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R
obots require novel reasoning systems to achieve complex 
objectives in new environments. Daily activities in the physical 
world combine two types of reasoning: discrete and continuous. 
For example, to set the table in Figure 1, the robot must make 
discrete decisions about which and in what order to pick 

objects, and it must execute these decisions by computing continuous 
motions to reach objects or desired locations. Robotics has traditionally 
treated these issues in isolation. Reasoning about discrete events is 
referred to as task planning, while reasoning about and computing 
continuous motions is in the realm of motion planning. 

However, several recent works have shown that separating task 
planning from motion planning, i.e., finding a series of actions 
that will later be executed through continuous motion, is 
problematic. For example, the next discrete action may 
specify picking an object, but there may be no contin-
uous motion for the robot to bring its hand to a 
configuration that can actually grasp the object to 
pick it up. Instead, task-motion planning (TMP) 
tightly couples task planning and motion plan-
ning, producing a sequence of steps that can 
actually be executed by a real robot to bring 
the world from an initial to a final state. 
This article provides an introduction to 
TMP and discusses the implementation 
and use of an open-source TMP frame-
work that is adaptable to new robots, 
scenarios, and algorithms.

TMP presents challenges both in 
algorithmic design and software engi-
neering. Interaction between the discrete 
task component and the continuous 
motion component imposes require-
ments not faced by stand-alone task plan-
ners or motion planners. The planner may 
need to consider alternative task plans in an 
efficient way until finding one that can actu-
ally be executed by the robot at hand, whereas 
typical task planners generate only a single plan. 
In addition, actions where the robot grasps and 
rearranges objects will change the kinematics and 
configuration space in which the robot can move, 
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whereas typical motion planners assume a fixed configuration 
space. Thus, we cannot expect to combine existing tools for 
isolated task planning and motion planning and produce 
frameworks that can consistently use high-level specifications 
of behavior to produce motion. Instead, we must handle the 
possible interactions of discrete and continuous components 
to identify task plans and executable motions.

TM Kit (TMKit) is an end-to-end system for probabilisti-
cally complete TMP and real-time execution. [Code and doc-

umentation are available at [21] under a permissive (BSD) 
license.] TMKit follows the high-level design shown in Figure 2 
to implement the algorithm of [1] and [2] and at the same 
time provides a general framework to integrate multiple 
methods for task planning, motion planning, and TM inter-
action. Shared abstractions and data structures are funda-
mental aspects of TMKit that enable the coupling of task 
planning, motion planning, and real-time estimation and 
control. TMKit is modular and extensible, and we are adapt-
ing it to additional methods for TMP [3], [4]. Whenever 
appropriate, we employ widely used formats and protocols to 
promote compatibility. The resulting system generates real-
time, collision-free robot motion from high-level specifica-
tions. To our knowledge, this is the first publicly available, 
general-purpose TMP framework. Sharing this project with 
the community will encourage the implementation of more 
TMP approaches and provide a valuable tool for the develop-
ment and comparison of related techniques.

Background

Task Planning
Task planning identifies a sequence of discrete actions that 
change an initial state into a desired goal state or condition, 
given a task domain that defines the available actions and 
their preconditions and effects. This field evolved largely from 
pioneering work on the Stanford Research Institute Planning 
System [5]. The leading approaches for efficient task planning 
are heuristic search [6] and constraint satisfaction [7].

Off-the-shelf task planners typically focus on efficiently 
finding a single plan. In contrast, TMP often requires search-
ing through multiple alternative task plans, as previously 
discussed. This raises an inherent challenge: motion planners 
that are used to compute paths are, at best, probabilistically 
complete for high-dimensional systems. Consequently, we 
cannot generally prove the nonexistence of corresponding 
motion plans. To address this challenge, our system does not 
use an off-the-shelf task planner but rather employs a newly 
introduced task planner capable of efficiently generating alter-
native plans.

(c)

(a)

(b)

Figure 1. An example of a TMP problem: setting a table. The 
input for the TMP includes (a) the start state, (b) the goal state, 
and a set of allowable actions (e.g., pick, place, and so on). (c) 
TMP finds the output, which consists of a sequence of discrete 
actions (the task plan) and their corresponding continuous paths 
(or motion plans).
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Figure 2. A high-level planning and execution block diagram. The inputs are the task domain definition; the environment and robot 
geometries, combined to produce the scene graph; and the domain semantics that relate the task and motion layers. The TM planner 
generates a plan based on these inputs. The TM control layer executes the plan, sharing a geometric representation—the scene 
graph—with the planning layer. The control output u  drives the robot, resulting in configuration .q  In a parallel layer, we visualize the 
system at simulated configuration .qu
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Motion Planning
Motion planning identifies a continuous path of valid config-
urations, i.e., joint positions, from an initial state to a desired 
goal state. Sampling-based motion planners are widely used 
for high-dimensional systems [8]. Such sampling-based plan-
ners offer probabilistic completeness, guaranteeing that the 
planner will eventually find a solution if one exists. However, 
if a solution does not exist, a sampling-based planner cannot 
prove this negative; in such a case, the planner would not ter-
minate or would run until reaching a timeout. Motion plan-
ners based on gradient descent or optimization are also 
common and highly efficient, but they do not offer the same 
probabilistic completeness guarantees as the sampling-based 
motion planners. Consequently, this work uses such sam-
pling-based planners  because probabilistic completeness of 
the overall framework is a desired property. Conveniently, 
high-quality, open-source implementations of such planners 
are available [9]. Future integration of alternative motion 
planning approaches is possible, with their accompanying set 
of tradeoffs, but the integration of motion planners in TMP 
needs special attention to address the coupling of task plan-
ning and motion planning.

Off-the-shelf motion planning frameworks often abstract 
the details of robot kinematics or assume that the kinematic 
equations are fixed or change infrequently, with only configu-
rations changing during planning [9]. In contrast, TMP 
requires rapid updates to kinematic equations. As the robot 
grasps and transfers objects, these objects’ poses change 
between fixed values and functions of robot configuration. 
Moreover, these changes may involve more than just the indi-
vidual grasped object, such as in the case of moving a tray or 
pushing a cart containing other objects. Consequently, kine-
matic representations capable of efficient updates are required 
for TMP.

Combining Task and Motion Planning
TMP takes an initial state to a desired goal state through the 
concurrent or interleaved production of high-level, discrete 
action sequences via task planning and continuous, collision-
free paths via motion planning. Most prior work on TMP has 
focused on computational performance rather than com-
pleteness or generality, which are emphasized in this article. 
Lagriffoul and Andres [10] applied geometric constraints to 
limit the motion planning space or prove motion to be infea-
sible in special cases. Hierarchical Planning in the Now [11] 
interleaved planning and execution, reducing search depth 
but requiring reversible actions, e.g., rearranging objects but 
not pouring a cup down a drain, when backtracking. The 
work in [12] extends a hierarchical task planner with geomet-
ric primitives, using shared literals that relate task-level sym-
bols with motion-level geometric entities. Gharbi et al. [13] 
interfaced an off-the-shelf task planner and motion planning 
using a heuristic method to remove objects that would poten-
tially block the robot’s path. The researchers in [14] formulat-
ed the motion side of TMP as a constraint satisfaction 
problem over a discretized, preprocessed subset of the config-

uration space. The Robosynth framework [15] uses a satisfi-
ability modulo theories (SMTs) solver to generate task and 
motion plans from a static road map, employing plan outlines 
to guide the planning process. FFRob [16] developed a task-
layer heuristic similar to the Fast-Forward planner [6] by 
using a lazily-expanded road map. Overall, these methods set 
aside the broad challenge of ensuring probabilistic complete-
ness that arises from interactions between the task and 
motion layers. In contrast, the framework we implement 
focuses on probabilistically complete TMP.

A smaller number of task and motion planners do achieve 
probabilistic completeness. The aSyMov planner [17] com-
bines a heuristic-search task planner with lazily expanded 
road maps. Our implementation of [1] and [2] in TMKit 
operates differently at the task, motion, and interface levels, 
yielding different performance characteristics than aSyMov. 
For example, aSyMov’s composed road maps could be amor-
tized over multiple runs, but composing road maps for object 
interactions may be expensive. In contrast, [1] and [2] find a 
new motion plan each run but efficiently update scene data 
structures to handle object interaction. Furthermore, TMKit 
is extensible to both forward-search [6] and constraint-based 
[7] task planners.

While source code is available for some specific methods, 
such as that in [13], we believe TMKit is the first publicly 
available framework that is extensible to multiple methods 
and domains. A key to this extensibility is our abstraction of 
the interaction between task and motion layers via the 
domain semantics, which enables the introduction of new 
actions and domains without any necessary changes to the 
framework itself.

Plan Execution
Motion planners make certain assumptions to achieve suffi-
cient performance, and the execution step must correct those 
assumptions in real time. Specifically, motion planners typi-
cally assume 1) a given model for the kinematics and geome-
try of the robot and environment and 2) that motion between 
nearby joint configurations is possible. In reality, geometric 
models contain numerous errors due to imprecise lengths, 
encoder calibration error, flexing of assumedly rigid bodies, 
inaccurate object detection, inaccurate camera calibration, 
and so forth. Thus, despite the precision or repeatability of 
many robots, accurate motion to correct poses still presents 
challenges. In addition, robot motion is subject to dynamic 
constraints on such variables as velocity, force, and current. 
The execution step must track the planned path in a way that 
is physically feasible, and it must correct for the inevitable and 
sundry errors.

Input to TMP
The input to TMP includes the discrete task domain, the con-
tinuous motion domain, and the coupling of these two sides.

Task domain: The task domain defines the discrete actions 
the robot can take, including their preconditions and effects. 
For example, the pick-up action may have a precondition 
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that the object is on the table and the effect that the object is 
in the robot’s hand. The “Task Domain” section describes our 
implementation of task domains, and Figure 3 provides a 
complete example of the pick-up action with preconditions 
and effects.

Motion domain: The motion domain defines the three-
dimensional (3-D) positions of objects in the environment, 
the kinematic structure of robot joints, and the geometry, i.e., 
meshes, of objects and robot links. Collectively, we call the 
robot and environment the scene and the tree or graph of the 
local coordinate frames of environmental objects and robot 
links the scene graph, which defines the configuration space of 
a robot. For a given configuration, computing the forward 
kinematics of each frame in the scene graph provides the 
mesh positions; then, specialized collision checkers [18] deter-
mine whether those positions are in collision.

We specify both an initial scene, consisting of the robot 
and the environment, and a goal scene for the planner. 
Then we map from these scenes to task states using the 
domain semantics.

Domain semantics: The domain semantics define the cou-
pling between the discrete task domain and the continuous 
motion domain. Two types of functions are necessary. First, 
we need a function to map from a scene graph to a discrete 
state for the task planner. For example, if the scene graph 
defines some object a’s position relative to the robot’s hand, 
the domain semantics would set to “true” a discrete variable 
holding–a, indicating that the robot is holding object a. 
Second, we need a function to map from a discrete task action 
to a motion planning problem (start and goal states) for the 
motion planner. For example, the pick-up action would 
start at the robot’s current configuration and move to a goal 
that is a grasping configuration for the object to be picked up. 
The “TMP” section discusses our implementation of the 
domain semantics.

TM Planner
The TM planner finds the sequence of discrete task actions 
from the task domain and their corresponding motion 
plans—based on the domain semantics—that will take the 
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Figure 3. A TM planner implementation diagram, showing fragments of the planner’s input (i.e., the task domain, domain semantics, 
and motion domain) and output (i.e., the TM plan). OMPL: Open Motion Planning Library.
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system from some initial state or scene to a desired state or 
scene. This planning process is structured as an alternation 
between task planning to identify the discrete actions and 
motion planning to identify the paths for each action. Some 
task plans may include infeasible actions, e.g., picking up an 
object that is blocked by something in front of it. In this 
case, motion planning would fail, i.e., exceed a timeout, and 
we would go back to the task planner to find a different 
task plan, e.g., first moving the blocking object out of the 
way. The “TMP” section discusses our implementation of a 
TM planner.

TM Control
The TM control phase executes the plan in real time. Each 
path produced by the motion planner is a sequence of way-
points the robot must move through. To execute this motion 
plan, we compute a reference position, velocity, and so forth 
for the robot at each time step by interpolating between the 
waypoints. In addition, we must correct the positioning error 

in following the motion plan through feedback control. Final-
ly, we operate the gripper to grasp and release objects as speci-
fied by the actions in the plan. The “Output and Execution” 
section discusses our control and execution implementation.

TMKit Implementation
Our TM system, TMKit, may interest researchers looking to 
use TMKit for the algorithm of [1] and [2] or for implement-
ing new TMP approaches. Figure 4 outlines the major soft-
ware components in our system implementation. TMP 
involves many different software modules, and our design 
choices were also influenced by the need to support real-time 
execution. The key to integrating these components in our 
system was identifying the appropriate abstractions for the 
task and motion domains and relating these abstractions 
through the domain semantics. Using these suitable abstrac-
tions not only eases development but also increases flexibility 
by providing a uniform interface to domain information 
such as task state or scene geometry.
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Figure 4. A map of software components. The key data structures are the task language and the motion scene graph. These data 
structures are connected by the domain semantics definitions. The scene compiler is also an important component. This system 
integrates the following external tools and formats: a basic linear algebra subprograms/linear algebra package (BLAS/LAPACK), 
high-performance linear algebra routines with many vendor-optimized implementations; collaborative design activity (COLLADA), an 
interchange file format for 3-D applications; a flexible collision library (FCL), a popular software library for collision checking; a GNU 
compiler collection (GCC), a compiler suite from the GNU project; the OMPL, a popular software library for sampling-based motion 
planning; Persistence of Vision Raytracer (POV-Ray), an open-source ray-tracing program; a planning domain definition language 
(PDDL), a cross-platform library to access graphics, audio, mouse, keyboard, and so forth; the Simple DirectMedia Layer (SDL), a 
cross-platform library to access graphics, audio, mouse, keyboard, and such; SMT, a decision-problem-combining logic and additional 
theories, e.g., integer constraints, lists, and arrays; stereolithography (STL), a file format for computer-assisted design software; 
universal robot definition format (URDF), an XML file type for robot kinematics; XML, a tree-structured, general-purpose file format; 
and Z3, a high-performance theorem prover/SMT solver.
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Task Domain
We represent the task domain by the task language in Figure 4. 
Generally, task domains are specified using a variety of nota-
tions and logics, but, at a fundamental level, all these repre-
sentations define some type of transition system, automaton, 
or formal language. The de facto standard syntax for task 
planning is the planning domain definition language (PDDL) 
[19], which our framework also takes as input. The PDDL 
(see Figure 3) defines parameterized actions with precondi-
tions and effects based on first-order logic. Our task planning 
algorithm [1], [2], however, is not specific to PDDL and 
assumes only that the state space is finite and compactly rep-
resented with a set of variables. Thus, new task domains can 
be created in PDDL, and the underlying algorithm is adapt-
able to other notions.

Motion Domain
The motion domain is represented by the motion scene graph 
in Figure 4. Motion planning algorithms are typically defined 
in terms of abstract configuration spaces [9], while robot 
manipulators are modeled as kinematic trees or scene graphs 
of joints and links in packages such as OpenRAVE [22], Oro-
cos KDL [23], and MoveIt! [24]. Existing implementations, 
however, focus on only a subset of the TMP pipeline shown in 
Figure 2. Consequently, TMKit uses a new, streamlined scene 
graph representation that enables direct TM translation, effi-
cient updates, and real-time kinematics.

The scene graph is a tree representing relative Cartesian 
poses, with data attached at each node for geometry (e.g., 
meshes), inertial parameters, joint limits, and such. Figure 5 

shows how the scene graph edges correspond to symbolic 
multiplication or chaining of transformations in the Cartesian 
space. Starting from the global root zero (see Figure 5) and 
multiplying the relative pose of each local coordinate frame 
along a chain yields the global pose of the frame at the end of 
the chain. Picking and placing objects, common operations in 
TMP, are represented by reparenting a frame in the scene 
graph, i.e., changing the object’s parent between the hand and 
a support surface, such as a table.

Our scene graph implementation offers a unique set of 
features that make it suitable for both TMP and real-time 
execution. We use two variations on the structure: a mutable 
version and a persistent version, i.e., a purely functional one. 
Both variations can be efficiently updated at runtime, e.g., 
when the robot picks up a tray of objects, and they share 
underlying data for geometric objects via reference counting 
so that data for large meshes are not copied. The mutable 
version is based on indexed arrays and avoids heap alloca-
tions, which may impose unacceptable pauses, after con-
struction, making it suitable for real-time operation. The 
persistent version is based on weight-balanced binary trees 
that efficiently create partial copies on updates, useful during 
planning when we backtrack to a previous point in the 
search and a previous version of the scene graph. To enable 
efficient multithreaded access, e.g., when performing inverse 
kinematics, motion planning, and visualization in separate 
threads, we separate the scene graph object from the data for 
states and configurations.

We also provide a compiler (see Figure 6) enabling scene 
graphs to be specified in domain-specific languages. Our 
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Figure 5. The scene graph abstraction for a simplified version of the Baxter robot and the corresponding task state: (a) a kinematic 
equation to compute the right wrist pose; (b) a kinematic equation to compute the left wrist pose; (c) the local coordinate frames of 
the corresponding scene graph overlaid on the Baxter; and (d) the task state corresponding to the scene graph for a pick-and-place 
task domain, partially shown in Figure 3. This state abstracts the object relationships in the scene graph. Note that the task state is 
computed automatically via the domain semantics and that additional or different task predicates may be used by modifying the 
domain semantics. The transform Sa b  is the relative Cartesian pose between parent a  and child .b  The coordinate frame labels for 
Baxter consist of the left ( )l  or right ( )r  arm; the shoulder ( ),s  elbow ( ),e  or wrist ( );w  and the zeroth (0), first (1), and second (2) 
joint. The other frame labels represent the global root (zero), table ( ),T  or blocks ( , , ).A B and C
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compiler supports the widely used Robot Operating System 
(ROS) Universal Robot Definition Format (URDF). Addi-
tionally, because of the difficulty of writing URDF by hand, 
we also introduce a new, compact scene file syntax (see Figure 3). 
Compiling scenes offers several performance and administra-
tive advantages:

●● �Compiled scenes are fast to load, because the OS directly 
maps into memory the included mesh data (via mmap), 
eliminating runtime parsing and processing.

●● �Compiled scenes reduce memory use compared to run-
time parsing when multiple OS processes operate on 
the same scene, because the memory-mapped scene 
graphs in different processes share physical memory.

●● �Compiled scenes are easy to distribute to other machines, 
e.g., a cluster, which may lack scene sources, utilities, or 
support libraries. Only the executable or shared library is 
required to load the compiled scene, reducing potential 
runtime dependencies.

●● �Compiled scenes avoid the need to include large parsing 
libraries, e.g., an XML parser, in real-time processes and 
reduce the dynamic allocations necessary to load scenes.

●● �Multiple compiled scenes can be flexibly composed both 
statically ahead of time and dynamically at runtime, 
improving overall scene construction efficiency when 
some portions of the scene are fixed and others changing. 
For example, we can precompile the scene for the robot, 
which remains constant based on the robot’s mechanical 
design. However, the locations of objects on a table may 
change frequently, so we can compose the precompiled 
robot scene with the separate or dynamically generated 
scene for these objects.
The scene graph data structure and scene compiler pro-

vide the necessary geometric support for TMP and plan 
execution.

TMP
Our TMP implementation follows the overall structure of 
Figure 2, based on the algorithm of [1] and [2]. In the task 
layer, we use an incremental, constraint-based task planner. In 

the motion layer, we include a variety of sampling-based 
motion planners through the Open Motion Planning Library 
[9]. The key to achieving generality in our planner is the 
selection of abstractions. Our task languages can model arbi-
trary, finite-state task domains, and our scene graphs can 
model arbitrary, rigid-body robots and environments.

We relate the task and motion domains by defining a 
domain semantics (see Figure 4). The domain semantics 
define the conversion of the scene graph to a task state and 
define functions to refine high-level task actions by comput-
ing the corresponding motion plans. Concretely, the domain 
semantics in TMKit are functions written in Python or Com-
mon Lisp. Figure 5 includes an example of a task state com-
puted from a scene graph, and Figure 3 contains an example 
of a refinement function in the domain semantics for pick-
and-place manipulation. The same semantics definition may 
be used across multiple scenes or problem instances. Chang-
es to the task domain, e.g., new actions, do require updating 
the domain semantics but require no changes to the planner 
itself. By abstracting TM interaction to these separate 
domain semantics definitions, our planning system general-
izes across domains.

Output and Execution
The immediate output of our system is a TM plan describing 
the sequence of task actions and corresponding motion plans. 
We benchmark the performance and scalability of the overall 
approach in [1] and [2]. Figure 3 shows a fragment of such a 
plan for the table-setting example, represented using a plain-
text, line-based file format that is human-readable and can be 
efficiently parsed. Each line indicates either a task action, the 
joints moved during a motion plan, a waypoint in a motion 
plan, or a reparenting operation, e.g., picking or placing an 
object by changing an edge in the scene graph from the table 
to the hand or vice versa. The resulting file defines the inter-
leaving of task actions and motion plans.

Then, we execute the TM plan by interpolating the given 
motion plans and performing the indicated reparentings to 
grasp and release objects. There are numerous methods to 
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Figure 6. The scene graph compiler aarxc. (a) A compiler block diagram. The compiler includes parsers for scene files, Wavefront 
Object (OBJ) meshes, and ROS URDF files. It uses the Blender 3-D modeling program to convert a variety of meshes to the 
conventional Wavefront OBJ format. The compiler translates the loaded scene graph to optimized C code for later fast loading and real-
time execution. It can also translate scene graphs to input for the POV-Ray raytracer for high-quality visualization. (b) Compile times—
including mesh processing, code generation, and C compilation—and load times for common robots, using Blender 2.77 and GCC 4.9.2 
on an Intel Core i7-4790. Example plans and planning times are presented in Figure 3 and Figure 8 [1], [2].
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interpolate the waypoint sequence of a motion plan so as to 
satisfy the physical limits of a robot, e.g., maximum accelera-
tion and velocity. Given any such interpolation, we use a feed-
back control law to compute the command for a robot:

	 ,q t q t k q t q tu r a r= - -o o^ ^ ^ ^^h h h hh � (1)

where quo  is the velocity command, qro  is the reference 
velocity from the interpolated waypoints, k  is a feedback 
gain, qa  is the actual position, and qr  is the interpolated 
reference position.

Finally, we must communicate with the robot hardware at 
each time step to retrieve the actual state qa  and qao  and to 
send the velocity command .quo  For example, we would use 

Controller Area Network bus message for the Schunk LWA4, 
transmission control protocol for the Universal Robot, or 
ROS communication for the Rethink Baxter.

Use Case Example
Figure 3 illustrates a use case example of TMKit for a domain 
such as the table setting in Figure 1, including the planner’s 
specific input and output.

Task domain: The task domain block shows the pick-up 
action, with its preconditions and effects. This action picks up 
an object from a table, so the precondition requires the object 
to be on the table and uncovered. The effect is that the robot 
holds the object and the object is not on the table. The full 
task domain includes similar definitions for other actions, 
e.g., to put down objects and unstack objects.

(a) (b) (c)

(d) (e) (f)

Figure 7. A TM plan to set a table using the Rethink Robotics Baxter. The average planning time for ten trials was 64.8 s on an Intel 
Core i7-4790. (a) The initial state, (b) picking the first glass, (c) placing the first glass, (d) placing the second glass, (e) placing the first 
bowl, and (f) placing the second bowl.
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Motion domain: The motion domain block shows the defi-
nition for a single object (a glass). The definition includes the 
object’s relative position to its parent (the shelf) and the 
object’s geometric mesh. The full task domain includes simi-
lar definitions for the other glasses and bowls as well as the 
links and joints of the robot.

Domain semantics: The domain semantics block shows the 
function to find a motion plan for the pick-up action. This 
function computes the current position of the object, then 
attempts to find a motion plan to bring the robot’s hand to a 
grasping pose for that object. If motion planning fails 
(exceeds a timeout), the motion planning function generates 
an exception that the TM planner will catch and handle by 
finding a different task plan based on the feedback from the 
motion planner.

TM planner: The TM planner block illustrates the alterna-
tion and feedback between task planning and motion plan-
ning. The task planner identifies a high-level plan. The 
motion planner attempts to find corresponding paths. Failing 
to do so, the motion planner provides additional constraints 
to the task planner, which then finds a different task plan. 
This process iterates until it finds a task plan where all actions 
have corresponding motion plans.

TM plan: The TM plan block shows the first two actions of 
the plan: picking and placing an object. The first action 
(pick-up) includes the joint waypoints to move the robot’s 
hand to the grasping position for an object, then changes the 
object’s parent in the scene graph to the robot’s hand. The sec-
ond action (put-down) includes the waypoints to move the 
robot’s hand and the grasped object to the desired location, 
and then (unshown) the object’s parent will change in the 
scene graph to the table, placing the object. The full TM plan 
contains the rest of the actions necessary to achieve the 
desired goal.

Plan execution: Figures 7 and 8 show two TM plans and 
planning times, one for the Rethink Robotics Baxter and one 

for the Universal Robots UR5. The same overall framework 
produces the plan for each system. We apply the framework 
in each case by using the URDF model of the robot for the 
specific system.

These examples demonstrate the modularity and extensi-
bility of TMKit. TMKit works on multiple robots, supports 
multiple types of actions (e.g., picking, placing, stacking, and 
pushing), and handles coupling between objects [e.g., moving 
cans into a bin (Figure 8)]. Additional benchmark results are 
presented in [1] and [2].

Conclusions
We have presented TMKit, a new software framework for 
TMP and execution that is available under an open-source, 
permissive license [21]. We believe TMKit is the first open-
source TMP framework that is extensible to multiple domains 
and different planning methods and that supports end-to-end 
planning and execution. Its modular design enables TMKit to 
generalize across hardware platforms, task domains, and 
TMP algorithms.

We produced a general-purpose, easy-to-use, and extensi-
ble framework for TMP. There are numerous avenues to 
improve and build upon this framework. Going beyond our 
implemented method of [1] and [2], we will extend the feed-
back between the task and motion layers, improve plan reuse, 
and incorporate additional rich constraint capabilities. We are 
already adapting and integrating the additional TMP meth-
ods of [3] and [4] with TMKit. We hope the community will 
find this end-to-end system both easy to use and a helpful 
platform to demonstrate other methods for TMP.

Currently, TMKit focuses on the geometric case of motion 
planning, which is often sufficient for manipulation. Planning 
with dynamics, e.g., considering torques in the planning layer, 
may be necessary for other cases, such as bipedal walking. 
However, including dynamics during motion planning may 
impact completeness [20], so careful analysis is necessary. 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8. A TM plan to load and move a bin using the Universal Robots UR5. The same overall framework with a different URDF  
for the robot produces this plan for a different system. The average planning time for ten trials was 8.78 s on an Intel Core i7-4790. 
(a)–(f) The simulated execution and (g)–(l) the physical execution.
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Improved considerations for planning with dynamics remains 
an area of future work for TMKit.

An ongoing need in TMP is support to compare and 
benchmark different TMP algorithms and implementa-
tions. We believe that TMKit, as an extensible framework 
supporting common formats such as PDDL and URDF, can 
help meet that need. Furthermore, modular components, 
such as the scene graph compiler (see Figure 6), could aid 
the development of alternative TMP methods and imple-
mentations. We hope that TMKit will be a useful tool for 
other researchers to evaluate existing algorithms and extend 
to new approaches.
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