
61september 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •1070-9932/18©2018IEEE

The Task-Motion Kit
By Neil T. Dantam, Swarat Chaudhuri, and Lydia E. Kavraki

An Open Source,
General-Purpose Task
and Motion Planning
Framework

©istockphoto.com/R_Type

R
obots require novel reasoning systems to achieve complex
objectives in new environments. Daily activities in the physical
world combine two types of reasoning: discrete and continuous.
For example, to set the table in Figure 1, the robot must make
discrete decisions about which and in what order to pick

objects, and it must execute these decisions by computing continuous
motions to reach objects or desired locations. Robotics has traditionally
treated these issues in isolation. Reasoning about discrete events is
referred to as task planning, while reasoning about and computing
continuous motions is in the realm of motion planning.

However, several recent works have shown that separating task
planning from motion planning, i.e., finding a series of actions
that will later be executed through continuous motion, is
problematic. For example, the next discrete action may
specify picking an object, but there may be no contin-
uous motion for the robot to bring its hand to a
configuration that can actually grasp the object to
pick it up. Instead, task-motion planning (TMP)
tightly couples task planning and motion plan-
ning, producing a sequence of steps that can
actually be executed by a real robot to bring
the world from an initial to a final state.
This article provides an introduction to
TMP and discusses the implementation
and use of an open-source TMP frame-
work that is adaptable to new robots,
scenarios, and algorithms.

TMP presents challenges both in
algorithmic design and software engi-
neering. Interaction between the discrete
task component and the continuous
motion component imposes require-
ments not faced by stand-alone task plan-
ners or motion planners. The planner may
need to consider alternative task plans in an
efficient way until finding one that can actu-
ally be executed by the robot at hand, whereas
typical task planners generate only a single plan.
In addition, actions where the robot grasps and
rearranges objects will change the kinematics and
configuration space in which the robot can move,

Date of publication: 17 May 2018
Digital Object Identifier 10.1109/MRA.2018.2815081

62 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2018

whereas typical motion planners assume a fixed configuration
space. Thus, we cannot expect to combine existing tools for
isolated task planning and motion planning and produce
frameworks that can consistently use high-level specifications
of behavior to produce motion. Instead, we must handle the
possible interactions of discrete and continuous components
to identify task plans and executable motions.

TM Kit (TMKit) is an end-to-end system for probabilisti-
cally complete TMP and real-time execution. [Code and doc-

umentation are available at [21] under a permissive (BSD)
license.] TMKit follows the high-level design shown in Figure 2
to implement the algorithm of [1] and [2] and at the same
time provides a general framework to integrate multiple
methods for task planning, motion planning, and TM inter-
action. Shared abstractions and data structures are funda-
mental aspects of TMKit that enable the coupling of task
planning, motion planning, and real-time estimation and
control. TMKit is modular and extensible, and we are adapt-
ing it to additional methods for TMP [3], [4]. Whenever
appropriate, we employ widely used formats and protocols to
promote compatibility. The resulting system generates real-
time, collision-free robot motion from high-level specifica-
tions. To our knowledge, this is the first publicly available,
general-purpose TMP framework. Sharing this project with
the community will encourage the implementation of more
TMP approaches and provide a valuable tool for the develop-
ment and comparison of related techniques.

Background

Task Planning
Task planning identifies a sequence of discrete actions that
change an initial state into a desired goal state or condition,
given a task domain that defines the available actions and
their preconditions and effects. This field evolved largely from
pioneering work on the Stanford Research Institute Planning
System [5]. The leading approaches for efficient task planning
are heuristic search [6] and constraint satisfaction [7].

Off-the-shelf task planners typically focus on efficiently
finding a single plan. In contrast, TMP often requires search-
ing through multiple alternative task plans, as previously
discussed. This raises an inherent challenge: motion planners
that are used to compute paths are, at best, probabilistically
complete for high-dimensional systems. Consequently, we
cannot generally prove the nonexistence of corresponding
motion plans. To address this challenge, our system does not
use an off-the-shelf task planner but rather employs a newly
introduced task planner capable of efficiently generating alter-
native plans.

(c)

(a)

(b)

Figure 1. An example of a TMP problem: setting a table. The
input for the TMP includes (a) the start state, (b) the goal state,
and a set of allowable actions (e.g., pick, place, and so on). (c)
TMP finds the output, which consists of a sequence of discrete
actions (the task plan) and their corresponding continuous paths
(or motion plans).

Task Domain

Domain Semantics

Goal Scene

Start Environment

Robot Geometry

∪

TM Planner

Task
Planner

Motion
Planner

Candidate Task Actions

Additional Constraints

TM Control Robot q

Visualization q̃

TM Plan

u

Figure 2. A high-level planning and execution block diagram. The inputs are the task domain definition; the environment and robot
geometries, combined to produce the scene graph; and the domain semantics that relate the task and motion layers. The TM planner
generates a plan based on these inputs. The TM control layer executes the plan, sharing a geometric representation—the scene
graph—with the planning layer. The control output u drives the robot, resulting in configuration .q In a parallel layer, we visualize the
system at simulated configuration .qu

63september 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Motion Planning
Motion planning identifies a continuous path of valid config-
urations, i.e., joint positions, from an initial state to a desired
goal state. Sampling-based motion planners are widely used
for high-dimensional systems [8]. Such sampling-based plan-
ners offer probabilistic completeness, guaranteeing that the
planner will eventually find a solution if one exists. However,
if a solution does not exist, a sampling-based planner cannot
prove this negative; in such a case, the planner would not ter-
minate or would run until reaching a timeout. Motion plan-
ners based on gradient descent or optimization are also
common and highly efficient, but they do not offer the same
probabilistic completeness guarantees as the sampling-based
motion planners. Consequently, this work uses such sam-
pling-based planners because probabilistic completeness of
the overall framework is a desired property. Conveniently,
high-quality, open-source implementations of such planners
are available [9]. Future integration of alternative motion
planning approaches is possible, with their accompanying set
of tradeoffs, but the integration of motion planners in TMP
needs special attention to address the coupling of task plan-
ning and motion planning.

Off-the-shelf motion planning frameworks often abstract
the details of robot kinematics or assume that the kinematic
equations are fixed or change infrequently, with only configu-
rations changing during planning [9]. In contrast, TMP
requires rapid updates to kinematic equations. As the robot
grasps and transfers objects, these objects’ poses change
between fixed values and functions of robot configuration.
Moreover, these changes may involve more than just the indi-
vidual grasped object, such as in the case of moving a tray or
pushing a cart containing other objects. Consequently, kine-
matic representations capable of efficient updates are required
for TMP.

Combining Task and Motion Planning
TMP takes an initial state to a desired goal state through the
concurrent or interleaved production of high-level, discrete
action sequences via task planning and continuous, collision-
free paths via motion planning. Most prior work on TMP has
focused on computational performance rather than com-
pleteness or generality, which are emphasized in this article.
Lagriffoul and Andres [10] applied geometric constraints to
limit the motion planning space or prove motion to be infea-
sible in special cases. Hierarchical Planning in the Now [11]
interleaved planning and execution, reducing search depth
but requiring reversible actions, e.g., rearranging objects but
not pouring a cup down a drain, when backtracking. The
work in [12] extends a hierarchical task planner with geomet-
ric primitives, using shared literals that relate task-level sym-
bols with motion-level geometric entities. Gharbi et al. [13]
interfaced an off-the-shelf task planner and motion planning
using a heuristic method to remove objects that would poten-
tially block the robot’s path. The researchers in [14] formulat-
ed the motion side of TMP as a constraint satisfaction
problem over a discretized, preprocessed subset of the config-

uration space. The Robosynth framework [15] uses a satisfi-
ability modulo theories (SMTs) solver to generate task and
motion plans from a static road map, employing plan outlines
to guide the planning process. FFRob [16] developed a task-
layer heuristic similar to the Fast-Forward planner [6] by
using a lazily-expanded road map. Overall, these methods set
aside the broad challenge of ensuring probabilistic complete-
ness that arises from interactions between the task and
motion layers. In contrast, the framework we implement
focuses on probabilistically complete TMP.

A smaller number of task and motion planners do achieve
probabilistic completeness. The aSyMov planner [17] com-
bines a heuristic-search task planner with lazily expanded
road maps. Our implementation of [1] and [2] in TMKit
operates differently at the task, motion, and interface levels,
yielding different performance characteristics than aSyMov.
For example, aSyMov’s composed road maps could be amor-
tized over multiple runs, but composing road maps for object
interactions may be expensive. In contrast, [1] and [2] find a
new motion plan each run but efficiently update scene data
structures to handle object interaction. Furthermore, TMKit
is extensible to both forward-search [6] and constraint-based
[7] task planners.

While source code is available for some specific methods,
such as that in [13], we believe TMKit is the first publicly
available framework that is extensible to multiple methods
and domains. A key to this extensibility is our abstraction of
the interaction between task and motion layers via the
domain semantics, which enables the introduction of new
actions and domains without any necessary changes to the
framework itself.

Plan Execution
Motion planners make certain assumptions to achieve suffi-
cient performance, and the execution step must correct those
assumptions in real time. Specifically, motion planners typi-
cally assume 1) a given model for the kinematics and geome-
try of the robot and environment and 2) that motion between
nearby joint configurations is possible. In reality, geometric
models contain numerous errors due to imprecise lengths,
encoder calibration error, flexing of assumedly rigid bodies,
inaccurate object detection, inaccurate camera calibration,
and so forth. Thus, despite the precision or repeatability of
many robots, accurate motion to correct poses still presents
challenges. In addition, robot motion is subject to dynamic
constraints on such variables as velocity, force, and current.
The execution step must track the planned path in a way that
is physically feasible, and it must correct for the inevitable and
sundry errors.

Input to TMP
The input to TMP includes the discrete task domain, the con-
tinuous motion domain, and the coupling of these two sides.

Task domain: The task domain defines the discrete actions
the robot can take, including their preconditions and effects.
For example, the pick-up action may have a precondition

64 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2018

that the object is on the table and the effect that the object is
in the robot’s hand. The “Task Domain” section describes our
implementation of task domains, and Figure 3 provides a
complete example of the pick-up action with preconditions
and effects.

Motion domain: The motion domain defines the three-
dimensional (3-D) positions of objects in the environment,
the kinematic structure of robot joints, and the geometry, i.e.,
meshes, of objects and robot links. Collectively, we call the
robot and environment the scene and the tree or graph of the
local coordinate frames of environmental objects and robot
links the scene graph, which defines the configuration space of
a robot. For a given configuration, computing the forward
kinematics of each frame in the scene graph provides the
mesh positions; then, specialized collision checkers [18] deter-
mine whether those positions are in collision.

We specify both an initial scene, consisting of the robot
and the environment, and a goal scene for the planner.
Then we map from these scenes to task states using the
domain semantics.

Domain semantics: The domain semantics define the cou-
pling between the discrete task domain and the continuous
motion domain. Two types of functions are necessary. First,
we need a function to map from a scene graph to a discrete
state for the task planner. For example, if the scene graph
defines some object a’s position relative to the robot’s hand,
the domain semantics would set to “true” a discrete variable
holding–a, indicating that the robot is holding object a.
Second, we need a function to map from a discrete task action
to a motion planning problem (start and goal states) for the
motion planner. For example, the pick-up action would
start at the robot’s current configuration and move to a goal
that is a grasping configuration for the object to be picked up.
The “TMP” section discusses our implementation of the
domain semantics.

TM Planner
The TM planner finds the sequence of discrete task actions
from the task domain and their corresponding motion
plans—based on the domain semantics—that will take the

Task Domain

Motion Domain

Domain Semantics

TM Planner

Task
Planner

(Using Z3)

Motion
Planner

(Using OMPL)

Candidate Task Plan

Motion Feasibility Constraints

TM Plan

Figure 3. A TM planner implementation diagram, showing fragments of the planner’s input (i.e., the task domain, domain semantics,
and motion domain) and output (i.e., the TM plan). OMPL: Open Motion Planning Library.

65september 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

system from some initial state or scene to a desired state or
scene. This planning process is structured as an alternation
between task planning to identify the discrete actions and
motion planning to identify the paths for each action. Some
task plans may include infeasible actions, e.g., picking up an
object that is blocked by something in front of it. In this
case, motion planning would fail, i.e., exceed a timeout, and
we would go back to the task planner to find a different
task plan, e.g., first moving the blocking object out of the
way. The “TMP” section discusses our implementation of a
TM planner.

TM Control
The TM control phase executes the plan in real time. Each
path produced by the motion planner is a sequence of way-
points the robot must move through. To execute this motion
plan, we compute a reference position, velocity, and so forth
for the robot at each time step by interpolating between the
waypoints. In addition, we must correct the positioning error

in following the motion plan through feedback control. Final-
ly, we operate the gripper to grasp and release objects as speci-
fied by the actions in the plan. The “Output and Execution”
section discusses our control and execution implementation.

TMKit Implementation
Our TM system, TMKit, may interest researchers looking to
use TMKit for the algorithm of [1] and [2] or for implement-
ing new TMP approaches. Figure 4 outlines the major soft-
ware components in our system implementation. TMP
involves many different software modules, and our design
choices were also influenced by the need to support real-time
execution. The key to integrating these components in our
system was identifying the appropriate abstractions for the
task and motion domains and relating these abstractions
through the domain semantics. Using these suitable abstrac-
tions not only eases development but also increases flexibility
by providing a uniform interface to domain information
such as task state or scene geometry.

DOMAIN
SEMANTICS

TASK
LANGUAGE

MOTION
SCENE GRAPH

SMT

Incremental
Task Planner

PDDL Parser

Z3

PDDL

SMTlib

SCENE
COMPILER

Visualization

Collision
Checking

Motion
Planning

Inverse
Kinematics

Linear
Algebra

Control

Cartesian

SDL/
OpenGL

POV-Ray

OMPL

FCL

BLAS/
LAPACK

URDF

Scene
File

Blender

COLLADASTL

Wavefront

C Compiler

CBinary

Python Lisp

Data Structure

Module

File/Input/Output

External Tool

Uses

Input/Output

Key

Figure 4. A map of software components. The key data structures are the task language and the motion scene graph. These data
structures are connected by the domain semantics definitions. The scene compiler is also an important component. This system
integrates the following external tools and formats: a basic linear algebra subprograms/linear algebra package (BLAS/LAPACK),
high-performance linear algebra routines with many vendor-optimized implementations; collaborative design activity (COLLADA), an
interchange file format for 3-D applications; a flexible collision library (FCL), a popular software library for collision checking; a GNU
compiler collection (GCC), a compiler suite from the GNU project; the OMPL, a popular software library for sampling-based motion
planning; Persistence of Vision Raytracer (POV-Ray), an open-source ray-tracing program; a planning domain definition language
(PDDL), a cross-platform library to access graphics, audio, mouse, keyboard, and so forth; the Simple DirectMedia Layer (SDL), a
cross-platform library to access graphics, audio, mouse, keyboard, and such; SMT, a decision-problem-combining logic and additional
theories, e.g., integer constraints, lists, and arrays; stereolithography (STL), a file format for computer-assisted design software;
universal robot definition format (URDF), an XML file type for robot kinematics; XML, a tree-structured, general-purpose file format;
and Z3, a high-performance theorem prover/SMT solver.

66 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2018

Task Domain
We represent the task domain by the task language in Figure 4.
Generally, task domains are specified using a variety of nota-
tions and logics, but, at a fundamental level, all these repre-
sentations define some type of transition system, automaton,
or formal language. The de facto standard syntax for task
planning is the planning domain definition language (PDDL)
[19], which our framework also takes as input. The PDDL
(see Figure 3) defines parameterized actions with precondi-
tions and effects based on first-order logic. Our task planning
algorithm [1], [2], however, is not specific to PDDL and
assumes only that the state space is finite and compactly rep-
resented with a set of variables. Thus, new task domains can
be created in PDDL, and the underlying algorithm is adapt-
able to other notions.

Motion Domain
The motion domain is represented by the motion scene graph
in Figure 4. Motion planning algorithms are typically defined
in terms of abstract configuration spaces [9], while robot
manipulators are modeled as kinematic trees or scene graphs
of joints and links in packages such as OpenRAVE [22], Oro-
cos KDL [23], and MoveIt! [24]. Existing implementations,
however, focus on only a subset of the TMP pipeline shown in
Figure 2. Consequently, TMKit uses a new, streamlined scene
graph representation that enables direct TM translation, effi-
cient updates, and real-time kinematics.

The scene graph is a tree representing relative Cartesian
poses, with data attached at each node for geometry (e.g.,
meshes), inertial parameters, joint limits, and such. Figure 5

shows how the scene graph edges correspond to symbolic
multiplication or chaining of transformations in the Cartesian
space. Starting from the global root zero (see Figure 5) and
multiplying the relative pose of each local coordinate frame
along a chain yields the global pose of the frame at the end of
the chain. Picking and placing objects, common operations in
TMP, are represented by reparenting a frame in the scene
graph, i.e., changing the object’s parent between the hand and
a support surface, such as a table.

Our scene graph implementation offers a unique set of
features that make it suitable for both TMP and real-time
execution. We use two variations on the structure: a mutable
version and a persistent version, i.e., a purely functional one.
Both variations can be efficiently updated at runtime, e.g.,
when the robot picks up a tray of objects, and they share
underlying data for geometric objects via reference counting
so that data for large meshes are not copied. The mutable
version is based on indexed arrays and avoids heap alloca-
tions, which may impose unacceptable pauses, after con-
struction, making it suitable for real-time operation. The
persistent version is based on weight-balanced binary trees
that efficiently create partial copies on updates, useful during
planning when we backtrack to a previous point in the
search and a previous version of the scene graph. To enable
efficient multithreaded access, e.g., when performing inverse
kinematics, motion planning, and visualization in separate
threads, we separate the scene graph object from the data for
states and configurations.

We also provide a compiler (see Figure 6) enabling scene
graphs to be specified in domain-specific languages. Our

0

ls0

A

rw2

rw1

rw0
re1

rs1

rs0

re0

T

C

B
holding(A) ∧
on(B,C) ∧
ontable(C,0,0) ∧
clear(B)

(a) (b)

(c) (d)

0
rw2 rs0

0
rs1

rs0
re0

rs1
re1

re0
rw0

re1
rw1

rw0
rw2

rw1= 0
lw2 l s0

0
l s1

l s0
l e0

l s1
l e1

l e0
lw0

l e1
lw1

lw0
lw2

lw1=

ls1

le0

le1 lw0

lw1

lw2

Figure 5. The scene graph abstraction for a simplified version of the Baxter robot and the corresponding task state: (a) a kinematic
equation to compute the right wrist pose; (b) a kinematic equation to compute the left wrist pose; (c) the local coordinate frames of
the corresponding scene graph overlaid on the Baxter; and (d) the task state corresponding to the scene graph for a pick-and-place
task domain, partially shown in Figure 3. This state abstracts the object relationships in the scene graph. Note that the task state is
computed automatically via the domain semantics and that additional or different task predicates may be used by modifying the
domain semantics. The transform Sa b is the relative Cartesian pose between parent a and child .b The coordinate frame labels for
Baxter consist of the left ()l or right ()r arm; the shoulder (),s elbow (),e or wrist ();w and the zeroth (0), first (1), and second (2)
joint. The other frame labels represent the global root (zero), table (),T or blocks (, ,).A B and C

67september 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

compiler supports the widely used Robot Operating System
(ROS) Universal Robot Definition Format (URDF). Addi-
tionally, because of the difficulty of writing URDF by hand,
we also introduce a new, compact scene file syntax (see Figure 3).
Compiling scenes offers several performance and administra-
tive advantages:

●● �Compiled scenes are fast to load, because the OS directly
maps into memory the included mesh data (via mmap),
eliminating runtime parsing and processing.

●● �Compiled scenes reduce memory use compared to run-
time parsing when multiple OS processes operate on
the same scene, because the memory-mapped scene
graphs in different processes share physical memory.

●● �Compiled scenes are easy to distribute to other machines,
e.g., a cluster, which may lack scene sources, utilities, or
support libraries. Only the executable or shared library is
required to load the compiled scene, reducing potential
runtime dependencies.

●● �Compiled scenes avoid the need to include large parsing
libraries, e.g., an XML parser, in real-time processes and
reduce the dynamic allocations necessary to load scenes.

●● �Multiple compiled scenes can be flexibly composed both
statically ahead of time and dynamically at runtime,
improving overall scene construction efficiency when
some portions of the scene are fixed and others changing.
For example, we can precompile the scene for the robot,
which remains constant based on the robot’s mechanical
design. However, the locations of objects on a table may
change frequently, so we can compose the precompiled
robot scene with the separate or dynamically generated
scene for these objects.
The scene graph data structure and scene compiler pro-

vide the necessary geometric support for TMP and plan
execution.

TMP
Our TMP implementation follows the overall structure of
Figure 2, based on the algorithm of [1] and [2]. In the task
layer, we use an incremental, constraint-based task planner. In

the motion layer, we include a variety of sampling-based
motion planners through the Open Motion Planning Library
[9]. The key to achieving generality in our planner is the
selection of abstractions. Our task languages can model arbi-
trary, finite-state task domains, and our scene graphs can
model arbitrary, rigid-body robots and environments.

We relate the task and motion domains by defining a
domain semantics (see Figure 4). The domain semantics
define the conversion of the scene graph to a task state and
define functions to refine high-level task actions by comput-
ing the corresponding motion plans. Concretely, the domain
semantics in TMKit are functions written in Python or Com-
mon Lisp. Figure 5 includes an example of a task state com-
puted from a scene graph, and Figure 3 contains an example
of a refinement function in the domain semantics for pick-
and-place manipulation. The same semantics definition may
be used across multiple scenes or problem instances. Chang-
es to the task domain, e.g., new actions, do require updating
the domain semantics but require no changes to the planner
itself. By abstracting TM interaction to these separate
domain semantics definitions, our planning system general-
izes across domains.

Output and Execution
The immediate output of our system is a TM plan describing
the sequence of task actions and corresponding motion plans.
We benchmark the performance and scalability of the overall
approach in [1] and [2]. Figure 3 shows a fragment of such a
plan for the table-setting example, represented using a plain-
text, line-based file format that is human-readable and can be
efficiently parsed. Each line indicates either a task action, the
joints moved during a motion plan, a waypoint in a motion
plan, or a reparenting operation, e.g., picking or placing an
object by changing an edge in the scene graph from the table
to the hand or vice versa. The resulting file defines the inter-
leaving of task actions and motion plans.

Then, we execute the TM plan by interpolating the given
motion plans and performing the indicated reparentings to
grasp and release objects. There are numerous methods to

aarxc

Scene File
Parser

Wavefront
Parser

URDF
Parser

Blender
COLLADA,
STL, etc.

OBJ

URDF

Scene
File

C Code
Generator

POV-Ray
Generator

GCC

POV-Ray

scene.so

scene.png

(a)

Robot Compile Load

Baxter 14.0 s 0.33 ms

UR10 11.7 s 0.17 ms

Jaco 15.6 s 0.20 ms

(b)

∪

Figure 6. The scene graph compiler aarxc. (a) A compiler block diagram. The compiler includes parsers for scene files, Wavefront
Object (OBJ) meshes, and ROS URDF files. It uses the Blender 3-D modeling program to convert a variety of meshes to the
conventional Wavefront OBJ format. The compiler translates the loaded scene graph to optimized C code for later fast loading and real-
time execution. It can also translate scene graphs to input for the POV-Ray raytracer for high-quality visualization. (b) Compile times—
including mesh processing, code generation, and C compilation—and load times for common robots, using Blender 2.77 and GCC 4.9.2
on an Intel Core i7-4790. Example plans and planning times are presented in Figure 3 and Figure 8 [1], [2].

68 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2018

interpolate the waypoint sequence of a motion plan so as to
satisfy the physical limits of a robot, e.g., maximum accelera-
tion and velocity. Given any such interpolation, we use a feed-
back control law to compute the command for a robot:

	 ,q t q t k q t q tu r a r= - -o o^ ^ ^ ^^h h h hh � (1)

where quo is the velocity command, qro is the reference
velocity from the interpolated waypoints, k is a feedback
gain, qa is the actual position, and qr is the interpolated
reference position.

Finally, we must communicate with the robot hardware at
each time step to retrieve the actual state qa and qao and to
send the velocity command .quo For example, we would use

Controller Area Network bus message for the Schunk LWA4,
transmission control protocol for the Universal Robot, or
ROS communication for the Rethink Baxter.

Use Case Example
Figure 3 illustrates a use case example of TMKit for a domain
such as the table setting in Figure 1, including the planner’s
specific input and output.

Task domain: The task domain block shows the pick-up
action, with its preconditions and effects. This action picks up
an object from a table, so the precondition requires the object
to be on the table and uncovered. The effect is that the robot
holds the object and the object is not on the table. The full
task domain includes similar definitions for other actions,
e.g., to put down objects and unstack objects.

(a) (b) (c)

(d) (e) (f)

Figure 7. A TM plan to set a table using the Rethink Robotics Baxter. The average planning time for ten trials was 64.8 s on an Intel
Core i7-4790. (a) The initial state, (b) picking the first glass, (c) placing the first glass, (d) placing the second glass, (e) placing the first
bowl, and (f) placing the second bowl.

69september 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Motion domain: The motion domain block shows the defi-
nition for a single object (a glass). The definition includes the
object’s relative position to its parent (the shelf) and the
object’s geometric mesh. The full task domain includes simi-
lar definitions for the other glasses and bowls as well as the
links and joints of the robot.

Domain semantics: The domain semantics block shows the
function to find a motion plan for the pick-up action. This
function computes the current position of the object, then
attempts to find a motion plan to bring the robot’s hand to a
grasping pose for that object. If motion planning fails
(exceeds a timeout), the motion planning function generates
an exception that the TM planner will catch and handle by
finding a different task plan based on the feedback from the
motion planner.

TM planner: The TM planner block illustrates the alterna-
tion and feedback between task planning and motion plan-
ning. The task planner identifies a high-level plan. The
motion planner attempts to find corresponding paths. Failing
to do so, the motion planner provides additional constraints
to the task planner, which then finds a different task plan.
This process iterates until it finds a task plan where all actions
have corresponding motion plans.

TM plan: The TM plan block shows the first two actions of
the plan: picking and placing an object. The first action
(pick-up) includes the joint waypoints to move the robot’s
hand to the grasping position for an object, then changes the
object’s parent in the scene graph to the robot’s hand. The sec-
ond action (put-down) includes the waypoints to move the
robot’s hand and the grasped object to the desired location,
and then (unshown) the object’s parent will change in the
scene graph to the table, placing the object. The full TM plan
contains the rest of the actions necessary to achieve the
desired goal.

Plan execution: Figures 7 and 8 show two TM plans and
planning times, one for the Rethink Robotics Baxter and one

for the Universal Robots UR5. The same overall framework
produces the plan for each system. We apply the framework
in each case by using the URDF model of the robot for the
specific system.

These examples demonstrate the modularity and extensi-
bility of TMKit. TMKit works on multiple robots, supports
multiple types of actions (e.g., picking, placing, stacking, and
pushing), and handles coupling between objects [e.g., moving
cans into a bin (Figure 8)]. Additional benchmark results are
presented in [1] and [2].

Conclusions
We have presented TMKit, a new software framework for
TMP and execution that is available under an open-source,
permissive license [21]. We believe TMKit is the first open-
source TMP framework that is extensible to multiple domains
and different planning methods and that supports end-to-end
planning and execution. Its modular design enables TMKit to
generalize across hardware platforms, task domains, and
TMP algorithms.

We produced a general-purpose, easy-to-use, and extensi-
ble framework for TMP. There are numerous avenues to
improve and build upon this framework. Going beyond our
implemented method of [1] and [2], we will extend the feed-
back between the task and motion layers, improve plan reuse,
and incorporate additional rich constraint capabilities. We are
already adapting and integrating the additional TMP meth-
ods of [3] and [4] with TMKit. We hope the community will
find this end-to-end system both easy to use and a helpful
platform to demonstrate other methods for TMP.

Currently, TMKit focuses on the geometric case of motion
planning, which is often sufficient for manipulation. Planning
with dynamics, e.g., considering torques in the planning layer,
may be necessary for other cases, such as bipedal walking.
However, including dynamics during motion planning may
impact completeness [20], so careful analysis is necessary.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8. A TM plan to load and move a bin using the Universal Robots UR5. The same overall framework with a different URDF
for the robot produces this plan for a different system. The average planning time for ten trials was 8.78 s on an Intel Core i7-4790.
(a)–(f) The simulated execution and (g)–(l) the physical execution.

70 • IEEE ROBOTICS & AUTOMATION MAGAZINE • september 2018

Improved considerations for planning with dynamics remains
an area of future work for TMKit.

An ongoing need in TMP is support to compare and
benchmark different TMP algorithms and implementa-
tions. We believe that TMKit, as an extensible framework
supporting common formats such as PDDL and URDF, can
help meet that need. Furthermore, modular components,
such as the scene graph compiler (see Figure 6), could aid
the development of alternative TMP methods and imple-
mentations. We hope that TMKit will be a useful tool for
other researchers to evaluate existing algorithms and extend
to new approaches.

Acknowledgments
We thank Andrew Wells, Cannon Lewis, and Logan Farrell
for their help with the demonstration of TMKit on the
UR5. This work was supported in part by grants NSF IIS-
1317849 and NSF CCF-1514372, by the ERIT program of
the K2I Institute at Rice University, and by the Rice Univer-
sity Funds.

References
[1] N. T. Dantam, Z. Kingston, S. Chaudhuri, and L. E. Kavraki, “Incre-
mental task and motion planning: A constraint-based approach,”
Robotics: Science and Systems Conf., 2016. doi: 10.15607/RSS.2016.
XII.002.
[2] N. T. Dantam, Z. Kingston, S. Chaudhuri, and L. E. Kavraki.
(2018). An incremental constraint-based framework for task and
motion planning. Int. J. Robotics Res. [Online]. Available: https://doi
.org/10.1177/0278364918761570
[3] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipu lat ion planning wit h tempora l log ic speci f icat ions ,”
in Proc . IEEE Int . Conf. Robot ic s and Automation , 2015, pp.
346–352.
[4] Y. Wang, N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “Task and
motion policy synthesis as liveness games,” in AAAI Int. Conf. Auto-
mated Planning and Scheduling (ICAPS), 2016, pp. 536–540.
[5] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artif. Intell., vol. 2, no. 3,
pp. 189–208, 1972.
[6] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan gen-
eration through heuristic search,” J. Artif. Intell. Res., vol. 14, no. 1, pp.
253–302, Jan. 2001.
[7] H. Kautz and B. Selman, “Unifying SAT-based and graph-based
planning,” in Proc. Int. Joint Conf. Artificial Intelligence, 1999, vol. 99,
pp. 318–325.
[8] L. E. Kavraki and S. M. LaValle, “Motion planning,” in Springer
Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Cham, Switzer-
land: Springer-Verlag, 2016, ch. 5, pp. 109–128.
[9] I. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, 2012.
[10] F. Lagriffoul and B. Andres, “Combining task and motion plan-
ning: A culprit detection problem,” Intl. J. Robot. Res., vol. 35, pp. 890–
927, July 2016.

[11] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” Int. J. Robot. Res., vol. 32, no. 9-10, pp. 1194–
1227, Aug. /Sept. 2013.
[12] M. Gharbi, R. Lallement, and R. Alami, “Combining symbolic and
geometric planning to synthesize human-aware plans: Toward more
efficient combined search,” in Proc. IEEE Int. Conf. Intelligent Robots
and Systems, 2015, pp. 6360–6365.
[13] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P.
Abbeel, “Combined task and motion planning through an extensible
planner-independent interface layer,” in Proc. IEEE Int. Conf. Robotics
and Automation, 2014, pp. 639–646.
[14] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method
for solving sequential manipulation planning problems,” in Proc. IEEE
Int. Conf. Intelligent Robots and Systems, 2014, pp. 3684–3691.
[15] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki,
“SMT-based synthesis of integrated task and motion plans from plan out-
lines,” in Proc. IEEE Int. Conf. Robotics and Automation, 2014, pp. 655–662.
[16] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: An
efficient heuristic for task and motion planning,” in Algorithmic Foun-
dations of Robotics XI, H. L. Akin, N. M. Amato, V. Isler, and A. F. Stap-
pen, Eds. Cham, Switzerland: Springer-Verlag, 2015, pp. 179–195.
[17] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intri-
cate motion, manipulation and task planning,” Int. J. Robot. Res., vol.
28, no. 1, pp. 104–126, 2009.
[18] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in Proc. IEEE Int. Conf. Robotics
and Automation, 2012, pp. 3859–3866.
[19] M. Ghallab, D. McDermott, A. Howe, C. Knoblock, A. Ram, M.
Veloso, D. Weld, and D. Wilkins, “PDDL: The planning domain defini-
tion language,” Yale Center for Computational Vision and Control,
Tech. Rep. CVC TR-98-003/DCS TR-1165, Oct. 1998.
[20] T. Kunz and M. Stilman, “Kinodynamic RRTs with fixed time step
and best-input extension are not probabilistically complete,” in Algo-
rithmic Foundations of Robotics XI, H. L. Akin, N. M. Amato, V. Isler,
and A. F. Stappen, Eds. Cham, Switzerland: Springer-Verlag, 2015, pp.
233–244.
[21] TMKit: A task-motion planning framework. [Online]. Available:
http://tmkit.kavrakilab.org
[22] OpenRAVE. (2018). [Online]. Available: http://openrave.org/
[23] Orocos Kinematics and Dynamics Library (KDL). [Online]. Available:
http://www.orocos.org/kdl
[24] MoveIt! (2017). [Online]. Available: http://moveit.ros.org

Neil T. Dantam, Department of Computer Science, Rice Uni-
versity, Houston, United States, and Department of Computer
Science, Colorado School of Mines, Golden, United States.
E-mail: ndantam@mines.edu.

Swarat Chaudhuri, Department of Computer Science, Rice
University, Houston, United States. E-mail: swarat@rice.edu.

Lydia E. Kavraki, Department of Computer Science, Rice Uni-
versity, Houston, United States. E-mail: kavraki@rice.edu.
�

