤ xi ≤ x′i ≤ 1∨x′i = xi}.

For example, the robustness region for x = (0.6, 0.85, 0.9)
and bound δ = 0.2 is given by the set:

{(0.6, x, x′) ∈ R3 | x ∈ [0.85, 1], x′ ∈ [0.9, 1]}.

Note that increasing the bound δ increases the region’s size.
In our experiments, we used AI2 to check whether all inputs

in a given region Sx,δ are classified to the label assigned to x.
We consider 6 different robustness bounds δ, which are drawn
from the set ∆ = {0.001, 0.005, 0.025, 0.045, 0.065, 0.085}.

We remark that our robustness properties are stronger than
those considered in [32]. This is because, in a given robustness
region Sx,δ , each pixel of the image x is brightened indepen-
dently of the other pixels. We remark that this is useful to
capture scenarios where only part of the image is brightened
(e.g., due to shadowing).

Other perturbations. Note that AI2 is not limited to cer-
tifying robustness against such brightening perturbations. In
general, AI2 can be used whenever the set of perturbed
inputs can be overapproximated with a set of zonotopes in
a precise way (i.e., without adding too many inputs that do
not capture actual perturbations to the robustness region). For
example, the inputs perturbed by an `∞ attack [3] are captured
exactly by a single zonotope. Further, rotations and translations
have low-dimensional parameter spaces, and therefore can be
overapproximated by a set of zonotopes in a precise way.

Benchmarks. We selected 10 images from each dataset.
Then, we specified a robustness property for each image and
each robustness bound in ∆, resulting in 60 properties per
dataset. We ran AI2 to check whether each neural network
satisfies the robustness properties for the respective dataset.
We compared the results using different abstract domains,

0.001 0.005 0.025 0.045 0.065 0.085
0%

20%

40%

60%

80%

100%

Verified robustness

Box
Zonotope

(a) MNIST

0.001 0.005 0.025 0.045 0.065 0.085
0%

20%

40%

60%

80%

100%

Verified robustness

(b) CIFAR

Fig. 9: Verified properties by AI2 on the MNIST and CIFAR convolutional networks for each bound δ ∈ ∆ (x-axis).

including Box, Zonotope, and ZonotopeN with N ranging
between 2 and 128.

We ran all experiments on an Ubuntu 16.04.3 LTS server
with two Intel Xeon E5-2690 processors and 512GB of
memory. To compare AI2 to existing solutions, we also ran
the FNN benchmarks with Reluplex [21]. We did not run
convolutional benchmarks with Reluplex as it currently does
not support convolutional networks.

B. Discussion of Results

In the following, we first present our results for convolu-
tional networks. Then, we present experiments with different
abstract domains and discuss how the domain’s precision
affects AI2’s ability to verify robustness. We also plot AI2’s
running times for different abstract domains to investigate
the trade-off between precision and scalability. Finally, we
compare AI2 to Reluplex.

Proving Robustness of Convolutional Networks. We start
with our results for convolutional networks. AI2 terminated
within 1.5 minutes when verifying properties on the MNIST
network and within 1 hour when verifying the CIFAR network.

In Fig. 9, we show the fraction of robustness properties
verified by AI2 for each robustness bound. We plot separate
bars for Box and Zonotope to illustrate the effect of the
domain’s precision on AI2’s ability to verify robustness.

For both networks, AI2 verified all robustness properties for
the smallest bound 0.001 and it verified at least one property
for the largest bound 0.085. This demonstrates that AI2 can
verify properties of convolutional networks with rather wide
robustness regions. Further, the number of verified properties
converges to zero as the robustness bound increases. This
is expected, as larger robustness regions are more likely to
contain adversarial examples.

In Fig. 9a, we observe that Zonotope proves significantly
more properties than Box. For example, Box fails to prove
any robustness properties with bounds at least 0.025, while
Zonotope proves 80% of the properties with bounds 0.025
and 0.045. This indicates that Box is often imprecise and fails
to prove properties that the network satisfies.

Similarly, Fig. 9b shows that Zonotope proves more robust-
ness properties than Box also for the CIFAR convolutional net-
work. The difference between these two domains is, however,
less significant than that observed for the MNIST network. For
example, both Box and Zonotope prove the same properties
for bounds 0.065 and 0.085.

Precision of Different Abstract Domains. Next, we demon-
strate that more precise abstract domains enable AI2 to prove
stronger robustness properties. In this experiment, we consider
our 9 × 200 MNIST and CIFAR networks, which are our
largest fully connected feedforward networks. We evaluate the
Box, Zonotope, and the ZonotopeN domains for exponentially
increasing bounds of N between 2 and 64. We do not report
results for the Polyhedra domain, which takes several days to
terminate for our smallest networks.

In Fig. 10, we show the fraction of verified robustness
properties as a function of the abstract domain used by AI2.
We plot a separate line for each robustness bound. All runs of
AI2 in this experiment completed within 1 hour.

The graphs show that Zonotope proves more robustness
properties than Box. For the MNIST network, Box proves 11
out of all 60 robustness properties (across all 6 bounds), failing
to prove any robustness properties with bounds above 0.005.
In contrast, Zonotope proves 43 out of the 60 properties and
proves at least 50% of the properties across the 6 robustness
bounds. For the CIFAR network, Box proves 25 out of the 60
properties while Zonotope proves 35.

Box Zono Z2 Z4 Z8 Z16 Z32 Z64
0%

20%

40%

60%

80%

100%

Verified robustness

0.001 0.005 0.025
0.045 0.065 0.085

(a) MNIST

Box Zono Z2 Z4 Z8 Z16 Z32 Z64
0%

20%

40%

60%

80%

100%

Verified robustness

0.001 0.005 0.025
0.045 0.065 0.085

(b) CIFAR

Fig. 10: Verified properties as a function of the abstract domain used by AI2 for the 9× 200 network. Each point represents
the fraction of robustness properties for a given bound (as specified in the legend) verified by a given abstract domain (x-axis).

Box Zono Z2 Z4 Z8 Z16 Z32 Z64
0.01s

0.10s

1s

10s

100s

500s

Time (seconds)

3x20 6x20
3x50 3x100
6x100 6x200
9x200

Fig. 11: Average running time of AI2 when proving robustness
properties on MNIST networks as a function of the abstract
domain used by AI2 (x-axis). Axes are scaled logarithmically.

The data also demonstrates that bounded sets of zonotopes
further improve AI2’s ability to prove robustness properties.
For the MNIST network, Zonotope64 proves more robustness
properties than Zonotope for all 4 bounds for which Zonotope
fails to prove at least one property (i.e., for bounds δ ≥ 0.025).
For the CIFAR network, Zonotope64 proves more properties
than Zonotope for 4 out of the 5 the bounds. The only
exception is the bound 0.085, where Zonotope64 and Zonotope
prove the same set of properties.

Trade-off between Precision and Scalability. In Fig. 11,
we plot the running time of AI2 as a function of the abstract
domain. Each point in the graph represents the average running
time of AI2 when proving a robustness property for a given
MNIST network (as indicated in the legend). We use a log-log
plot to better visualize the trade-off in time.

The data shows that AI2 can efficiently verify robustness
of large networks. AI2 terminates within a few minutes for
all MNIST FNNs and all considered domains. Further, we
observe that AI2 takes less than 10 seconds on average to
verify a property with the Zonotope domain.

As expected, the graph demonstrates that more precise
domains increase AI2’s running time. More importantly, AI2’s
running time is polynomial in the bound N of ZonotopeN ,
which allows one to adjust AI2’s precision by increasing N .

Comparison to Reluplex. The current state-of-the-art system
for verifying properties of neural networks is Reluplex [21].
Reluplex supports FNNs with ReLU activation functions, and
its analysis is sound and complete. Reluplex would eventually
either verify a given property or return a counterexample.

To compare the performance of Reluplex and AI2, we ran
both systems on all MNIST FNN benchmarks. We ran AI2

using Zonotope and Zonotope64. For both Reluplex and AI2,
we set a 1 hour timeout for verifying a single property.

Fig. 12 presents our results: Fig. 12a plots the average
running time of Reluplex and AI2 and Fig. 12b shows the
fraction of robustness properties verified by the systems. The
data shows that Reluplex can analyze FNNs with at most 600
neurons efficiently, typically within a few minutes. Overall,
both system verified roughly the same set of properties.
However, Reluplex crashed during verification of some of the
properties. This explains why AI2 was able to prove slightly

3x20 6x20 3x50 3x100 6x100 6x200 9x200
0s

1,000s

2,000s

3,000s

(a)

Time (seconds)

Zonotope
Zonotope64
Reluplex

3x20 6x20 3x50 3x100 6x100 6x200 9x200
0%

20%

40%

60%

80%

100%

(b)

Verified robustness

Fig. 12: Comparing the performance of AI2 to Reluplex. Each point is an average of the results for all 60 robustness properties
for the MNIST networks. Each point in (a) represents the average time to completion, regardless of the result of the computation.
While not shown, the result of the computation could be a failure to verify, timeout, crash, or discovery of a counterexample.
Each point in (b) represents the fraction of the 60 robustness properties that were verified.

more properties than Reluplex on the smaller FNNs.
For large networks with more than 600 neurons, the running

time of Reluplex increases significantly and its analysis often
times out. In contrast, AI2 analyzes the large networks within
a few minutes and verifies substantially more robustness
properties than Reluplex. For example, Zonotope64 proves
57 out of the 60 properties on the 6 × 200 network, while
Reluplex proves 3. Further, Zonotope64 proves 45 out of the
60 properties on the largest 9× 200 network, while Reluplex
proves none. We remark that while Reluplex did not verify
any property on the largest 9 × 200 network, it did disprove
some of the properties and returned counterexamples.

We also ran Reluplex without a predefined timeout to
investigate how long it would take to verify properties on the
large networks. To this end, we ran Reluplex on properties that
AI2 successfully verified. We observed that Reluplex often
took more than 24 hours to terminate. Overall, our results
indicate that Reluplex does not scale to larger FNNs whereas
AI2 succeeds on these networks.

VII. COMPARING DEFENSES WITH AI2

In this section, we illustrate a practical application of AI2:
evaluating and comparing neural network defenses. A defense
is an algorithm whose goal is to reduce the effectiveness of
a certain attack against a specific network, for example, by
retraining the network with an altered loss function. Since
the discovery of adversarial examples, many works have sug-
gested different kinds of defenses to mitigate this phenomenon
(e.g., [12], [27], [42]). A natural metric to compare defenses
is the average “size” of the robustness region on some test set.
Intuitively, the greater this size is, the more robust the defense.

We compared three state-of-the-art defenses:
• GSS [12] extends the loss with a regularization term

encoding the fast gradient sign method (FGSM) attack.
• Ensemble [42] is similar to GSS, but includes regular-

ization terms from attacks on other models.
• MMSTV [27] adds, during training, a perturbation layer

before the input layer which applies the FGSMk attack.
FGSMk is a multi-step variant of FGSM, also known as
projected gradient descent.

All these defenses attempt to reduce the effectiveness of the
FGSM attack [12]. This attack consists of taking a network N
and an input x and computing a vector ρN,x in the input space
along which an adversarial example is likely to be found. An
adversarial input a is then generated by taking a step ε along
this vector: a = x+ ε · ρN,x.

We define a new kind of robustness region, called line, that
captures resilience with respect to the FGSM attack. The line
robustness region captures all points from x to x + δ · ρN,x
for some robustness bound δ:

LN,x,δ = {x+ ε · ρN,x | ε ∈ [0, δ]}.

This robustness region is a zonotope and can thus be precisely
captured by AI2.

We compared the three state-of-the-art defenses on the
MNIST convolutional network described in Section VI; we
call this the Original network. We trained the Original network
with each of the defenses, which resulted in 3 additional
networks: GSS, Ensemble, and MMSTV. We used 40 epochs
for GSS, 12 epochs for Ensemble, and 10 000 training steps
for MMSTV using their published frameworks.

Original GSS Ensemble MMSTV
0

0.1

0.2

0.3

0.4

0.5

Defense

Robustness bound δ

Fig. 13: Box-and-whisker plot of the verified bounds for the
Original, GSS, Ensemble, and MMSTV networks. The boxes
represent the δ for the middle 50% of the images, whereas
the whiskers represent the minimum and maximum δ. The
inner-lines are the averages.

We conducted 20 experiments. In each experiment, we
randomly selected an image x and computed ρN,x. Then, for
each network, our goal was to find the largest bound δ for
which AI2 proves the region LN,x,δ robust. To approximate
the largest robustness bound, we ran binary search to depth 6
and ran AI2 with the Zonotope domain for each candidate
bound δ. We refer to the largest robustness bound verified by
AI2 as the verified bound.

The average verified bounds for the Original, GSS, Ensem-
ble, and MMSTV networks are 0.026, 0.031, 0.042, and 0.209,
respectively. Fig. 13 shows a box-and-whisker plot which
demonstrates the distribution of the verified bounds for the
four networks. The bottom and top of each whisker show the
minimum and maximum verified bounds discovered during
the 20 experiments. The bottom and top of each whisker’s
box show the first and third quartiles of the verified bounds.

Our results indicate that MMSTV provides a significant
increase in provable robustness against the FGSM attack.
In all 20 experiments, the verified bound for the MMSTV
network was larger than those found for the Original, GSS,
and Ensemble networks. We observe that GSS and Ensemble
defend the network in a way that makes it only slightly more
provably robust, consistent with observations that these styles
of defense are insufficient [16], [27].

VIII. RELATED WORK

In this section, we survey the works closely related to ours.

Adversarial Examples. [40] showed that neural networks are
vulnerable to small perturbations on inputs. Since then, many
works have focused on constructing adversarial examples.

For example, [30] showed how to find adversarial examples
without starting from a test point, [41] generated adversarial
examples using random perturbations, [35] demonstrated that
even intermediate layers are not robust, and [14] generated
adversarial examples for malware classification. Other works
presented ways to construct adversarial examples during the
training phase, thereby increasing the network robustness (see
[3], [12], [15], [17], [29], [38]). [1] formalized the notion of
robustness in neural networks and defined metrics to evaluate
the robustness of a neural network. [32] illustrated how to
systematically generate adversarial examples that cover all
neurons in the network.

Neural Network Analysis. Many works have studied the ro-
bustness of networks. [34] presented an abstraction-refinement
approach for FNNs. However, this was shown successful for a
network with only 6 neurons. [37] introduced a bounded model
checking technique to verify safety of a neural network for
the Cart Pole system. [18] showed a verification framework,
based on an SMT solver, which verified the robustness with
respect to a certain set of functions that can manipulate the
input and are minimal (a notion which they define). However,
it is unclear how one can obtain such a set. [21] extended the
simplex algorithm to verify properties of FNNs with ReLU.

Robustness Analysis of Programs. Many works deal with
robustness analysis of programs (e.g., [4], [5], [13], [28]).
[28] considered a definition of robustness that is similar to
the one in our work, and [5] used a combination of abstract
interpretation and SMT-based methods to prove robustness of
programs. The programs considered in this literature tend to
be small but have complex constructs such as loops and array
operations. In contrast, neural networks (which are our focus)
are closer to circuits, in that they lack high-level language
features but are potentially massive in size.

IX. CONCLUSION AND FUTURE WORK

We presented AI2, the first system able to certify convolu-
tional and large fully connected networks. The key insight
behind AI2 is to phrase the problem of analyzing neural
networks in the classic framework of abstract interpretation.
To this end, we defined abstract transformers that capture the
behavior of common neural network layers and presented a
bounded powerset domain that enables a trade-off between
precision and scalability. Our experimental results showed that
AI2 can effectively handle neural networks that are beyond the
reach of existing methods.

We believe AI2 and the approach behind it is a promising
step towards ensuring the safety and robustness of AI systems.
Currently, we are extending AI2 with additional abstract trans-
formers to support more neural network features. We are also
building a library for modeling common perturbations, such as
rotations, smoothing, and erosion. We believe these extensions
would further improve AI2’s applicability and foster future
research in AI safety.

REFERENCES

[1] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vy-
tiniotis, Aditya V. Nori, and Antonio Criminisi. Measuring neural net
robustness with constraints. In Proceedings of the 30th International
Conference on Neural Information Processing Systems (NIPS), pages
2621–2629, 2016.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.
End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016.

[3] Nicholas Carlini and David A. Wagner. Towards evaluating the robust-
ness of neural networks. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 39–57, 2017.

[4] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Conti-
nuity analysis of programs. In Proceedings of the 37th Annual ACM
Symposium on Principles of Programming Languages (POPL), pages
57–70, 2010.

[5] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara
Navidpour. Proving programs robust. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering (ESEC/FSE), pages 102–112. ACM, 2011.

[6] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th ACM Symposium on
Principles of Programming Languages (POPL), pages 238–252, 1977.

[8] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of the 5th
ACM Symposium on Principles of Programming Languages (POPL),
pages 84–96, 1978.

[9] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno,
Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. Robust physical-
world attacks on machine learning models. CoRR, abs/1707.08945,
2017.

[10] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. The zonotope abstract
domain taylor1+. In Proceedings of the 21st International Conference
on Computer Aided Verification (CAV), pages 627–633, 2009.

[11] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. A logical product
approach to zonotope intersection. In Proceedings of the 22Nd Interna-
tional Conference on Computer Aided Verification (CAV), 2010.

[12] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. CoRR, abs/1412.6572, 2014.

[13] Eric Goubault and Sylvie Putot. Robustness analysis of finite precision
implementations. In Programming Languages and Systems - 11th Asian
Symposium (APLAS), pages 50–57, 2013.

[14] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes,
and Patrick D. McDaniel. Adversarial perturbations against deep neural
networks for malware classification. CoRR, abs/1606.04435, 2016.

[15] Shixiang Gu and Luca Rigazio. Towards deep neural network architec-
tures robust to adversarial examples. CoRR, abs/1412.5068, 2014.

[16] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn
Song. Adversarial example defense: Ensembles of weak defenses are
not strong. In USENIX (WOOT 17). USENIX Association, 2017.

[17] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári.
Learning with a strong adversary. CoRR, abs/1511.03034, 2015.

[18] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety
verification of deep neural networks. In Computer Aided Verification,
29th International Conference (CAV), pages 3–29, 2017.

[19] David H Hubel and Torsten N Wiesel. Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex. The
Journal of physiology, 160(1):106–154, 1962.

[20] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical
abstract domains for static analysis. In Computer Aided Verification,
21st International Conference (CAV), pages 661–667, 2009.

[21] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. Reluplex: An efficient SMT solver for verifying deep
neural networks. In Computer Aided Verification, 29th International
Conference (CAV), pages 97–117, 2017.

[22] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, 2009.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In Proceedings
of the 25th International Conference on Neural Information Processing
Systems (NIPS), pages 1097–1105, 2012.

[24] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. CoRR, abs/1607.02533, 2016.

[25] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. In Proceedings of the
IEEE, pages 2278–2324, 1998.

[26] Yann Lecun, Larry Jackel, Bernhard E. Boser, John Denker, H.P. Graf,
Isabelle Guyon, Don Henderson, R. E. Howard, and W. Hubbard.
Handwritten digit recognition: Applications of neural network chips and
automatic learning. IEEE Communications Magazine, 27(11), 1989.

[27] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. In International Conference on Learning Repre-
sentations (ICLR), 2018.

[28] Rupak Majumdar and Indranil Saha. Symbolic robustness analysis. In
Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS),
pages 355–363, 2009.

[29] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: A simple and accurate method to fool deep neural
networks. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2574–2582, 2016.

[30] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecognizable im-
ages. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 427–436, 2015.

[31] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and
Ananthram Swami. Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE Symposium on Security and
Privacy (SP), pages 582–597, 2016.

[32] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings
of the 26th Symposium on Operating Systems Principles (SOSP), pages
1–18, 2017.

[33] Corneliu Popeea and Wei-Ngan Chin. Inferring disjunctive postcondi-
tions. In Proceedings of the 11th Asian Computing Science Conference
on Advances in Computer Science: Secure Software and Related Issues
(ASIAN), pages 331–345, 2007.

[34] Luca Pulina and Armando Tacchella. An abstraction-refinement ap-
proach to verification of artificial neural networks. In Computer Aided
Verification, 22nd International Conference (CAV), 2010.

[35] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J. Fleet. Ad-
versarial manipulation of deep representations. CoRR, abs/1511.05122,
2015.

[36] Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti
Gupta. Static analysis in disjunctive numerical domains. In Static
Analysis, 13th International Symposium, SAS), pages 3–17, 2006.

[37] Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker.
Towards verification of artificial neural networks. In Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schal-
tungen und Systemen (MBMV) 2015, pages 30–40, 2015.

[38] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding
adversarial training: Increasing local stability of neural nets through
robust optimization. CoRR, abs/1511.05432, 2015.

[39] Gagandeep Singh, Markus Püschel, and Martin Vechev. Fast polyhedra
abstract domain. In Proceedings of the 44th ACM Symposium on
Principles of Programming Languages (POPL), pages 46–59, 2017.

[40] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. CoRR, abs/1312.6199, 2013.

[41] Pedro Tabacof and Eduardo Valle. Exploring the space of adversarial
images. In 2016 International Joint Conference on Neural Networks
(IJCNN), pages 426–433, 2016.

[42] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses.
arXiv preprint arXiv:1705.07204, 2017.

[43] Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and
Patrick D. McDaniel. The space of transferable adversarial examples.
CoRR, abs/1704.03453, 2017.

[44] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. Droid-
sec: deep learning in android malware detection. In ACM SIGCOMM
2014 Conference, pages 371–372, 2014.

APPENDIX

A. CAT function representations of the Convolutional Layer and the Max Pooling Layer

In this section, we provide the formal definitions of the matrices and vectors used to represent the convolutional layer and
the max pooling layer as CAT functions.

Convolutional Layer. Recall that for filters W k ∈ Rp×q×r, bk ∈ R for 1 ≤ k ≤ t, we have

ConvF (x) : Rn×m×r → R(m−p+1)×(n−q+1)×t

ConvF (x)i,j,k = ReLU(
p∑

i′=1

q∑
j′=1

r∑
k′=1

W k
i′,j′,k′ · x(i+i′−1),(j+j′−1),k′ + bk),

for 1 ≤ i ≤ m− p+ 1, 1 ≤ j ≤ n− q+ 1 and 1 ≤ k ≤ t. Reshaping both the input and the output vector such that they have
only one index, we obtain

Conv′F (x) : Rn·m·r → R(m−p+1)·(n−q+1)·t

Conv′F (x)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(
p∑

i′=1

q∑
j′=1

r∑
k′=1

W k
i′,j′,k′ · xn·r·(i+i′−2)+r·(j+j′−2)+k′ + bk),

for 1 ≤ i ≤ m − p + 1, 1 ≤ j ≤ n − q + 1 and 1 ≤ k ≤ t. The function Conv′F is ReLU after an affine transformation,
therefore there is a matrix WF ∈ R((m−p+1)·(n−q+1)·t)×(n·m·r) and a vector b

F ∈ R(m−p+1)·(n−q+1)·t such that

ConvF (x)v = Conv′F (xv) = ReLU(WF · xv + bF) = FC
WF ,b

F (x).

The entries of WF and b
F

are obtained by equating

FC(el)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(WF
(n−q+1)·t·(i−1)+t·(j−1)+k,l + bF(n−q+1)·t·(i−1)+t·(j−1)+k) with

Conv′F (el)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(
p∑

i′=1

q∑
j′=1

r∑
k′=1

W k
i′,j′,k′ · [l = n · r · (i+ i′ − 2) + r · (j + j′ − 2) + k′] + bk),

for standard basis vectors el with (el)i = [l = i] for 1 ≤ l ≤ n and 1 ≤ i ≤ n ·m · r. This way, we obtain

WF
(n−q+1)·t·(i−1)+t·(j−1)+k,l =

p∑
i′=1

q∑
j′=1

r∑
k′=1

W k
i′,j′,k′ · [l = n · r · (i+ i′ − 2) + r · (j + j′ − 2) + k′] and

bF(n−q+1)·t·(i−1)+t·(j−1)+k = bk,

for 1 ≤ i ≤ m− p+ 1, 1 ≤ j ≤ n− q + 1 and 1 ≤ k ≤ t. Note that here, [ϕ] is an Iverson bracket, which is equal to 1 if ϕ
holds and equal to 0 otherwise.

Max Pooling Layer. Recall that MaxPoolp,q : Rm×n×r → R
m
p ×

n
q×r partitions the input vector into disjoint blocks of size

p × q × 1 and replaces each block by its maximum value. Furthermore, MaxPool′p,q : Rm·n·r → R
m
p ·

n
q ·r is obtained from

MaxPoolp,q by reshaping both the input and output: MaxPool′p,q(x
v) = MaxPoolp,q(x)v . We will represent MaxPool′p,q as a

composition of CAT functions,

MaxPool′p,q = fm
p ·

n
q ·r ◦ . . . ◦ f1 ◦ f

MP.

Here, fMP rearranges the input vector such that values from the same block are adjacent. Values from different blocks are
brought into the same order as the output from each block appears in the output vector.

Note that ((i − 1) mod p) + 1, (j − 1) mod q) + 1, 1) are the indices of input value xi,j,k within its respective block and(⌊
i−1
p

⌋
+ 1,

⌊
j−1
q

⌋
+ 1, k

)
are the indices of the unique value in the output vector whose value depends on xi,j,k. Recall that

the permutation matrix M representing a permutation π is given by Mπ(i) = ei.
The CAT function fMP is a linear transformation fMP(xv) = WMP · xv where the permutation matrix WMP is given by

WMP
r·p·q·(n

q b i−1
p c+b j−1

q c)+p·q·(k−1)+q·((i−1) mod p)+((j−1) mod q)+1
= en·r·(i−1)+r·(j−1)+k,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ r.

For each 1 ≤ i ≤ m
p ·

n
p · r, the CAT function fi selects the maximum value from a (p · q)-segment starting from the ith

component of the input vector. The function fi consists of a sequence of cases, one for each of the p · q possible indices of
the maximal value in the segment:

fi(x) = case (xi ≥ xi+1) ∧ . . . ∧ (xi ≥ xi+p·q−1) : W (i,i) · x,
case (xi+1 ≥ xi) ∧ . . . ∧ (xi+1 ≥ xi+p·q−1) : W (i,i+1) · x,

...

case (xi+p·q−1 ≥ xi) ∧ . . . ∧ (xi+p·q−1 ≥ xi+p·q−2) : W (i,i+p·q−1) · x.

The matrix W (i,k) ∈ R(m·n·r−(p·q−1)·i)×(m·n·r−(p·q−1)·(i−1)) replaces the segment xi, . . . , xi+p·q−1 of the input vector x by
the value xk and is given by

W
(i,k)
j =

 ej , if 1 ≤ j ≤ i− 1
ek, if j = i
ej+p·q−1, if i+ 1 ≤ j ≤ m · n · r − (p · q − 1) · i

.

