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ABSTRACT
We present a program analysis for verifying quantitative ro-
bustness properties of programs, stated generally as: “If the
inputs of a program are perturbed by an arbitrary amount
ε, then its outputs change at most by Kε, where K can de-
pend on the size of the input but not its value.” Robustness
properties generalize the analytic notion of continuity—e.g.,
while the function ex is continuous, it is not robust. Our
problem is to verify the robustness of a function P that is
coded as an imperative program, and can use diverse data
types and features such as branches and loops.

Our approach to the problem soundly decomposes it into
two subproblems: (a) verifying that the smallest possible
perturbations to the inputs of P do not change the cor-
responding outputs significantly, even if control now flows
along a different control path; and (b) verifying the robust-
ness of the computation along each control-flow path of P .
To solve the former subproblem, we build on an existing
method for verifying that a program encodes a continuous
function [5]. The latter is solved using a static analysis that
bounds the magnitude of the slope of any function computed
by a control flow path of P . The outcome is a sound program
analysis for robustness that uses proof obligations which do
not refer to ε-changes and can often be fully automated using
off-the-shelf SMT-solvers.

We identify three application domains for our analysis.
First, our analysis can be used to guarantee the predictable
execution of embedded control software, whose inputs come
from physical sources and can suffer from error and un-
certainty. A guarantee of robustness ensures that the sys-
tem does not react disproportionately to such uncertainty.
Second, our analysis is directly applicable to approximate
computation, and can be used to provide foundations for
a recently-proposed program approximation scheme called
loop perforation. A third application is in database privacy:
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proofs of robustness of queries are essential to differential
privacy, the most popular notion of privacy for statistical
databases.
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1. INTRODUCTION
Uncertainty in computation [12] has long been a topic of

interest to computer science. Depending on the context,
uncertainty in the operation of programs can be a curse
or a blessing. On one hand, uncertain operating environ-
ments may cause system failures—consider, for example, an
aircraft controller that reacts unpredictably to noisy sensor
data and causes a crash. On the other hand, randomized
and approximate algorithms deliberately inject uncertainty
into their data to trade off quality of results for better per-
formance. Uncertainty of both forms is rife in a world where
cyber-physical systems are ubiquitous [15] and applications
suited to approximation and randomization are ascendant.
Love or hate uncertainty, you increasingly cannot ignore it.

Robustness is a system property critical to reasoning about
program behavior under uncertainty. A program is robust
(in the sense of this paper) if a perturbation to its inputs can
only lead to proportional changes in its outputs. This means
that a robust avionic controller reacts predictably to noise
in the measurements made by the plane’s sensors. Also, if
a program P is robust, then the output P (x) of P on an
input x can be approximated “safely” by P (x′), where x′ is
a value close to x—as x and x′ are close, so must be P (x)
and P (x′). If uncertainty is our enemy, a proof of robustness
shows that our program is relatively safe from it; if we want
to introduce uncertainty in our computation for performance
gains, robustness ensures that it is safe to do so.



Dijk(G : graph, src : node)

1 for each node v in G
2 d[v] :=⊥; prev [v] := undef ;
3 d[src] := 0; WL := set of all nodes in G;
4 while WL 6= ∅
5 choose node w ∈WL such that d[w] is minimal;
6 remove w from WL;
7 for each neighbor v of w
8 z := d[w] +G[w, v];
9 if z < d[v]

10 then d[v] := z; prev [v] := w

Figure 1: Dijkstra’s shortest-path algorithm

A system to formally verify the robustness of everyday
programs would then seem to be of considerable practical
importance. A step to this end was taken by Chaudhuri
et al [5], who presented a program analysis to verify that a
program encodes a continuous function. A function is con-
tinuous if infinitesimal—or arbitrarily small—changes to its
inputs can only cause infinitesimal changes to its outputs.
This makes such a function robust in a sense. Such a formu-
lation of robustness is particularly valuable in the setting of
programs, where violation of robustness is often due to dis-
continuities introduced by control constructs like branches
and loops. A provably continuous program is free from vio-
lations of this sort. At the same time, continuity is too weak
a robustness property for many settings, as a small but non-
infinitesimal change to the inputs of a continuous function
can create disproportionately large changes to its outputs.
For example, while the function ex is continuous, there is no
bound on the change in its output on a small finite change
to its input x.

In this paper, we investigate a stronger, quantitative for-
mulation of robustness of programs that does not suffer from
this limitation. We believe that this formulation, based on
the analytic notion of Lipschitz continuity, is a canonical
notion of robustness for programs. By this definition, a pro-
gram is robust if a change of ±ε to its inputs, for any ε,
results in a change of ±Kε to its outputs, where K does
not depend on the values of the input variables. The multi-
plier K—known as the robustness parameter—quantifies the
extent of this robustness.

For example, consider the implementation Dijk of Dijk-
stra’s shortest-paths algorithm in Fig. 1—here G is a graph
with real-valued edge-weights and N edges, and src is the
source node. The output of the program is the table d of
shortest-path distances in G. We note that Dijk is robust
with a robustness parameter N (from now on, N-robust):
if each edge-weight in G changes by ±ε, then each output
d[i] changes at most by ±Nε. But how do we verify the
above robustness property from the text of programs like
Dijk , which use features like branches, loops, and arrays?

One way is to first prove that Dijk computes shortest
paths, and then to establish that the costs of these paths
change proportionally on changes to the edge-weights of G.
Such a proof, however, would be highly specialized and im-
possible to automate. Our goal, instead, is to develop a
proof system that reasons about robustness without having
to prove full functional correctness, is applicable to a wide
range of algorithms, and is mostly automated.

To see how we achieve this goal, consider programs like
Dijk whose inputs and outputs are from dense domains. Key

to our analysis of robustness for such programs P is the
following metatheorem: P is K-robust if, first, P encodes
a continuous function, and, second, each control flow path
of P computes a function that is linear in the values (but
not the size) of the input, and the magnitude of the slope
of this line is bounded by K. The first property accounts
for the possibility of different control flow on the perturbed
and unperturbed input, and can be verified using an existing
analysis [5]. As for the latter property, we offer a new static
analysis for it. The final outcome is a program analysis that
can verify the robustness of programs over continuous data
types, can be automated using off-the-shelf SMT-solvers (we
provide an implementation on top of the Z3 solver), and
can verify the robustness of many everyday programs. For
example, we establish the property for the program Dijk by
showing that: (1) The effect of each loop iteration on the
array d can be written as d[v1] := c1 · d[v2] + c2 · a + c3,
where a is the weight of some edge of G, d[v1] and d[v2] are
elements of d, and c1, c2, c3 are constants with |c1| ≤ 1 and
|c2| ≤ 1; and (2) Each edge-weight of the input graph G is
used only once as an operand during an addition.

We identify three application domains for our analysis.
First, our analysis can be used to guarantee the predictable
execution of embedded control programs, whose inputs come
from physical sources and can therefore be noisy or uncer-
tain. Second, we investigate the application of our system in
approximate computations that trade off accuracy of results
for resource savings. In particular, we demonstrate that a
robustness analysis can be used to provide foundations for
a recently-proposed program approximation heuristic called
loop perforation [20]. Third, our analysis can be used in the
synthesis of information release mechanisms that satisfy dif-
ferential privacy [10], perhaps the most popular definition of
privacy for statistical databases.

Summary of contributions and organization
Now we summarize this paper’s contributions:
• We give a canonical, quantitative definition of robust-

ness of programs (Sec. 2).
• We present a sound program analysis that can be used

to verify the robustness of a given program (Sec. 3).
(Sec. 5).
• We present a prototype implementation of our proof

system, built on top of the Z3 SMT-solver (Sec. 5).
• We identify three application domains for our analysis.

(Sec. 4)

2. ROBUSTNESS OF PROGRAMS
Now we formalize our notion of robustness of programs.

We begin by fixing a language Imp of imperative arithmetic
programs. For simplicity, we allow Imp only two data types:
reals (real) and arrays of reals (realarr). Other popular
types such as records, tuples, and functional lists/trees can
be added without changing the analysis significantly. Our
robustness analysis can be extended to programs with dis-
crete typed inputs such as integers. We intend to present
this extension in a future work. Also, we assume that re-
als in Imp are infinite-precision rather than floating-point,
and treat arithmetic and comparison operations on them
as unit-time oracles. Thus, our programs are equivalent to
Blum-Shub-Smale Turing machines [2]. While this idealized
semantics rules out reasoning about floating-point rounding
errors, we can use it to prove the absence of robustness bugs



due to flawed logic (arguably, it is this semantics that forms
the mental model of programmers as they design numerical
algorithms). We intend to pursue a floating-point modeling
of continuous data in future work.

As for perturbations, they can change the value of a datum
but not its type or size, the latter being 1 if the datum is a
real, and N if it is an array of length N . We assume, for each
type τ and size N , a metric1 dτ,N . An ε-change to a value x
of type τ and size N is assumed to result in a value y, of type
τ and size N , such that dτ,N (x, y) = ε. In particular, the
type real is associated with the Euclidean metric, defined as
dreal,1(x, y) = |x−y|. We let an ε-change to an array consist
of ε-changes to any number of its elements. Formally, the
metric over arrays of length N whose elements are of type τ
is the L∞-norm:

darray of τ,N (A,B) = max
i
{dτ (A[i], B[i])}.

Now we offer the syntax of arithmetic expressions e, boolean
expressions b, and programs P in Imp:

e ::= x | c | e1 + e2 | e1 · e2 | A[i]
b ::= e > 0 | e = 0 | b1 ∧ b2 | ¬b
P ::= skip | x := e | A[i] := e | if b then P1 else P2

| while b do P1 | P1;P2

Here x is a variable, c is a constant, A is an array variable,
i an integer variable or constant, and the arithmetic and
boolean operators are as usual. We let each statement be
annotated with a distinct label.

As for semantics, let us only consider programs P that
terminate on all inputs. The semantics of P is the standard
denotational semantics [27] for imperative programs (except
as mentioned earlier, we assume unit-time operations on re-
als). Formally, let us associate with each variable x a set
Cloc(x) of concrete memory locations. A state of P is a map
σ that assigns a value in Valτ to each program variable x
of type τ . We denote the set of all states of P by Σ(P ).
Each state induces, in the usual way, an assignment of con-
tents to each location y ∈ Cloc(x), for each variable x. We
use the notation σ(y) to denote the content of location y at
state σ. The semantics of the program P , and an expression
e of type τ appearing in it, are now defined by two func-
tions [[P ]] : Σ(P ) → Σ(P ) and [[e]] : Σ(P ) → Valτ , where
Valτ is the set of values of type τ . Intuitively, [[e]](σ) is the
value of e at state σ, and [[P ]](σ) is the state at which P
terminates after starting execution from σ. In addition, we
assume definitions of control flow paths (sequences of labels)
and executions (sequences of states) of P . These definitions
are all standard, and hence omitted.

Robustness of programs. Our definition of robustness
of programs is based on the analytic notion of Lipschitz con-
tinuity [1]. Intuitively, a program P is K-robust if any addi-
tive ε-change to the input of P can only change the output
of P by ±Kε. Note that ε is arbitrary, so that the output of
a K-robust program changes proportionally on any change
to the inputs, and not just small ones.

As a program can have multiple inputs and outputs, we
define robustness with respect to an input variable xin and
an output variable xout . If P is robust with respect to xin and

1Recall that a metric over a set S is a function d : S × S →
R ∪ {∞} such that for all x, y, z, we have: (1) d(x, y) ≥ 0,
with d(x, y) = 0 iff x = y; (2) d(x, y) = d(y, x); and (3)
d(x, y) + d(y, z) ≥ d(x, z).

xout , a change to the initial value of any xin, while keeping
the remaining variables fixed, must only cause a proportional
change to the final value of xout . Variables other than xout
can change arbitrarily.

Also, we allow robustness parameters that are not just
constants, but depend on the size of the input. For example,
suppose the size of xin is N , and an ε-change to it changes
the output by Nε. Then P is N-robust with respect to xin.
We model this by letting a robustness parameter K be a
function of type N→ R, rather than just a real.

Finally, our definition allows a program to be robust only
within a certain subset Σ′ of the input space, without asser-
tions about the effect of perturbations on states outside Σ′

(capturing the fact that many realistic programs are robust
only within certain regions of their input space).

Formally, for a variable x (say of type τ) and a state σ, let
Size(x, σ) be the size of the value of x at σ. Now let ε ∈ R+;
also let σ′ ∈ Σ(P ) such that σ(x, σ) = Size(x, σ′) = N .
The state σ′ is an (ε, x)-perturbation of σ, and is denoted
by Pertε,x(σ, σ′), if dτ,N (σ(x), σ′(x)) < ε, and for all other
variables y, we have σ(y) = σ′(y). The states σ and σ′ are
(ε, x)-close (written as σ ≈ε,x σ′) if dτ,m(σ(x), σ′(x)) < ε.
Now we define:

Definition 1 (Robustness of programs). Consider
a function K : N→ R and a set of states Σ′ ⊆ Σ. The pro-
gram P is K-robust within Σ′ with respect to the input xin
and the output xout if for all σ, σ′ ∈ Σ′ and ε ∈ R+, we have

Pertε,xin(σ, σ′) =⇒ [[P ]](σ) ≈m,xout [[P ]](σ′)

where m = K(Size(xin, σ)) · ε.

Definition 2 (Continuity of programs [5]). The pro-
gram P is continuous within Σ′ ⊆ Σ with respect to the input
xin and the output xout if for all ε ∈ R+, σ ∈ Σ′, there exists
a δ ∈ R+ such that for all σ′ ∈ Σ′,

Pertδ,xin(σ, σ′) =⇒ [[P ]](σ) ≈ε,xout [[P ]](σ′).

If P is continuous by the above, then infinitesimal pertur-
bations to xin (that keep the state within the set Σ′) can
only cause infinitesimal changes to xout . Not all continuous
programs are robust. For example, a program computing
x2, given arbitrary x ∈ R, is continuous but non-robust.
Now we consider a few everyday programs that are robust
or continuous by the above definitions:

Example 1 (Sorting). Consider a correct implemen-
tation P of a sorting algorithm that takes in an array Ain
of reals, and returns a sorted array Aout. The program is
1-robust, with respect to input Ain and output Aout, within
Σ(P ): for any ε > 0, if each element of Ain is perturbed at
most by ±ε, then the maximum change to an element of the
output Aout is ±ε as well. Note that this observation is not
at all obvious, as we are speaking of arbitrary changes to
Ain here, and as even the minutest change to Ain can alter
the position of a given item in Aout arbitrarily.

Example 2 (Shortest paths, MSTs). Let SP be a cor-
rect implementation of a shortest-path algorithm (e.g., Dijk;
Fig. 1). We view the graph G on which SP operates as a
perturbable array of reals such that G[i] is the weight of the
i-th edge. An ε-change to G thus amounts to a maximum



Kruskal(G : graph)

1 for each node v in G do C[v] := {v};
2 WL := set of all edges in G; cost := 0; T := ∅;
3 while WL 6= ∅
4 choose edge (v, w) ∈WL

such that G(v, w) is minimal;
5 remove (v, w) from WL;
6 if C[v] 6= C[w] then
7 add edge (v, w) to T ;
8 cost := cost +G(v, w);
9 C[v] := C[w] := C[v] ∪ C[w];

Figure 2: Kruskal’s algorithm

change of ±ε to any edge-weight of G, while keeping the node
and edge structure intact.

One output of SP is the array d of shortest-path distances
in G—i.e., d[i] is the length of the shortest path from the
source node src to the i-th node ui of G. A second output
is the array π whose i-th element is a sequence of nodes
forming a minimal-weight path between src and ui. Let the
distance between two elements of π be 0 if they are identical,
and ∞ otherwise.

As it happens, SP is N-robust everywhere within Σ(P )
with respect to the output d—if each edge weight in G changes
by an amount ε, a shortest path weight can change at most
by (Nε). However, an ε-change to G may add or subtract
elements from π—i.e., perturb π by the amount ∞. There-
fore, SP is not K-robust with respect to the output π for any
K.

Similar arguments apply to a program MST computing
minimum spanning trees in a graph G (Kruskal’s algorithm;
Fig. 2). Suppose the program has two outputs: a sequence T
of edges forming a minimum spanning tree, and the cost of
this tree. MST is N-robust within Σ(MST ) if the output is
cost, but not robust if the output is T .

3. VERIFYING ROBUSTNESS
In this section, we present our program analysis for robust-

ness. The inputs of the analysis are a program P , symbolic
encodings of a set Σ′ of Σ(P ) and a function K : N→ R, an
input variable xin, and an output variable xout. Our goal is
to soundly judge P K-robust within Σ′ with respect to xin
and xout .

3.1 Piecewise K-robustness and K-linearity
Consider, first, the simple scenario where P has a single

real-valued variable x. Note that each control flow path of
P computes a differentiable function over the inputs. Now
suppose we can show that each control flow path of P rep-
resents a robust computation (in this case, P is said to be
piecewise K-robust). Piecewise robustness does not entail
robustness: a perturbation to the initial value of x can cause
P to execute along a different control flow path, leading to a
completely different final state. However, if P is continuous
as well as piecewise K-robust, then P is K-robust as well,
e.g. the function abs(x) = |x|, where x ∈ R, is continuous
as well as piecewise 1-robust—hence 1-robust. On the other
hand, the continuous function “if(x > 0)thenx2elsex” is
nonrobust because x2 is not piecewise robust within x ∈ R.

The above observation can be generalized to settings where

P has multiple variables of different types. Our analysis ex-
ploits it to decompose the problem of robustness analysis
into two independent subproblems: that of verifying conti-
nuity and piecewise K-robustness of P .

For any program P and any set of states Σ′ of P , let Σ′(i)
denote the set of states σ ∈ Σ′ such that starting from σ, P
executes along its i-th control flow path (we assume a global
order on control flow paths). Let us now define:

Definition 3 (Piecewise K-robustness). Let P be
a program, Σ′ ⊆ Σ(P ) a set of states, K a function of type
N → R, and xin, xout ∈ Var(P ). P is piecewise K-robust
within Σ′ ⊆ Σ(P ) with respect to input xin and output xout
if for all i, P is K-robust within Σ(i) with respect to xin and
xout .

We establish piecewise robustness using the weaker property
of piecewise K-linearity, which says that the function com-
puted by each control flow path of P is a linear function,
and that the absolute value of its slope is bounded by K:

Definition 4 (Piecewise K-linearity). Let P be a
program, Σ′ ⊆ Σ(P ) a set of states, K a function of type
N → R, and xin, xout ∈ Var(P ). P is K-linear within Σ′

w.r.t. input xin and output xout if for each z ∈ Cloc(xin),
y ∈ Cloc(xout), σ ∈ Σ′, we have the relationship

([[P ]](σ))(y) =

 ∑
z∈Cloc(xin)

cz,y ·z

 + τ,

where τ is an expression whose free variables range over the
set

⋃
x′ 6=xin Cloc(x′), and

∑
z |cz,y| ≤ K(Size(xin, σ)). P is

piecewise K-linear within Σ′ ⊆ Σ(P ) with respect to input
xin and output xout if for all i, P is K-linear within Σ(i)

with respect to xin and xout .

It is not hard to see that:

Theorem 1. If P is piecewise K-linear, then P is piece-
wise K-robust.

Example 3 (Dijkstra’s algorithm). Consider, once
again, the procedure Dijk in Fig. 1. While the dependence
between G and d is complex, Dijk is piecewise N-robust in G
and d. To see why, consider any control flow path π of Dijk
and view it as a straight-line program. Suppose the addition
operation in Line 8 of Dijk is executed M times in this pro-
gram. As we only remove elements from the worklist WL,
a specific edge G[w, v] is used at most once as an operand
of this addition. Consequently, we have M ≤ N , where N
is the size of G. Let M ′ be the number of times Line 10
assigns the result of this addition to an element of d. We
have M ′ ≤M ≤ N . It is easy to see that this means that π
is N-linear with respect to input G and output d. As the set
of control flow paths in Dijk is countable and each path is
N-linear with respect to G and d, Dijk is piecewise N-robust
within Σ(Dijk) with respect to G and d.

3.2 Robustness
Now we apply the notion of piecewise robustness and

piecewise linearity in the analysis of robustness.

Theorem 2. Let P be a program, Σ′ ⊆ Σ(P ), and xin
and xout be variables of dense types. P is K-robust within



Insertion-Sort(A : realarr)

1 for i := 1 to (|A| − 1)
2 z := A[i]; j := i− 1;
3 while j ≥ 0 and A[j] > z
4 A[j + 1] := A[j]; j := j − 1;
5 A[j + 1] := z;

Figure 3: Insertion sort

Σ′ with respect to input xin and output xout if and only if:
(1) P is continuous within Σ′ w.r.t. input xin and output
xout ; and (2) P is piecewise K-robust within Σ′ with respect
to input xin and output xout .

By Theorem 2, the problem of robustness analysis can be
decomposed soundly and completely into the problems of
verifying continuity and piecewise robustness. We establish
these conditions independently. The first criterion is proved
using a sound program analysis due to Chaudhuri et al [5]
(from now on, we call this system Cont). To prove the sec-
ond property, we prove P to be piecewise K-linear, and use
Theorem 1. However, for reasons outlined later, no exist-
ing sound abstraction that we know of is suited to precise
and efficient analysis of piecewise linearity—a new solution
is needed.

Piecewise linearity using arithmetic-freedom
It is sometimes possible to establish piecewise linearity us-
ing traditional dataflow analysis. Let a program Q be free
of arithmetic operations—i.e., if x := e is an assignment in
the program, then the evaluation of e does not require arith-
metic. In this case, each control flow path in Q encodes a
1-linear function, which means that Q is piecewise 1-linear.
Generalizing, let a program P be arithmetic-free with re-
spect to input xin and outputs xout if all data flows from
xin to xout are free of arithmetic operations. A program can
be shown arithmetic-free in this sense using standard slicing
techniques. We can use a program like Q above as an ab-
straction of P . Application in the verification of piecewise
robustness stems from the fact that:

Theorem 3. If a program P is arithmetic-free within Σ′ ⊆
Σ(P ) with respect to input xin and output xout, then P is
piecewise 1-linear within Σ′ with respect to input xin and
output xout .

Example 4 (Sorting). The seemingly trivial abstrac-
tion of arithmetic-freedom can in fact be used to prove the
robustness of several challenging, array-manipulating algo-
rithms. Consider Insertion Sort (Fig. 3), where the array
A is the input as well as the output. A lightweight anal-
ysis can prove this algorithm arithmetic-free, at all input
states, with respect to the input A and output A. While
arithmetic does occur in the program, it only updates the in-
dex i, whose value does not depend on the original contents
of A. Other algorithms like Mergesort and Bubblesort can
be proved arithmetic-free in the same way. Separately, we
prove these algorithms continuous using Cont, which gives
us a proof of 1-robustness.

Piecewise linearity with robustness matrices
In most realistic programs, however, arithmetic-freedom will
not suffice, and some form of quantitative reasoning will be

(Skip)
skip ` I

(Assign)
xi := e ` ∇

where

∀j, k : ∇jk =


∣∣∣ ∂e∂xk ∣∣∣ if j = i and ∂e

∂xk
is constant

∞ if j = i and ∂e
∂xk

depends on the xm-s

1 if j = k 6= i
0 otherwise

(Weaken)
P ′ ` ∇ ∀i, j : ∇ij ≤ ∇′ij

P ′ ` ∇′

(Sequence)
P1 ` ∇1 P2 ` ∇2

P1;P2 ` ∇2 · ∇1

(Ite)
P1 ` ∇1 P2 ` ∇2

if b then P1 else P2 ` max(∇1,∇2)

(While-1)

P ′ = while b do P ′′ P ′′ ` ∇′′ Bound+(P ′,M)
∀i, j : (∇′′ij = 0 ∨∇′′ij ≥ 1)

P ′ ` (∇′′)M

(While-2)

P ′ = while b do P ′′ P ′′ ` ∇′′ Bound−(P ′,M)
∀i, j : ∇′′ij < 1

P ′ ` (∇′′)M

Figure 4: System Robmat for propagating robust-
ness matrices

necessary. A natural first question is: can we use a tradi-
tional numerical abstract domain—such as polyhedra [9]—
for such reasoning? The answer, unfortunately, seems to be
no. Consider the program

if (x+ y > 0) then z := x+ y else z := −x− y
Our goal is to prove this program piecewise 1-linear with

respect to input x and output y. Unfortunately, the best
invariant that we can establish at the end of the branch using
the polyhedra domain is (z ≥ x+ y) ∧ (z ≥ −x− y). These
constraints permit z to be a linear function of x with slope
equal to ∞—hence the best we can say is that the program
is ∞-robust! The key issue here is that we need a form
of disjunctive reasoning to track quantities (absolute values
of slopes) computed along different paths. While there is a
plethora of abstract domains for disjunctive reasoning about
programs [6, 7], none of them, so far as we know, is suitable
for this purpose. Now we present a simple static analysis
that fulfils our needs.

Here, an abstract state—known as a robustness matrix—
tracks, for each pair of memory locations x and y, a bound
on the slope of the expression relating the current value of
x to the initial value of y. This information is propagated
through the program using an abstract interpretation.

For brevity, we make a few simplifying assumptions in
this presentation. First, we assume that all variables of P
are real valued. The analysis that we have actually imple-
mented can handle arrays by abstracting each unbounded
array using a finite number of abstract memory locations.
As this array abstraction is standard but adds significantly
to the notation, we omit its details. Also, we only show
how to derive piecewise linearity judgments holding over
the entire space Σ(P ). A generalization to judgments con-
ditioned by Σ′ ⊆ Σ(P ) is, however, easy to construct. Fi-
nally, we view a program state not as a map but as a vector
〈r1, . . . , rn〉, where ri is the value of the i-th variable xi. The
denotational semantics of any program Q is thus a function



1 x := a {∇x,a = 1}
2 y := b {∇x,a = 1, ∇y,b = 1}
3 if (x ≤ y)
4 then z := −2x+ y

{∇x,a = 1,∇y,b = 1,∇z,x = 2,∇z,y = 1,∇z,a = 2,∇z,b = 1}
5 else z := 3y + x; {∇x,a = 1,∇y,b = 1,∇z,x = 1,

∇z,y = 3,∇z,a = 1,∇z,b = 3}
{∇x,a = 1,∇y,b = 1,∇z,x = 2,∇z,y = 3,∇z,a = 2,∇z,b = 3}

Figure 5: Piecewise robustness using robustness ma-
trices

[[Q]] : Rn → Rn. Now we define a robustness matrix ∇ for P
to be an n× n matrix whose elements ∇ij are non-negative
reals.

To understand the interpretation of this matrix, we re-
call the classic definition of a Jacobian from vector calcu-
lus. The Jacobian of a function f : Rn → Rn with inputs
xin1 , . . . , x

in
n ∈ R and outputs x1, . . . , xn ∈ R is the matrix

Jf =


∂x1
∂xin1

. . . ∂x1
∂xinn

. . . . . .
∂xn
∂xin1

. . . ∂xn
∂xinn


If f is a differentiable function, then for each xi and xinj , it
is K-robust with respect to input xj and output xi, where
K is any upper bound on | ∂xi

∂xinj
|. In our setting, the expres-

sion relating the inputs and outputs of a single control flow
path is differentiable; consequently, we can verify the ro-
bustness of this expression by propagating a Jacobian along
it (strictly, entries in the actual matrix that we carry are
constant upper bounds on the absolute values of the terms
∂xi/∂x

in
j ). It is possible to carry out this propagation using

the chain rule of differentiation. Of course, due to branches,
a program P need not be differentiable. This is where ab-
stract interpretation comes handy—we merge multiple Jaco-
bians propagated along different paths into a robustness ma-
trix that overestimates the robustness parameter of P . Such
a merge demands an abstract join operator t: for robust-
ness matrices ∇ and ∇′, we define (∇t∇′) to be the matrix
M such that for all i, j, we have Mij = max(∇ij ,∇′ij).

Note that with the above strategy, we will infer robustness
matrices even for discontinuous programs. This is, of course,
acceptable, as the present analysis only verifies piecewise
robustness—continuity is judged separately by Cont.

The goal of our analysis—call it Robmat—is to syntac-
tically derive facts of the form P ′ ` ∇, read as: “∇ is the
robustness matrix for the subprogram P ′.” The structural
rules for the analysis are shown in Fig. 4. Here, I is the iden-
tity matrix. The assertion Bound+(P ′,M) states that M is
an upper bound on the number of iterations of the while-
loop P ′; likewise, Bound−(P ′,M) states that the symbolic
or numeric constant M is a lower bound on the number of
iterations for which P ′ executes. These conditions can be
established either via an auxiliary checker or by manual an-
notation.

We observe that the robustness matrix for P1;P2 obtained
by multiplying the matrices for P1 and P2—this rule follows
from the chain rule of calculus. This rule is now generalized
into the rule While-1 for while-loops. As the loop may
terminate after M ′ < M iterations, we require the following
extra condition for the rule to be sound: (∇′′)i ≤ (∇′′)i+1

P ::= 〈all syntactic forms in Imp〉 | 〈the form Q below〉

l: while b
θ := nondeterministically chosen u ∈ U ;
R(U, θ, xin[θ], xout )

Figure 6: The language Limp (P represents pro-
grams).

for all i < M . This property is ensured by the condition
∀i, j : (∇′′ij = 0 ∨ ∇′′ij ≥ 1). Note that in the course of a
proof, we can weaken any robustness matrix that does not
satisfy this condition to one that does, using the Weaken
rule. On the other hand, the While-2 rule applies to the
special case when all matrix elements are less than 1—that
is, the matrix represents a contraction.

We have:
Theorem 4. If the system Robmat derives the judgment

P ` ∇, then for all i, j, P is piecewise ∇ij-linear within
Σ(P ) with respect to the input xj and the output xi.

Example 5. Fig. 5 shows the result of applying a dataflow
analysis based on Robmat to a simple program. The anno-
tations depict the robustness matrices ∇ propagated to the
various program points—we use the more readable notation
∇y,z to refer to the matrix entry ∇ij if y and z are respec-
tively the i-th and j-th variables. Observe, in particular,
how the robustness matrices from the two branches of the
program are merged.

Piecewise linearity with linear loops
A problem with the robustness matrix abstraction is that
it does not satisfactorily handle loops iterating over un-
bounded data structures. For example, let us try to use it
to prove Dijkstra’s algorithm (Fig. 1) piecewise linear w.r.t.
input G and output d. Here, each iteration makes multi-
ple assignments to d and is consequently piecewise K-linear
for K ≥ 2. As the main loop iterates N times, the com-
plete algorithm is then piecewise O(2N )-robust. However,
by the reasoning in Ex. 3, Dijkstra’s algorithm is piecewise
N -linear. Now we present an abstraction that can establish
this and similar facts. A key insight here is to treat the loca-
tions of the input variable xin as resources, and to establish
an assertion of the form“Each location of xin is used at most
once during the execution of the loop.”

To express our conservative abstractions, we extend the
language Imp with a syntactic form for loops with restricted
nondeterministic choice. We call this extended language
Limp. Its syntax is as in Figure 6. Here:

• U is a set—the iteration space for the loop in the syn-
tactic form Q. Its elements are called choices.

• xin is an unbounded data structure (e.g. an array).

• θ is a special variable, called the current choice vari-
able. Every iteration starts by picking an element of
U and storing it in θ.

• xout is the output variable.

• R(U, θ, xin[θ], xout) (henceforth R) is an Imp program
that does not write to θ, or use elements of xin other
than xin[θ], but can read θ and read or update the
iteration space U , element xin[θ], and the output xout .



(LinLoop)

UseOnce(θ, U,Q)
PLin(R, k, xin[θ], xout ) PLin(R, 1, xout , xout )

PLin(Q, k.N, xin, xout )

Figure 7: Proof rule LinLoop (Q is an abstract loop)

We call a program of form Q an abstract loop—henceforth,
Q denotes an arbitrary, fixed abstract loop. For simplicity,
we only consider the analysis of abstract loops—an extension
to all Limp programs involves a combination of the present
abstraction with the previous abstractions. As before, we
restrict ourselves to programs that terminate on all inputs.

The main loops in Figs. 1 and 2 are abstract loops. For
example, the workset WL, the graph G, the node u, and the
array d in Figure 1 respectively correspond to the iteration
space U , the input variable xin, the choice variable θ, and
the output variable xout.

Now we present a rule (Fig. 7) for proving piecewise N -
linearity of Limp programs. As before, for brevity, we only
derive robustness judgments that hold over the entire Σ(P ).
We denote by PLin(P, k.N, xin, xout) the judgment “P is
piecewise k.N -linear within Σ(P ) with respect to xin and
xout .”

A key premise for the rule is the assertion UseOnce(θ, U,Q),
which states that the values of θ chosen during a complete
execution of Q are all distinct. As the variable θ is used to in-
dex the data array xin, we can also see this assertion to mean
that each memory location in xin is used at most once dur-
ing a run of Q. We establish the property UseOnce(θ, U,Q)
using a few syntactic sufficient conditions that apply to sev-
eral common classes of programs. For example, if Q is a
for-loop over the indices of xin, and θ is the (monotoni-
cally increasing or decreasing) index variable, then we have
UseOnce(θ, U,Q). For another example, consider Dijkstra’s
algorithm (Fig. 1), where an element w is removed from the
workset WL in each iteration, never to be re-inserted again.
In this case, letting QDijk be the main loop (Lines 4-10) of
the program, we have UseOnce(w,WL, QDijk ). Another ex-
ample in this class is Kruskal’s algorithm (Fig. 2), where
we iterate over a workset that initially contains all edges of
the input graph. Because edges are removed from but never
added to this set, we have a use-once invariant similar to that
in Dijk . Lastly, observe the premises PLin(R, k, xin[θ], xout)
and PLin(R, 1, xout , xout). These are typically derived using
one of our other abstractions—e.g., robustness matrices.

To see the intuition behind the rule LinLoop, consider the
simple case where xout is a real. By the premises, the effect
of each iteration on xout can be summarized by assignments

xout := c1 · xout + c2 · xin[θ] + c3

where c1, c2, and c3 are constants with |c1| ≤ 1 and |c2| ≤ k.
As each location in xin is used only once and our norm over
arrays is L∞, this means the complete loop is piecewise k.N -
linear with respect to output xout .

2 We can show that:

Theorem 5 (Soundness). If the rule LinLoop infers
the judgment PLin(Q,N, xin, xout), then the abstract loop Q
is piecewise N-linear within Σ(Q) with respect to input xin
and output xout .

2Interestingly, if the metric for arrays were the L1-
norm rather than the L∞-norm, then the rule LinLoop
would be sound even if we changed its conclusion to
PLin(Q, k, xin, xout).

calc trans slow torques(angle : real, speed : real)

1 limit := 29; pressure1 := 0; pressure2 := 0;
2 if (angle ≥ 27∧ angle < 35) then limit :=41;
3 elseif (angle ≥ 35∧ angle < 50) then limit :=63;
4 elseif (angle ≥ 50∧ angle < 65) then limit :=109;
5 elseif (angle ≥ 65) then limit := 127;
6 if (3 * speed ≤ limit)
7 then gear := 3; pressure1 := 1000;
8 else gear := 4; pressure1 := 1000;
9 if (gear ≥ 3) then pressure2 := 1000

Figure 8: Code from a car transmission controller

Example 6 (Kruskal’s algorithm). For an applica-
tion of the rule LinLoop, consider Kruskal’s algorithm (2),
whose main loop can be abstracted using an abstract loop.
To analyze this loop, we establish the use-once property as
discussed earlier. All that is left is to show that the loop body
(Line 5-9) is piecewise 1-linear. This is easy to do using the
robustness matrix abstraction. A similar strategy applies to
several other examples, such as Dijkstra’s or Bellman-Ford’s
shortest-path algorithms.

4. APPLICATIONS
In this section, we identify three motivating application

domains for our analysis. As this paper is primarily a foun-
dational contribution, our discussions here use small, illus-
trative code fragments. The challenges of scaling to large
real-world benchmarks is left for future work.

4.1 Robustness of embedded control software
Robustness is a critical system property for many embed-

ded control systems. The sensor data that drives these sys-
tems is often prone to noise and errors, and unpredictable
changes to system behavior due to this sort of uncertainty
can have catastrophic consequences. A proof that the sys-
tem reacts predictably to perturbations in its inputs is there-
fore of crucial practical importance. Unsurprisingly, control
theorists have studied the problem of robust controller de-
sign thoroughly [28]. However, approaches to the problem
in control theory are concerned with deriving abstractly de-
fined laws for robust control, rather than proving the ro-
bustness of the software that ultimately implements them.
This is a gap that a program analysis of robustness a la our
paper can fill.

As an example of how to apply our analysis to this space,
we consider the code fragment in Fig. 8, derived from a
software implementation of a transmission shift control sys-
tem [3]. Robustness of this fragment, under a different def-
inition of robustness, was previously studied by Majumdar
and Saha [16]. Given the car speed and the throttle angle,
the operator calc_trans_slow_torques computes a pair of
pressure values pressure1 and presure2, which are applied
to actuators related to the car transmission system. A care-
ful analysis reveals that the output pressure1 is constant,
which means the function is 1-robust in that output. On
the other hand, it is not continuous in the second output
pressure2, hence is not K-robust for any K. Sec. 5 reports
on the results of our implementation on this example.

4.2 Robustness in approximate computation
Another application for our analysis is in approximate

computation, where the goal is to trade off the accuracy of a



1 while (H(i))
2 if (y 7→ P (y)), where y ∈ [x[i]− ε, x[i] + ε], is in table
3 then t := look up P (y); G(y, z, t, i)
4 else t := P (x[i]);
5 tabulate (x[i] 7→ P (x[i])); G(z, t, i)

Figure 9: Approximate memoization for loops

computation for resource savings. Rather than approximate
solutions for specific problems, language-based program ap-
proximation [20] involves program transformations that are
just like traditional compiler optimizations but, when ap-
plied to a program, lead to an approximately equivalent pro-
gram. Such approaches are especially applicable to domains
like image and signal processing, where programs compute
continuous values with negotiable accuracy.

While such approximation schemes have been much dis-
cussed of late, very little is understood at this time about
their theoretical foundations. Now we show that a robust-
ness analysis such as ours can provide foundations for one
such scheme, called loop perforation [20, 19]. The loop per-
foration optimization is applicable to expensive computa-
tional loops over large datasets; what it does is simply skip
every alternate iteration in certain long-running loops. The
empirical observation in many cases, this bizarre and obvi-
ously unsound optimization does not significantly affect the
accuracy of the final output. In [20], a profiling compiler is
proposed that exploits this fact and identifies loop iterations
that can be skipped.

As for the theoretical foundations of loop perforation, a
recent paper [19] shows that if the loop under consideration
follows certain computational patterns and the dataset on
which the loop operates follows certain probability distribu-
tions, then loop perforation is“probabilistically sound”—i.e.,
the output of loop perforation is guaranteed to be within
reasonable bounds with high probability. Now we show that
such a guarantee is available for any loop that satisfies cer-
tain robustness requirements of the sort studied in this pa-
per. This means that our analysis can be used to identify
loops that can be correctly perforated, and can serve as a
static guidance mechanism for a perforating compiler.

Approximate memoization. Before we show how ro-
bustness relates to loop perforation, let us offer a more gen-
eral approximation scheme. Consider a loop Q of form

while (H(i)) { t := P (x[i]);G(z, t, i)}.

Here x is a large, read-only array that is the “input variable”
for the loop (for simplicity, we let elements of x to be reals).
The variable z is the“output variable,” t is a temporary vari-
able, H and P are side-effect-free computations, and G(. . . )
is an imperative procedure that cannot read x, but can have
other effects. The function P is expensive, and we would
like to eliminate calls to it.

Our first approximation of Q consists of a sort of approx-
imate memoization of P . Suppose that, in a loop iteration,
prior to making a call to P (x[i]), we find that P was pre-
viously evaluated on some x[j] such that x[j] ≈ x[i]. Then
rather than evaluating P (x[i]), we simply use the (cached)
value P (x[j]). The pseudocode for the optimized loop is
given in Fig. 9.

Robustness of Q is needed for this approximation to be
“sound.” Denote by Q(x) the final value of z on input x;

also, suppose Q is K-robust with respect to the input x and
output z. In that case, the scheme in Fig. 9 is equivalent to
a transformation that replaces Q by a program Q′ that, on
any input x: (1) perturbs x by an amount δ ≤ ε, resulting
in an array x′; and (2) computes Q(x′).

By the robustness of Q, the outputs Q(x) and Q(x′) on
x and x′ differ at most by K · ε. If this value is suitably
small (and we can make it be, by selecting ε suitably), the
optimization approximately preserves the semantics of Q.
But if Q is non-robust, the outputs of the optimization may
be very different from the idealized output.

Loop perforation. One obvious objection to the above
scheme is that the complexity of table lookup will make it
impractical. However, we now demonstrate that under some
extra assumptions, this scheme reduces to a scheme that is,
almost exactly, loop perforation. First, let us restrict our-
selves to for-loops iterating over an array x—i.e., we assume
Q to have the form

for 0 ≤ i < N do t := P (x[i]);G(z, t)

where N = |x|, and the imperative procedure G does not
access x or modify the induction variable i of the loop.

Second, let us assume that the input dataset x exhibits
locality—i.e., any two successive elements in x are approxi-
mately equal with high probability. Note that this property
holds in most multimedia datasets—for example, in most
images neighboring pixels, for the most part, have similar
colors. We formalize the above using a model defined in Mi-
sailovic et al [19] that views x as a random variable that is
generated by a random walk with independent increments.
In more detail, the variable x[0] is a fixed constant, and
zi = x[i + 1] − x[i] follows a normal distribution N with
mean µ and variance σ2.

As successive elements in x are likely to be close in value,

we can replace Q by a program Q̂ that uses x[i] as a proxy
for the value x[i+1], and the cached value P (x[i]) as a proxy
for P (x[i+1]), in the iteration (i+1). Observe that we have
now arrived at an approximation scheme that is quite like
loop perforation!

There is, however, an important distinction between this
scheme and the version of loop perforation presented in prior
work [20, 19]. As the latter scheme skips loop iterations
entirely, it is not applicable when the loop body performs
discrete computations, pointer updates, etc., in addition to
calling P (these computations are encapsulated within the
routine G). Perforating these loops may lead not only to
inaccurate results but to system crashes. Our approach, on
the other hand, does not skip any iterations, but only the call
to P inside the iterations, and can be viewed as executing
Q on a perturbed input. Therefore, if the original program

Q does not crash on any input, then neither does Q̂.
As for the analysis of error produced by the above trans-

formation, let us define the output error for the transfor-

mation to be ErrQ(x) = d(Q(x), Q̂(x)). Now observe that

Q̂(x) = Q(x′) where for all i, (x[i] − x′[i]) ∼ N (µ, σ2). Be-
cause we use the L∞ norm as the distance measure over
arrays, we have, for every a > 0, the property

P[d(x, x′) > a] = P[∃i : |x[i]− x′[i]| > a]

≤ N ·max
i

(P[|x[i]− x′[i]| > a])

≤ N · (1− (ΦN (a)− ΦN (−a)))



InsideError(FGmap: BinaryImage)

1 samples :=0; error := 0;
2 for cam:= 1 to nCams
3 for cylndr := 0 to nParts
4 s1,s2 := vectors on sides of body part;
5 m := vector connecting midpoints of s1 and s2;
6 n1 := |m| / vStep; n2 := |m| / hStep;
7 for i := 1 to n1

8 δ1 = i/n1;
9 p1 := cylndr[0] + (s1.x * δ1, s1.y * δ1);

10 p2 := cylndr[3] + (s2.x * δ1, s2.y * δ1);
11 m := p2 - p1;
12 for j := 1 to n2

13 δ2 := j/n2;
14 p3 := p1 + (m.x * δ2, m.y * δ2);
15 error := error + (1-FGmap(p3));
16 samples++;
17 return error/samples;

Figure 10: Bodytrack’s InsideError function

where ΦN is the cumulative distribution function of N .
Let χ = 1−(ΦN (a)−ΦN (−a)). Note that for χ decreases

as a increases, and is approximately 0.03 for a = 3 · σ. By
the K-robustness of Q, we have:

P[ErrQ(x) > K · a] ≤ N · χ.

The above can be seen as a“probabilistic”soundness result
for loop perforation: if the loop Q is robust with a low ro-
bustness parameter, then the probability of loop perforation
introducing a significant error is low. Indeed, one can give
an intuitive interpretation to perforation here: it amounts to
sampling the dataset x at a lower frequency, which is accept-
able if the process is robust. What all of this means is that
one can use a robustness analysis such as ours to determine
whether a given loop is suitable for perforation.

For a concrete example, consider the code fragment in
Fig. 10, from the computer vision application called Body-
track in the Parsec benchmarks [21]. (Perforation of this
application was studied in [20].) The goal of this application
is to track the major body components of a moving subject;
the code in Fig. 10 performs a sampling computation inside
a cylinder (a projected body part). In this code, the loops at
lines 2, 3, 7, and 12 can be perforated with good results [20].
However, we observe that the reason behind this is that the
sampling process performed between lines 4 to 17 is robust.
This robustness property can be proved by our analysis.

4.3 Differential privacy
Robustness analysis can also be helpful in guaranteeing

privacy in statistical databases, where a trusted party wants
to disseminate aggregate data about a population while pre-
serving the privacy of individual members of the population.
The dominant notion of privacy in this setting is differen-
tial privacy [10], which asserts that the result of a statistical
query should not be affected substantially by the presence
or absence of a single individual. A known strategy to “pri-
vatize” statistical queries is to add some noise to the result;
the amount of noise needed is related to how sensitive is the
query to individual changes of the data set. Our notion of
K-robustness can be used to establish the sensitivity of the
query. Suppose we have a query over_six_feet (Fig. 11)

which returns the number of individuals that are over six
feet tall in a population. Let us represent the set of rows
in the database as two arrays of the same size: heights,
an array of reals and rows, an array of reals whose element
values will range over [0,1] representing its presence or ab-
sence in the populations. The first array, heights, contains
the height of the individual while the second, rows specifies
whether a certain row is present or not in the set. The row
is present in the database if its corresponding array element
(in the first array representing the rows) is 1 and absent if
it is 0; note that we allow all real values between 0 and 1.

To compute the amount of noise to be used for ε-differential
privacy, one first needs to determine the robustness param-
eter of the query with respect to a suitable metric. In dif-
ferential privacy, we are only interested in determining the
robustness of over_six_feet with respect to the first pa-
rameter, rows. Note that for this case we will need to use
the L1-norm on the type realarray. With this norm we
can prove that over_six_feet is 1-robust, as removing or
adding an element to the set will imply a change to only one
of the elements of the rows array by 1, making the L1 norm
of the difference to be 1. The rules needed for this proof can
be obtained by a simple modification of the rules that we
have presented (which assume the L∞ norm). According to
[10] random noise with variance 1/ε will be needed so that
the query over_six_feet is ε-differentially private. Thus,
our analysis can guide the amount of noise that needs to be
added to ensure the differential privacy guarantee.

over six feet(rows : realarray, heights : realarray)

1 result := 0;
2 for i := 0 to n
3 if (heights[i] > 6)
4 then result := result + row[i];

Figure 11: A 1-robust query

5. EXPERIMENTS
We implemented our robustness analysis on top of the Z3

SMT-solver, and used the tool to verify the robustness of
several classic algorithms from an undergraduate computer
science textbook, as well as the code fragments in Section 4.
Now we report on some experiments using this tool.

Sorting Algorithms. Our tool was able to verify the ro-
bustness of several classic sorting algorithms that take an
array Ain and return the sorted array Aout . In particular,
we considered InsertionSort, BubbleSort, SelectionSort and
MergeSort. In [5] those four algorithms where proved con-
tinuous with respect to Ain and Aout using proof system
Cont. This time we proved that the computation of Aout

is arithmetic free, hence 1-robust due to continuity.

Shortest Path Algorithms. We verified the robustness of
several shortest path algorithms. Recall that single source
shortest path is N-robust with respect to the input array
of edge weights. The proof for the particular shortest path
algorithms such as Dijk and Bellman-Ford, consists of the
following. In [5] we have proved these algorithms continu-
ous on the input array. To prove piecewise N -robustness of
the loop we prove that the loop body is piecewise 1-robust
with respect to the array variable, and with respect to out-
put variable. This is done using the rule RobMat on an



abstraction of loop body. It follows from our method that
after executing the loop, the output variable d is N -linear
with respect to the array of edge waits. Given that it is
piecewise N -linear and continuous we can conclude that it
is N -robust. It must be noted that the nested loop struc-
ture in Dijk can be abstracted as one single loop in Limp.
Our proof system is unable to prove N -robustness for some
shortest path algorithms such as Floyd-Warshall.

Minimum Spanning Tree Algorithms. The minimun
spanning tree problem is N -robust, as explained in Exam-
ple 2. The proofs for the particular spanning tree algorithms,
Kruskall and Prim, are similar to that of the shortest path
algorithms. Continuity is proved using the Cont proof sys-
tem of [5]. Piecewise N -linearity follows by expressing the
loop in Limp and proving piecewise 1-robustness of the loop
body. Now we conclude that the aforementioned algorithms
are N -robust. Again our proof system can not prove N-
robustness for some spanning tree algorithms like Boruvka’s.

Knapsack Algorithms. The integer-knapsack algorithm
takes as input a weight array c and a value array v, and
a knapsack capacity Budget and returns the set of items
with maximum combined value totv such that their com-
bined weight is less than the knapsack capacity. Clearly
value of totv is N -robust in v. To prove N -robustness of
our recursive Knapsack implementation we first prove the
algorithm continuous using Cont [5]. The prover uses a fix-
point procedure to prove piecewise K-robustness assuming
K-robustness for the recursive function calls, while probing
for different values of K (0,1 and n). In order to prove
piecewise N -linearity, the function was manually rewritten
to make it explicit the array partitioning operation at each
recursive call, where the input arrays are partitioned in two,
one containing only the first element, and the other contain-
ing the rest. The tool keeps track of this partitioning to
prove N -linearity for the addition operation in line 5. At
each fixpoint iteration linearity of the function body is es-
tablished using proof system Robmat.

Car Transmission Controller Example (Fig. 8). The
algorithm produces two outputs in two variables, pressure1
and pressure2. The tool determines 1-robustness on pres-
sure1, and non robust on pressure2. To arrive to that con-
clusion the tool uses the proof system Robmat in conjunc-
tion to the SMT solver to discharge proof obligations for
each discontinuity. These proof obligations arise due to the
proof rule Ite-Con presented in continuity analysis [5].

Loop perforation examples. Our proof rules are able to
establish robustness proofs for several other code segments
from the Parsec Benchmark Suite [21] where loop perfora-
tion is empirically successful [20].

In particular, our rules can prove the robustness of the
loops for the ImageMeasurement class in the Bodytrack ap-
plication (including the one shown in Fig. 10), where loop
perforation is reported to work. A second example comes
from x264, a media application that performs H.264 encod-
ing on a video stream. Two outermost loops in function
pixel_satd_wxh are claimed to be amenable to perforation
with good results by [20]. We looked at the code snippet
inside the body of the nested loops: similar to the example
in bodytrack, perforating these loops will result in sampling
less points in a coarser way, and the computation inside the
body of the loop is a robust computation.

Example Time #
SMT
proofs

Proof method

BubbleSort 0.250 1 continuity + arithmetic freedom

InsertionSort 0.098 1 continuity + arithmetic freedom

SelectionSort 0.293 3 continuity + arithmetic freedom
MergeSort 0.560 3 continuity + arithmetic freedom + array

partitioning
Dijkstra 0.454 3 continuity + robustness matrix + linear

loops
Bellman-Ford 0.316 1 continuity + robustness matrix + linear

loops
Kruskal 1.198 1 continuity + robustness matrix + linear

loops
Prim 0.547 3 continuity + robustness matrix + linear

loops
Knapsack 1.480 3 continuity + robustness matrix + array

partitioning
Controller 8.770 60 continuity + robustness matrix

Table 1: Benchmark Examples

However, not all loops that are empirically amenable to
loop perforation are provably robust by our analysis. Exam-
ples include the loop in the pFL() routine in the StreamClus-
ter application, and a loop in the ParticleFilter::Update

method in Bodytrack. We leave for future work a proof prin-
ciple that can explain why these (and similar) loops can be
successfully perforated.

Implementation and Experimental Setup. Our tool
is implemented in C#, relying on the Z3 SMT solver to dis-
charge proof obligations and the Phoenix Compiler Frame-
work to process the input program. The bulk of the new
analysis computes facts about linear dependences between
variables and parameters and is implemented as a fixpoint
computation that finds the solution of dataflow equations
derived from the proof rules. Some proof obligations are dis-
charged in the process by the SMT-solver. In the future we
plan to use an optimization toolbox to have better guesses
for the minimum bound. Some proofs involving arrays, e.g.
MergeSort, requires to keep track of the accesses to the ar-
ray, with purpose to ensure disjoint access to elements of the
array. Finally, as mentioned earlier, we manually rewrote
some of the programs to fit the abstraction language LIMP.
The performance results reported in table 1 were obtained
on a Core2 Duo 2.53 Ghz with 4GB of RAM.

6. RELATED WORK
Robustness is a standard correctness property in control

theory [22, 23], and there is an entire subfield of control
theory studying the design and analysis of robust (control)
systems. However, the systems studied by this literature
methods are abstractly defined using differential equations
and hybrid automata, rather than programs. As far as we
know, the only effort to generally define and study the ro-
bustness of embedded control software can be found in [16,
17] on test generation for robustness. There, robustness is
formulated as: “If the input of the program P changes by
an amount less than ε, where ε is a fixed constant, then the
output changes by only slightly.” In contrast, we verify the
stronger property that any perturbation to the inputs will
change the output proportionally. Many applications (e.g.,
differential privacy) demand this stronger formulation.

In addition, there are many efforts in the abstract inter-
pretation literature that, while not verifying robustness ex-



plicitly, reason about the uncertainty in a program’s behav-
ior due to floating-point rounding and sensor errors [11, 18,
8, 6, 7]. Several of these approaches have been success-
fully applied to large embedded code bases. However, none
of them reason systematically about divergent control flow
caused due to uncertainty, which we can thanks to our con-
tinuity analysis. Also, none of the abstractions developed in
this space seem suitable for an analysis of piecewise robust-
ness that is needed to verify robustness.

So far as we know, Hamlet [13] was the first to argue
for a testing methodology for Lipschitz-continuity of soft-
ware. However, he failed to offer new program analysis
techniques. Reed and Pierce [25] have since given a type
system that can verify the Lipschitz-continuity of functional
programs, as a component of a new language for differential
privacy [24]. While the system can seamlessly handle func-
tional data structures such as lists and maps, it does not,
unlike our analysis, handle control flow, and would deem any
program containing a conditional branch to be nonrobust.
Also, this work does not consider any application other than
differential privacy.

Robustness and stability of numerical algorithms are also
well-studied topics in the numerical analysis literature [14].
However, the proofs studied there are manual, and special-
ized to specific numerical algorithms. Other related liter-
atures include that on automatic differentiation (AD) [4],
where the goal is to transform a program P into a program
that returns the derivative of P where it exists. But AD
does not attempt verification—no attempt is made to cer-
tify a program as differentiable or Lipschitz.

Finally, language-based approaches to program approxi-
mation are still very new [20, 19, 26]. In particular, there is
only one existing paper [19] studying the theory of language-
based program approximation.

7. CONCLUSION
We have presented a program analysis to quantify the ro-

bustness of a program to uncertainty in its inputs. Our
analysis is sound, and decomposes the verification of robust-
ness into the independent subproblems of verifying continu-
ity and piecewise robustness.

In future work, we intend to extend our robustness anal-
ysis to programs that manipulate discrete data types like
integers and boolean arrays in addition to continuous ones
(like the ones studied here). This extension is especially im-
portant as discrete types are often used in real-world appli-
cations, in particular embedded control code. Another inter-
esting question is the generation of test inputs that trigger
robustness bugs—i.e. pairs of inputs that are close in value,
but on which the program behaves very differently. A third
interesting direction is a notion of robustness for reactive
programs, where we must consider perturbations not only in
the program inputs, but also in the environment with which
the program interacts.
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